
Graphical Models for Discrete Data
Part 1: Undirected Graphs

1 Introduction

In this chapter we consider models that aim to represent the associations
between a number of discrete variables. In contrast to for example classi-
fication trees and bump hunting we don’t select a particular variable as a
target that is to be explained or predicted by the other variables. Instead,
all variables are treated on an equal footing: we simply want to model the
associations between them. We confine our attention to discrete variables,
although similar ideas have been developed for continuous as well as mixed
discrete and continuous variables.

After giving a motivating example, we give a short review of the notions
of independence and conditional independence of random variables. These
notions are central to the interpretation of the type of models we are going
to discuss. Next we start with the so called log-linear representation of a
multi-way contingency table. This representation is convenient for our pur-
pose because it allows us to express (conditional) independence constraints
by setting certain coefficients equal to zero. In fact we define subclasses of
the log-linear model that can be fully interpreted in terms of conditional in-
dependence relations. These are in order of inclusion: hierarchical models,
graphical models and finally decomposable models. We discuss how such
models can be estimated from data, sometimes requiring an iterative algo-
rithm called iterative proportional fitting. Finally, we discuss how we can
test whether a model gives a reasonable fit, and how one can select a good
model when little prior knowledge is available concerning the conditional
independence relations between the variables. Most of the material in this
chapter is based on the book of Whittaker [Whi90]. Other sources used in
writing this chapter are [Edw00, Sch97, Chr97, BFH75].

1



2 Example

Although we assume familiarity with the basic rules of probability, almost
all results we use can be inferred from two elementary properties that we list
here for reference:

P (X) =
∑
Y

P (X, Y ) (sum rule)

P (X, Y ) = P (X|Y )P (Y ) (product rule)

Consider problems where we have a collection of discrete random vari-
ables whose joint probability distribution has to be estimated from data.
Now suppose we have k random variables each of which can take on m pos-
sible values. To estimate the probability of each possible combination would
require the estimation of mk probabilities. For a relatively small problem
with 10 variables with 5 possible values each, this is

510 = 9, 765, 625

say 10 million probabilities. Typically we have far fewer observations than
that, so it is clear we cannot estimate all these probabilities reliably from the
limited amount of data we have. This is one of the many manifestations of
what is called the curse of dimensionality.

How can we simplify such a problem? How can we reduce the number of
probabilities we have to estimate in a natural way? One of the most natural
ways to do this is to exploit (conditional) independences that might hold in
the problem domain. To illustrate, consider a problem with just two ternary
variables. There are 3×3 = 9 possible value combinations, so without making
any simplifying assumptions we have to estimate 8 probabilities (we subtract
1, because we have the constraint that the probabilities must sum to one).
Now suppose we observe the counts displayed in Table 1.

To estimate the joint distribution of X and Y , we use

P̂ (x, y) =
n(x, y)

n
,

that is, we just look up how many times a particular combination of values
of X and Y occurs in the data and divide this number by the total number

2



n(x, y) y
x 1 2 3 n(x)
1 2 5 3 10
2 10 20 10 40
3 8 35 7 50
n(y) 20 60 20 100

Table 1: Cross-table of counts for two ternary variables

P̂ (x, y) y

x 1 2 3 P̂ (x)
1 0.02 0.05 0.03 0.10
2 0.10 0.20 0.10 0.40
3 0.08 0.35 0.07 0.50

P̂ (y) 0.20 0.60 0.20 1

Table 2: Estimated joint distribution for two ternary variables

of observations. Hence, we obtain the estimated joint distribution as given
in Table 2.

Now suppose we assume that X and Y are independent random variables.
In that case, we can write

P (X, Y ) = P (X)P (Y ), (1)

that is, the joint distribution can be written as the product of the marginal
distributions. Now we only need to estimate the marginal distributions P (X)
and P (Y ) and plug these estimates into equation (1) to obtain an estimate of
the joint probability. This requires the estimation of 2 probabilities (remem-
ber the sum to one constraint) for P (X) and the same number for P (Y ),
hence a total of just 4 probabilities. These estimates can be read from the
margins (hence the name marginal probability) of Table 2 and filling them
in in equation (1) gives the estimates as displayed in Table 3.

Another way of expressing the result is to compute the “fitted counts”
of this model as displayed in Table 4. These are simply obtained by multi-
plying the estimated probabilities with the total number of observations. To
determine whether the independence assumption is justified, we compare the

3



P̂ (x)P̂ (y) y

x 1 2 3 P̂ (x)
1 0.02 0.06 0.02 0.10
2 0.08 0.24 0.08 0.40
3 0.10 0.30 0.10 0.50

P̂ (y) 0.20 0.60 0.20 1

Table 3: Estimated joint distribution for two ternary variables using inde-
pendence assumption

n̂(x, y) y
x 1 2 3 n(x)
1 2 6 2 10
2 8 24 8 40
3 10 30 10 50
n(y) 20 60 20 100

Table 4: Fitted counts for two ternary variables using independence assump-
tion

observed counts with the fitted counts of the independence model. We ob-
serve that the fitted counts are not that far off, and the independence model
seems to give a reasonable fit. To decide in a more justified manner whether
the independence assumption should be accepted, a statistical test can be
performed. We don’t discuss this here.

Next we discuss a somewhat more complicated example. The data set
displayed in Table 5 has been made famous by the book of Bishop, Fienberg
and Holland [BFH75]. The data gives information on the survival rate of 715
infants attending two clinics and the amount of care received by the mother,
where the amount of care is classified as either more or less. Table 6 gives
the probability estimates corresponding to the saturated model (making no
independence assumptions). These estimates are obtained simply by dividing
the count in each cell of the table by the total number of observations.

