
Frequent Item Set Mining and Association Rules

Arno Siebes and Ad Feelders

October 30, 2012

1 Introduction

One of the important categories of data mining problems is that of associations
between attributes. This gives useful insight for such diverse business problems
as product cross-selling, website perception, and decision problems.

There are two ways to look at attribute associations. The first is on the
attribute-level, i.e., one looks for statistical dependencies between the attributes.
Graphical models are a tool for such associations. The second way is at the
value-level. Association rules [2] are the premier tool for this class of problems.

Informally, association rules can be seen as a kind of if-then rules: if a person
buys a newspaper, he or she also buys chocolate. The twist association rules
bring to classical if-then rules is a conditional probability. If a person buys a
newspaper, there is a probability that he or she will also buy chocolate. This
conditional probability is known as confidence in the literature.

Another measure that is generally associated with association rules is that
of support : the fraction of customers for whom the rule holds, or rather the
relative number of customers buying all items occurring in the rule (the so-
called underlying itemset). If there is just one customer that buys newspapers
and he or she also happens to buy chocolate, the association rule is not very
interesting.

Next to being an interestingness measure, the support of a rule also plays a
key role in the standard algorithms for association rule discovery. Given thresh-
olds minsup and minconf for the support and confidence, these algorithms com-
pute all association rules whose support and confidence exceed these thresholds.
Itemsets with support at least minsup are called frequent.

Originally, association rules were introduced in a binary, non-temporal set-
ting. For example, one considered a collection of transactions at the check-out
of a store only recording whether a certain item was bought or not. Later, many
extensions have been introduced, e.g., sequences (time), hierarchical clusters of
items, and item-counts. Also more complex patterns then itemsets, for example
trees and graphs, have been considered extensively.

1

2 Association Rules: The Binary Case

The traditional setting for association rules [3] consists of a set of transactions
in which each transaction is a set of items. Translated to a relational setting,
we have a table db with schema R = {I1, . . . , In}, in which each Ii is a binary
attribute. The attributes correspond with the items, the rows in the table with
the transactions; a row has value 1 for an attribute if and only if the transaction
contains that item.

For X,Y ⊆ R, with X ∩ Y = ∅ let:

• s(X) denote the support of X, i.e., the number of tuples that have value
1 for all items in X. Sometimes support is expressed as a fraction of the
total database size.

• for an association rule X → Y , define

– the support is s(X ∪ Y)

– the confidence is s(X ∪ Y)/s(X)

The problem is to find all association rules that match or exceed the user defined
lower thresholds for confidence, minconf, and support minsup. In a major abuse
of notation, you could say that the support of X (when expressed as a fraction)
corresonds to P (X) in probability terms, and the confidence of X → Y with
the conditional probability P (Y | X).

There are two thresholds we have to satisfy, so ([3]):

1. find all sets Z whose support exceeds the minimal threshold. These sets
are called frequent (or large) sets.

2. then test for all non-empty subsets X of frequent sets Z whether the rule
X → Z \X(= Y) holds with sufficient confidence.

2.1 The A Priori Algorithm

The first problem is then: how do we find the frequent sets? In principle, we
have to check all subsets of R. However, this is not possible, since

|P(R)| = 2|R|.

For example, if we can check 1024 sets/sec. then:

• For 10 items, we are done in 1 second;

• for 20 items, we need 1024 seconds, or 17 minutes

• For 100 items, we need (roughly) 4 × 1018 years, which (far) exceeds the
age of the universe!

Luckily, we have the following observation ([3]):

2

Z can only be frequent if all its (non-empty) subsets are frequent.

This is known as the A-Priori property. In other words, we can search level wise
for the frequent sets. The level is the number of items in the set. Denote by
C(i) the sets of i items that are potentially frequent (the candidate sets) and
by F (i) the frequent sets of i items.

Find frequent sets
C(1) := R
i := 1
While C(i) 6= ∅ do

F (i) := ∅
For each X ∈ C(i) do

If s(X) ≥ minsup then F (i) := F (i) ∪ {X}
i := i+ 1
C(i) := ∅
For each X ∈ F (i− 1) do

For each Y ∈ F (i− 1) that shares i− 2 items with X do
If All Z ⊂ X ∪ Y of i− 1 items are frequent then

C(i) := C(i) ∪ {X ∪ Y }

The algorithm fragment:

For each X ∈ F (i− 1) do
For each Y ∈ F (i− 1) that shares i− 2 items with X do

Could lead to multiple generations of the set X ∪Y , which means unnescessary
work! To avoid this, one places an (arbitrary) order on the items and replaces
the above fragment by

For each X ∈ F (i− 1) do
For each Y ∈ F (i− 1) that shares the first i− 2 items with X do

Let’s look at an example ([6]). Minsup equals 2 and the data is given by:

tid I1 I2 I3 I4 I5
1 1 1 0 0 1
2 0 1 0 1 0
3 0 1 1 0 0
4 1 1 0 1 0
5 1 0 1 0 0
6 0 1 1 0 0
7 1 0 1 0 0
8 1 1 1 0 1
9 1 1 1 0 0

On the first level we find:

3

Itemset Support Check
{I1} 6 Ok
{I2} 7 Ok
{I3} 6 Ok
{I4} 2 Ok
{I5} 2 Ok

Since all 1-itemsets are frequent, all possible 2-itemsets are candidates at the
second level:

Itemset Support Check
{I1, I2} 4 Ok
{I1, I3} 4 Ok
{I1, I4} 1 No
{I1, I5} 2 Ok
{I2, I3} 4 Ok
{I2, I4} 2 Ok
{I2, I5} 2 Ok
{I3, I4} 0 