Now consider the model that assumes survival and care are independent
within each clinic. This is called a conditional independence assumption
because we condition on clinic: we don’t state survival and care are inde-

4



n(clinic, care, survival) survival
clinic care no yes
clinic 1 less 3 176

more 4 293
clinic 2 less 17 197

more 2 23

Table 5: Three-way tabel relating clinic, care and survival

P̂ (clinic, care, survival) survival
clinic care no yes
clinic 1 less .004 .246

more .006 .410
clinic 2 less .024 .276

more .003 .032

Table 6: Estimated joint distribution of clinic, care and survival without
making any independence assumptions (the so-called saturated model)

pendent per se, but that they are independent given clinic. This assumption
corresponds to the following factorization

P (care, survival|clinic) = P (care|clinic)P (survival|clinic)

Multiplying left and right by P (clinic) we get

P (care, survival, clinic) = P (care,clinic)P (survival|clinic)

=
P (care,clinic)P (survival,clinic)

P (clinic)

As you can see from this last expression we have to estimate the joint dis-
tribution of care and clinic, and the joint distribution of survival and clinic
(the marginal distribution of clinic is obtained by summing out care from the
joint of care and clinic, or alternatively, by summing out survival from the
joint of survival and clinic). To obtain the necessary counts, we take Table 5
and sum out care respectively survival. The resulting tables are displayed
below

5



n(clinic, care) care
clinic less more
clinic 1 179 297
clinic 2 214 25

n(clinic, survival) survival
clinic no yes
clinic 1 7 469
clinic 2 19 220

Writing n̂ for P̂ n we get

n̂(clinic, care, survival) =
n(clinic,care)n(clinic,survival)

n(clinic)

which gives the fitted values:

n̂(clinic, care, survival) survival
clinic care no yes
clinic 1 less 2.63 176.37

more 4.37 292.63
clinic 2 less 17.01 196.99

more 1.99 23.01

To give one example, the fitted count for clinic=clinic 1, care=more,
survival=yes is computed as follows

n̂(clinic 1, more, yes) =
n(clinic 1,more)n(clinic 1, yes)

n(clinic 1)

=
297× 469

179 + 297
= 292.63

When we compare the fitted counts to the observed counts we see that
they are very close. Hence the assumption that care and survival are inde-
pendent within each clinic seems to be justified. Again, a rigorous statistical
test will confirm this but is not discussed here. Within the first clinic the
mortality rate for the less care group is practically the same as for the more
care group; the same is true for the second clinic. In neither clinic is there
a relationship between care and survival. In other words, given clinic, care
and survival are independent. A graph that describes this structure is

6



survival
care no yes (%)
less 20 373 5.1
more 6 316 1.9

Table 7: Cross-table of care and survival

clinic

care

survival

where the vertices correspond to the variables and lack of an edge between
care and survival indicates that these variables are conditionally independent
given clinic.

The reason this dataset has become well-known is that a strange phe-
nomenon occurs when we sum out clinic, and then analyse the association
between care and survival. From table 7 one would conclude that the more
maternal care received the lower the infant mortality rate, with the rate
dropping by more than half.

Apparently, when the three-way table is collapsed over clinic a spurious
association between care and survival is induced. The lack of independence
suggests the graph

care

survival

7



A lesson to learn is that it is dangerous to analyse a three-way table solely by
inspecting its two way margins. Can you explain how the spurious association
between care and survival comes about?

3 Independence and Conditional Independence

We give a short review of the concepts of independence and conditional in-
dependence of random vectors.

Random vectors X and Y are independent iff

P (x, y) = P (x)P (y) for all (x, y),

and as a consequence P (x | y) = P (x), and P (y |x) = P (y). We also write
X ⊥⊥ Y .

To establish independence, it is sufficient to show that the joint den-
sity function factorises rather than that it factorises into the product of the
marginals. This gives us the factorisation criterion for independent random
vectors: random vectors X and Y are independent iff there exist two func-
tions g and h such that

P (x, y) = g(x)h(y) for all (x, y)

We will often make use of the “log-version” of this criterion:

log P (x, y) = g′(x) + h′(y) for all (x, y)

Random vectors X and Y are independent given Z iff

P (x, y | z) = P (x | z)P (y | z)

for all (x, y) and for all z for which P (z) > 0. We also write X ⊥⊥ Y | Z.
An equivalent formulation is

P (x, y, z) = P (x, z)P (y, z)/P (z)

which shows that conditional independence can be rephrased entirely in terms
of marginal densities.

Like with marginal independence we can state a simple factorisation cri-
terion to establish conditional independence: random vectors X and Y are

8



conditionally independent given Z, X ⊥⊥ Y | Z if and only if there exist
functions g and h such that

P (x, y, z) = g(x, z)h(y, z)

for all (x, y) and for all z for which P (z) > 0. Again we will often use the
“log-version”

log P (x, y, z) = g′(x, z) + h′(y, z)

4 Independence Graphs

We can represent the conditional independence relations between a set of
random variables in a so-called conditional independence graph. Let X =
(X1, X2, . . . , Xk) be a k-dimensional random vector. The conditional in-
dependence graph of X is the undirected graph G = (K, E), with K =
{1, 2, . . . , k}, and where {i, j} is not in the edge set E iff

Xi ⊥⊥ Xj|rest

Example: Let X = (X1, X2, X3, X4), 0 < xi < 1 with probability density

P (x) = exp(u + x1 + x1x2 + x2x3x4)

Application of the factorisation criterion gives

X1 ⊥⊥ X4|(X2, X3) and X1 ⊥⊥ X3|(X2, X4)

Hence the conditional independence graph of X is

1 2 4

3

9



1 2 3

4 5 6

7

Figure 1: Example of a conditional independence graph

In fact we can reduce the conditioning set by using the concept of sepa-
ration.

From the conditional independence graph in figure 1 we can read that

X1 ⊥⊥ X3|(X2, X4, X5, X6, X7)

However, since {2, 5} separates 1 from 3 in the graph (i.e. every path from
1 to 3 must go through 2 or 5), we can make the stronger statement

X1 ⊥⊥ X3|(X2, X5)

We defined the conditional independence graph using the rule that for all
non-adjacent vertices i and j

Xi ⊥⊥ Xj|rest
This is called the pairwise Markov property. Perhaps surprisingly, the fol-
lowing properties turn out to be equivalent

Global Markov property: a separates b from c (a, b, c disjoint) iff

Xb ⊥⊥ Xc|Xa

where Xa = (Xi; i ∈ a) and a separates b from c if for all i ∈ b, j ∈ c:
a separates i from j.

Local Markov property:

Xi ⊥⊥ rest | boundary(i)

where the boundary of a vertex i is simply the set of adjacent vertices.

The local Markov property is particularly relevant to prediction. For exam-
ple, to predict X2 in figure 1, we only need to know the values of X1, X3 and
X5.

10



5 Log-linear Models

In this section we introduce the class of log-linear models and its subclasses
of hierarchical, graphical log-linear, and finally decomposable models. For
ease of exposition we start with log-linear models for binary variables.

5.1 Log-linear models for binary data

A random experiment that only distinguishes between two possible outcomes
is called a Bernoulli experiment. The outcomes are usually referred to as suc-
cess and failure respectively. We define a random variable X that denotes the
number of successes in a Bernoulli experiment; X consequently has possible
values 0 and 1. The probability distribution of X is completely determined
by the probability of success, which we denote by p, and is: P (X = 0) = 1−p
and P (X = 1) = p.

A Bernoulli random variable X, has the probability density function

P (x) = px(1− p)1−x for x = 0, 1 and 0 ≤ p ≤ 1

This is a clever way of writing the probability density in one formula; check
that indeed P (1) = p and P (0) = 1− p as required.

Next we consider the analysis of a 2 × 2 table. The bivariate Bernoulli
random vector (X1, X2), takes the values (0, 0), (0, 1),(1, 0) and (1, 1) in the
Cartesian product {0, 1} × {0, 1}. Its distribution is completely specified by
the table of probabilities

P (x1, x2) x2 = 0 x2 = 1 Total
x1 = 0 p(0, 0) p(0, 1) p1(0)
x1 = 1 p(1, 0) p(1, 1) p1(1)
Total p2(0) p2(1) 1

Here’s a clever way to write the probability distribution as one function:

P (x1, x2) = p(0, 0)(1−x1)(1−x2)p(0, 1)(1−x1)x2p(1, 0)x1(1−x2)p(1, 1)x1x2

for x1 = 0, 1 and x2 = 0, 1. Verify that P (0, 0) = p(0, 0), P (0, 1) = p(0, 1),
P (1, 0) = p(1, 0) and P (1, 1) = p(1, 1) as required.

11



Taking logarithms of this identity for P , and collecting terms in x1 and
x2 gives

log P (x1, x2) = log p(0, 0) + x1 log
p(1, 0)

p(0, 0)
+

x2 log
p(0, 1)

p(0, 0)
+ x1x2 log

p(1, 1)p(0, 0)

p(0, 1)p(1, 0)

Exercise: Verify this result using the following properties of logarithms:

log ab = b log a

log ab = log a + log b

log
a

b
= log a− log b

Reparameterizing the right hand side leads to the so-called log-linear ex-
pansion

log P (x1, x2) = u∅ + x1u1 + x2u2 + x1x2u12 for (x1, x2) in {0, 1}2

The coefficients, u∅, u1, u2, u12 are known as the u-terms. For example

u1 = log
p(1, 0)

p(0, 0)

which is just the log of the odds of the event X1 = 1 to the event X1 = 0
conditioned on X2 = 0. The coefficient of the product x1x2 is the logarithm
of the cross product ratio

u12 = log
p(1, 1)p(0, 0)

p(0, 1)p(1, 0)
= log cpr(X1, X2)

The random variables X1 and X2 are independent if and only if u12 = 0.
The factorisation criterion states that X1 and X2 are independent iff there
exist two functions g and h such that

log P (x1, x2) = g(x1) + h(x2) for all (x1, x2)

If u12 = 0, we can take g(x1) = u∅ + x1u1 and h(x2) = u2x2. If u12 6= 0 no
such decomposition is possible.

To calculate systematically the u’s from the given p’s, substitute in the
log-linear expansion for (x1, x2) = (0, 0), . . . , (1, 1) to get

12



log p(0, 0) = u∅
log p(1, 0) = u∅ + u1

log p(0, 1) = u∅ + u2

log p(1, 1) = u∅ + u1 + u2 + u12

This is a simple set of linear equations to solve.
The log-linear expansion of a 2×2×2 table (three dimensional Bernoulli)

is obtained in a similar way. The density function can be written

P (x1, x2, x3) = p(0, 0, 0)(1−x1)(1−x2)(1−x3) . . . p(1, 1, 1)x1x2x3

The log-linear expansion is

log P (x1, x2, x3) = u∅ + u1x1 + u2x2 + u3x3 + u12x1x2 +

u13x1x3 + u23x2x3 + u123x1x2x3

Note that for example

X2 ⊥⊥ X3|X1 ⇔ u23 = 0 and u123 = 0

In general, we can enforce (conditional) independence constraints, by setting
the right u-terms to zero.

5.2 Extension to non-binary data

So far we assumed all variables are binary. In general we allow discrete
variables with more than two values as well. To see how we can generalise
the log-linear model to this case, consider again the 2× 2 table

log P (x1, x2) = u∅ + u1x1 + u2x2 + u12x1x2

for x ∈ {0, 1}2. What if the xi have more than two levels? The trick is to
make the u-terms functions of x rather than constants:

log P (x1, x2) = u∅ + u1(x1) + u2(x2) + u12(x1, x2) (2)

In fact we now have too many parameters, and in order to identify them
we have to impose some extra constraints. To be consistent with the binary
case, we impose the constraint that ua(xa) = 0 whenever xi = 0 and i ∈
a. Here we assume that if xi has di possible values, these are numbered

13



0, 1, . . . , di−1. Note however that this numbering does not imply any ordering
of the values.

So for example, suppose x1 has two possible values (0,1) and x2 has three
possible values (0,1,2) then the following u-terms are constrained to be zero

u1(0) = 0, u2(0) = 0, u12(0, 1) = u12(0, 2) = u12(1, 0) = u12(0, 0) = 0

5.3 Hierarchical and Graphical Log-linear models

Definition 1 (Log-linear expansion) The log-linear expansion of the cross-
classified Multinomial density function PK is

log PK(x) =
∑
a⊆K

ua(xa)

where the sum is taken over all possible subsets a of K = {1, 2, . . . , k} and
where the u-terms {ua} are coordinate projection functions, so that ua(x) =
ua(xa), and also satisfy the constraint that ua(x) = 0 whenever xi = 0 and
i ∈ a.

It is particularly easy to list the conditions for independence as conditions
on u-terms.

Proposition 1 (Independence and the u-terms) If (Xa, Xb, Xc) is a par-
titioned Multinomial random vector then Xb ⊥⊥ Xc|Xa if and only if all u-
terms in the log-linear expansion with one or more coordinate in b and one
or more coordinate in c, are zero.

The proof is a direct application of the factorisation theorem for condi-
tional independence. Let t be an arbitrary subset of a∪ b∪ c = {1, 2, . . . , k}.
If all u-terms, ut, are zero whenever t 6⊆ a ∪ b and t 6⊆ a ∪ c (i.e. whenever t
contains coordinates from both b and c) then we can write

log PK =
∑

t⊆a∪b

ut +
∑

t⊆a∪c

ut −
∑
t⊆a

ut

But this function is of the form g(xa, xb) + h(xa, xc) and hence Xb ⊥⊥ Xc|Xa

by the factorisation criterion.
The importance of the log-linear expansion rests in the fact that many

interesting hypotheses can be generated by setting u-terms to zero. Propo-
sition 1 gives conditions on the u-terms for conditional independence.

14



Model Omitted Interpretation
123 none saturated
12,13,23 u123 homogeneous association
12,13 u123, u23 X2 ⊥⊥ X3 | X1

12,23 u123, u13 X1 ⊥⊥ X3 | X2

13,23 u123, u12 X1 ⊥⊥ X2 | X3

12,3 u123, u13, u23 (X1, X2) ⊥⊥ X3

13,2 u123, u12, u23 (X1, X3) ⊥⊥ X2

23,1 u123, u12, u13 (X2, X3) ⊥⊥ X1

1,2,3 u123, u12, u13, u23 mutual independence

Table 8: All hierarchical models with 3 variables

In most applications it does not make sense to include the three way
association u123 unless the two-way associations u12, u13 and u23 are also
present. A log-linear model is said to be hierarchical if the presence of a term
implies that all lower-order terms that are contained in it are also present.
This implies that a hierarchical model is identified by listing its highest order
interaction terms.

In table 8 we give all hierarchical models for three dimensions

Definition 2 (Graphical Model) Given an independence graph G = (K, E),
the cross-classified Multinomial distribution for the random vector X is a
graphical model for X if the distribution of X is arbitrary apart from con-
straints of the form that for all pairs of coordinates not in the edge set E of
G, the u-terms containing the selected coordinates are identically zero.

More explicitly, the density of a Multinomial graphical model is

log PK(x) =
∑
a⊆K

ua(xa)

subject to the constraints that ua = 0 if {i, j} ⊆ a and (i, j) is not in the edge
set E. The parameters of the graphical model are the remaining u-terms that
are not set to zero.

In figure 2 we show four hierarchical models and their independence
graphs. Note that the saturated model and the homogeneous association
model have the same independence graph. The homogeneous association

15



model is not a graphical model however, because it imposes the additional
constraint that u123 = 0. In fact the homogeneous association model is the
only hierarchical model in 3 dimensions that is not graphical.

1

2

3

123: saturated

1

2

3

12,13

1

2

3

12,3

1

2

3

12, 13, 23:

not graphical!

Figure 2: Four hierarchical models and their independence graphs

6 Maximum Likelihood Estimation of Hier-

archical and Graphical Models

The maximum likelihood estimator of graphical log-linear model M satisfies
the likelihood equations

n̂a = NP̂a = na

whenever the subset of vertices a in the graph form a clique. This is sum-
marized by the slogan: “Observed = Fitted” for every marginal table corre-
sponding to a complete subgraph.

16



Likewise, the maximum likelihood estimator of hierarchical log-linear
model M satisfies the likelihood equations

n̂a = NP̂a = na

whenever a belongs to the highest order interaction terms of M .
As an example, we return to the infant survival data. We saw that the

model

clinic

care

survival

seemed to give a pretty good representation of the data at first sight.
Let’s fit this model to the data

n123 survival
clinic care no yes
clinic 1 less 3 176

more 4 293
clinic 2 less 17 197

more 2 23

We number the variables as follows: 1=clinic, 2=care, 3=survival. Then
the cliques in the graph are 12 and 13, and so the sufficient statistics are n12

and n13. Hence the maximum likelihood estimate satisfies the equations

n̂12 = NP̂12 = n12

n̂13 = NP̂13 = n13

The relevant tables are given below

n12 care
clinic less more
clinic 1 179 297
clinic 2 214 25

17



n13 survival
clinic no yes
clinic 1 7 469
clinic 2 19 220

Writing n̂ for NP̂ we get

n̂123(x) =
n12(x1, x2)n13(x1, x3)

n1(x1)

which gives the fitted values:

n̂123 survival
clinic care no yes
clinic 1 less 2.63 176.37

more 4.37 292.63
clinic 2 less 17.01 196.99

more 1.99 23.01

The model seems to fit very well indeed.

6.1 Iterative Proportional Fitting

Not all (hierarchical) log-linear models have closed form maximum likelihood
estimates as in the previous example. There is however a simple iterative
algorithm called Iterative Proportional Fitting (IPF) that will converge to
those estimates. We start by giving a simple example that actually does not
require IPF. Suppose we want to fit the independence model to

n(x1, x2) x2 = 0 x2 = 1 n1(x1)
x1 = 0 30 10 40
x1 = 1 30 30 60
n2(x2) 60 40 100

The minimal sufficient statistics are row totals n1(x1) and column totals
n2(x2). In other words, the ML estimates satisfy the equations

n̂1(x1) = n1(x1)

n̂2(x2) = n2(x2)

18



This gives the closed form estimates

n̂12(x) = n1(x1)n2(x2)/N

Application of this formula gives the following table of fitted values

n̂(x1, x2) x2 = 0 x2 = 1 n1(x1)
x1 = 0 24 16 40
x1 = 1 36 24 60
n2(x2) 60 40 100

We will now show how we arrive at this solution using IPF. We usually
begin with a table n̂(0) of uniform counts

1 1 2
1 1 2

In the first step we fit to the row margin

n̂(x)(1) = n̂(x)(0) × n1(x1)

n̂1(x1)(0)

We compute

n̂(0, 0)(1) = 1× 40

2
= 20 n̂(0, 1)(1) = 1× 40

2
= 20

and

n̂(1, 0)(1) = 1× 60

2
= 30 n̂(1, 1)(1) = 1× 60

2
= 30

which yields n̂(1):

20 20 40
30 30 60

In the second step we fit to the column margin

n̂(x)(2) = n̂(x)(1) × n2(x2)

n̂2(x2)(1)

Which gives

n̂(0, 0)(2) = 20× 60

50
= 24 n̂(0, 1)(2) = 20× 40

50
= 16

19



and

n̂(1, 0)(2) = 30× 60

50
= 36 n̂(1, 1)(2) = 30× 40

50
= 24

This yields n̂(2):

24 16
36 24
60 40

Notice that the row totals are still 40 and 60, so we have simultaneously
satisfied the conditions

n̂1(x1) = n1(x1) and n̂2(x2) = n2(x2)

so we have converged. IPF has the nice property that if there is an explicit
formula for the ML estimates, then the algorithm will reach these values
within one iteration, i.e. each margin has to be fit only once. In case there
is no closed-form solution more iterations are required. Why did we start
the procedure from a uniform table of counts? The point is we have to start
with a table that satisfies all constraints imposed by the log-linear model. In
our example, we were fitting the independence model

log P (x1, x2) = u0 + u1x1 + u2x2

The uniform table of counts satisfies this model with u1 = 0, u2 = 0 and
u0 = log 1/4. In fact the uniform table sets all u terms to zero except for
u0 which has the value log 1/N . So as long as the model does not set u0 to
zero (and no acceptable model does), the uniform table satisfies the model
constraints. Now if the log-linear model constrains a particular u-term to be
zero, then the steps of the IPF algorithm will not violate this constraint. For
example, in the independence model we set

u12 = log cpr(X1, X2) = 0

In other words, cpr(X1, X2) = 1. Now the uniform table obviously satisfies
this constraint (recall the definition of the cross-product ratio). A propor-
tional adjustment of a row or column does not change the cross-product ratio
since

n̂(0, 0)n̂(1, 1)

n̂(0, 1)n̂(1, 0)
=

c n̂(0, 0)n̂(1, 1)

c n̂(0, 1)n̂(1, 0)

20



for any value of c 6= 0. Hence we had to start with a table with cpr = 1, to
get a solution for which this is also the case.

We now consider a slightly more complicated example in 3 dimensions.
The only hierarchical model with 3 variables that does not have a closed
from solution is the so called homogeneous association model with highest
order interaction terms: 12,13,23. IPF proportionally adjusts the estimated
expected frequencies n̂123(x) to in turn satisfy the constraints

(1) n̂12(x1, x2) = n12(x1, x2)

(2) n̂13(x1, x3) = n13(x1, x3)

(3) n̂23(x2, x3) = n23(x2, x3)

One iteration of IPF for this model looks like this.
Fit to 12 margin:

n̂123(x)(t+1) = n̂123(x)(t)

(
n12(x1, x2)

n̂12(x1, x2)(t)

)
Fit to 13 margin:

n̂123(x)(t+2) = n̂123(x)(t+1)

(
n13(x1, x3)

n̂13(x1, x3)(t+1)

)
Fit to 23 margin:

n̂123(x)(t+3) = n̂123(x)(t+2)

(
n23(x2, x3)

n̂23(x2, x3)(t+2)

)
In the first step we make sure the fitted 12 margin is equal to the observed
12 margin. In the second step we do the same for the 13 margin. This may
disrupt the result op the previous step. In the third step we fit to the 13
margin. These three steps are repeated until all three fitted margins are
equal to the observed margins simultaneously.

Finally we give a sketch of the general IPF algorithm. Say we have m
margins {a1, a2, . . . , am} to be fitted (∪iai = K). We have to find a table
n̂(x) that agrees with the observed table n(x) on the m margins correspond-
ing to the subsets ai.

The algorithm cycles through the list of subsets

a = ai, i = 1, 2, . . . ,m

21



fitting n̂(x) to each margin in turn. For each margin a we apply the IPF
updating rule

n̂ab(xa, xb)
(t+1) = na(xa)

(
n̂ab(xa, xb)

(t)

n̂a(xa)(t)

)
where b is the complement of a. We keep cycling through the margins until
convergence is reached. It is easy to show that after fitting to margin a, we
indeed have

n̂a(xa)
(t+1) = na(xa)

Proof:

n̂a(xa)
(t+1) =

∑
xb

n̂ab(xa, xb)
(t+1)

=
∑
xb

(
n̂ab(xa, xb)

(t)

n̂a(xa)(t)

)
na(xa)

=
∑
xb

(
n̂ab(xa, xb)

(t)∑
xb

n̂ab(xa, xb)(t)

)
na(xa)

= na(xa)

7 Decomposable Graphical Models

Decomposable models are graphical models that have explicit formulas for
the maximum likelihood estimates. This is a convenient property from a
computational viewpoint. If we only have to fit one model this is perhaps
not so important, but when we have little prior knowledge we typically have
to search a potentially large space of possible models.

Decomposable models are very easy to characterize by their independence
graphs. They have triangulated independence graphs: their independence
graphs have no chordless cycles of length greater than three. A cycle is
called chordless if no other than successive pairs of vertices in the cycle are
adjacent. The graphs in figure 7 are not decomposable because they have
chordless 4-cycles.

22



1 2

4 3

1 2

4 3

5

Figure 3: Two graphs with chordless 4-cycles

8 Deviance and Likelihood Ratio Test

The deviance of a fitted model compares the log-likelihood of the fitted model
to the log-likelihood of the saturated model. The larger the model deviance,
the poorer the fit. The likelihood of a model M is

L(P̂ (x); n(x)) =
∏
x

P̂ (x)n(x)

where P̂ (x) are the ML estimates of the cell probabilities for model M . This
is of course just the probability of the data given P̂ .

Consequently, the log-likelihood of a model M is∑
x

n(x) log P̂ (x)

For example, suppose we have the following table of observed counts:

n(x1, x2) x2 = 0 x2 = 1 n1(x1)
x1 = 0 30 10 40
x1 = 1 30 30 60
n2(x2) 60 40 100

We have already seen that the independence model gives estimates

P̂ (0, 0) = 0.24, P̂ (0, 1) = 0.16, P̂ (1, 0) = 0.36, P̂ (1, 1) = 0.24

So the probability of the observed table for this model is

L = 0.2430 × 0.1610 × 0.3630 × 0.2430

23



The log-likelihood is

L = 30 log 0.24 + 10 log 0.16 + 30 log 0.36 + 30 log 0.24 ≈ −134.6

Since for the saturated model

P̂ (x) =
n(x)

N
,

the log-likelihood of the saturated model is∑
x

n(x) log
n(x)

N

So for the saturated model the log-likelihood value is

L = 30 log 0.3 + 10 log 0.1 + 30 log 0.3 + 30 log 0.3 ≈ −131.4

The log-likelihood value of the saturated model is of course always higher
than for any other model. The saturated model gives the best possible fit.

The deviance of M is twice the difference between the log-likelihood of
the saturated model and the log-likelihood of M , i.e.

dev(M) = 2

(∑
x

n(x) log
n(x)

N
−
∑

x

n(x) log P̂M(x)

)

= 2
∑

x

n(x) log
n(x)

P̂M(x)N

which can be summarised by the slogan

2
∑
cells

observed× log
observed

fitted

The deviance of the independence model in the previous example is

dev(independence model) = 2(−131.4 + 134.6) = 6.4

Let
Li = L(P̂Mi)

be the value of the log-likelihood function evaluated at P̂Mi ; the ML estimates
of P under Mi. Let M0 ⊆M1; i.e. M0 can be obtained from M1 by imposing

24



additional restrictions (setting additional u-terms to zero). The deviance
difference between M0 and M1 is

dev(M0)− dev(M1) = −2L0 + 2L1 = 2(L1 − L0)

We state without proof that for large N

2(L1 − L0) ≈M0 χ2
ν

where the degrees of freedom ν is equal to the number of additional restric-
tions of M0. This result will be the basis for subsequent model testing. We
reject the null hypothesis that M0 is the true model when

2(L1 − L0) > χ2
ν;α

Remark 1 The test is called a likelihood ratio test because we are looking at
logs, and

log
L1

L0
= log L1 − log L0 = L1 − L0

We show how the likelihood ratio test can be used to test whether a model
gives an adequate fit of the data. Does

survival ⊥⊥ care | clinic (3)

give a good fit of the observed table? To test this we perform a likelihood
ratio test against the saturated model. We fit the model and compute the
deviance:

2
∑
cells

observed× log
observed

fitted
≈ 0.082

Now we have to determine the appropriate degrees of freedom for the test.
Since (3) imposes two additional constraints (two u-terms to zero) compared
to the saturated model, we compute

χ2
2; 0.05 ≈ 6

Since the deviance difference is not significant at the 5% level, we accept
model (3).

Does the mutual independence model give a good fit of the observed
table? Compute

2
∑
cells

observed× log
observed

fitted
≈ 211

25



Now, since
χ2

4; 0.05 ≈ 9.5

we reject the mutual independence model at the 5% level.

9 Fitting Hierarchical Loglinear Models in R

Our preferred data analysis system R contains a function called loglin for
fitting hierarchical loglinear models. To specify the model you want to fit,
you have to list the highest order interaction terms. Here’s the clinic example
in R:

> a <- array(c(3,17,4,2,176,197,293,23),dim=c(2,2,2),

dimnames=list(c("clinic 1","clinic 2"),

c("less","more"),c("no","yes")))

> a <- as.table(a)

> names(dimnames(a)) <- c("clinic","care","survival")

> a

, , survival = no

care

clinic less more

clinic 1 3 4

clinic 2 17 2

, , survival = yes

care

clinic less more

clinic 1 176 293

clinic 2 197 23

We entered the data as an array. The array data is given as a single
vector, with the leftmost subscript moving fastest. Since the function loglin

expects a table rather than an array, we convert it to a table. Finally, we
add the variable names and print the data. We start by fitting the model
where care and survival are independent given clinic:

26



> model.1 <- loglin(a,margin=list(c("clinic","care"),c("clinic","survival")),

fit=TRUE)

2 iterations: deviation 0

> model.1

$lrt

[1] 0.08228918

$pearson

[1] 0.08361853

$df

[1] 2

$margin

$margin[[1]]

[1] "clinic" "care"

$margin[[2]]

[1] "clinic" "survival"

$fit

, , survival = no

care

clinic less more

clinic 1 2.632353 4.367647

clinic 2 17.012552 1.987448

, , survival = yes

care

clinic less more

clinic 1 176.367647 292.632353

clinic 2 196.987448 23.012552

27



The first argument we pass to loglin is the table with observed counts. The
second argument specifies the model that has to be fitted by giving the list of
highest order interaction terms. The call to loglin returns a list with a number
of components. The component lrt gives the likelihood ratio test statistic
(model deviance), and the component df gives the appropriate degrees of
freedom (number of u-terms set to zero). Since in the call we specified fit

= TRUE, the table with the fitted counts is also returned.
As a second example, we fit the independce model:

> model.2 <- loglin(a,margin=list(c("clinic"),c("care"),c("survival")),

fit=TRUE)

2 iterations: deviation 3.552714e-15

> model.2

$lrt

[1] 211.4820

$pearson

[1] 199.6457

$df

[1] 4

$margin

$margin[[1]]

[1] "clinic"

$margin[[2]]

[1] "care"

$margin[[3]]

[1] "survival"

$fit

, , survival = no

care

28



clinic less more

clinic 1 9.513948 7.795143

clinic 2 4.776961 3.913948

, , survival = yes

care

clinic less more

clinic 1 252.119619 206.571291

clinic 2 126.589472 103.719619

We observed from the output that the deviance of the independence model
is 211.482. To perform the appropriate test in R, we can find the critical value
for α = 0.05 as follows:

> qchisq(0.05,df=4,lower.tail=F)

[1] 9.487729

> qchisq(0.95,df=4)

[1] 9.487729

The function qchisc gives the value of the test statistic for which P (X2 <
c) = α where X2 is a random variable with chi-square distribution with df

degrees of freedom. Since we actually want the value for which P (X2 > c) =
α, we can either specify this explicitely, or pass 1 − α instead of α to the
function.

10 Model Selection

In the previous section we have shown how to fit a single hierarchical loglinear
model in R. To get a data mining algorithm, all you have to do is superimpose
some search strategy to search the model space. You also need a way to
measure model quality.

Akaike’s Information Criterion assigns quality AIC(M) to model M as
follows

AIC(M) = dev(M) + 2dim(M)

29



where dim(M) is the number of parameters of the model. This quality mea-
sure consists of two components: the lack-of-fit of the model as measured by
the deviance, and the complexity of the model as measured by the number of
parameters (i.e. the number of u-terms not constrained to be equal to zero).
Notice the analogy with the total cost of a tree in cost-complexity pruning.
By including the penalty for complexity we try to avoid overfitting. If we did
not include this penalty term the saturated model would always win. Now it
is possible that we prefer a simpler model that has a worse fit, over a more
complex model. We give an example of stepwise search with AIC. To begin
with, we fit a loglinear model that will be used as the initial model from
which the search starts. We use a frontend to loglin available in the library
MASS:

> library(MASS)

> model.init <- loglm( ~ clinic + care + survival,data=a)

> model.init

Call:

loglm(formula = ~clinic + care + survival, data = a)

Statistics:

X^2 df P(> X^2)

Likelihood Ratio 211.4820 4 0

Pearson 199.6457 4 0

The loglm function actually calls the function loglin that we used before,
but allows (or requires, depending on your preference) you to specify the
model differently. The first argument is a formula where on the right hand
side of the tilde, you specify the highest order interaction terms. For example,
to fit the homogeneous association model, the call should be:

> model.6 <- loglm( ~ clinic*care+clinic*survival+care*survival,data=a)

> model.6

Call:

loglm(formula = ~clinic*care + clinic*survival + care*survival,

data = a)

30



Statistics:

X^2 df P(> X^2)

Likelihood Ratio 0.04334249 1 0.8350817

Pearson 0.04410757 1 0.8336536

The reason we use loglm rather than loglin is that the stepwise search
performed by stepAIC requires the format returned by loglm. Here we use
stepAIC to search the model space:

> model.step <- stepAIC(model.init,scope= ~ clinic*care*survival)

Start: AIC=219.48

~clinic + care + survival

Df AIC

+ clinic:care 1 27.83

+ clinic:survival 1 203.74

+ care:survival 1 215.87

<none> 219.48

- care 1 224.54

- clinic 1 297.55

- survival 1 985.30

Step: AIC=27.83

~clinic + care + survival + clinic:care

Df AIC

+ clinic:survival 1 12.08

+ care:survival 1 24.22

<none> 27.83

- clinic:care 1 219.48

- survival 1 793.65

Step: AIC=12.08

~clinic + care + survival + clinic:care + clinic:survival

Df AIC

<none> 12.082

31



+ care:survival 1 14.043

- clinic:survival 1 27.828

- clinic:care 1 203.736

The first argument of the call to stepAIC specifies the initial model,
where the search process starts. The second argument specifies the scope of
the search. In general, we can specify a lower and upper model here. The
lower model is the least complex model considered and the upper model the
most complex. In our example we only specify one model, in which case it
is taken to be the upper model. The lower model is taken to be the empty
model (i.e. containing only u∅) in that case. Here we specify the upper
model to be the saturated model. What follows is a report of the search
process. For example, the initial model has an AIC value of 219.48, because
the deviance of this model (as we saw before) is 211.48 and we have to add to
that two times the number of parameters. Since the model has four u-terms,
we have to add eight to get the AIC value. Then we get a list of neighbouring
models sorted from low AIC value to high AIC value. A neighbouring model
is any hierarchical model that can be obtained by adding a term (either
single variable or interaction) or removing a term from the current model.
If there is a neighbouring model with a lower AIC value than the current
model, we move to that neighbouring model; otherwise the search stops.
We see for example that adding the interaction term clinic:care to the
initial model produces a model with AIC score 27.83. This is better than
the current model (listed as <none> in the table), and also better than other
neighbours, so we move to this model. Note that in the second step, the
search does not consider the removal of either clinic or care, since their
removal would produce a non-hierarchical model. The anova component of
the call to stepAIC summarizes the search process:

> model.step$anova

Stepwise Model Path

Analysis of Deviance Table

Initial Model:

~clinic + care + survival

32



Final Model:

~clinic + care + survival + clinic:care + clinic:survival

Step Df Deviance Resid. Df Resid. Dev AIC

1 4 211.48204459 219.48204

2 + clinic:care 1 193.65365 3 17.82839924 27.82840

3 + clinic:survival 1 17.74611 2 0.08228918 12.08229

Note that stepAIC searches the space of hierarchical models, not the space
of graphical models. Using the function loglin it should not be too hard
though to write your own graphical model search function. The elementary
operations could be adding or removing an edge between two variables. When
you add an edge, you have to make sure that you detect whether this forms
a clique in the graph.If so, you should include the corresponding interaction
term. Likewise, when removing an edge, you have to detect whether this
breaks up a clique.

11 Conclusion

Graphical modeling has become a pretty big area in the last decade. We
have looked only at a small part of it: undirected graphs for discrete data.
Possible extensions are: models for continuous variables or mixed discrete and
continuous variables; models represented by directed graphs (e.g. Bayesian
Networks), etc. The book of Edwards [Edw00] in combination with the
MIM program is a good starting point to get acquainted with the different
variations of graphical models around.

References

[BFH75] Y. Bishop, S.E. Fienberg, and P.W. Holland. Discrete Multivariate
Analysis. MIT Press, Cambridge(MA), 1975.

[Chr97] R. Christensen. Log-Linear Models and Logistic Regression (second
edition). Springer, New York, 1997.

33



Algorithm 1 Hill Climbing for Hierarchical Models

1: M ← initial model
2: max ← score(M)
3: repeat
4: nb.add ← {a ⊆ {1, 2, ..., k}|a 6∈M ∧ ∀a′ ⊂ a : a′ ∈M}
5: nb.del ← {a ⊆ {1, 2, ..., k}|a ∈M ∧ ∀a′ ⊃ a : a′ 6∈M}
6: Mold ←M
7: for all a ∈ nb.add do
8: if score (Mold ∪ {a}) > max then
9: max ← score(Mold ∪ {a})

10: M ←Mold ∪ {a}
11: end if
12: end for
13: for all a ∈ nb.del do
14: if score (Mold \ {a}) > max then
15: max ← score(Mold \ {a})
16: M ←Mold \ {a}
17: end if
18: end for
19: until M = Mold

20: return M

34



[Edw00] D. Edwards. Introduction to Graphical Modelling (second edition).
Springer, New York, 2000.

[Sch97] J.L. Schafer. Analysis of Incomplete Multivariate Data. Chapman
& Hall, London, 1997.

[Whi90] J. Whittaker. Graphical Models in Applied Multivariate Statistics.
Wiley, Chichester, 1990.

35


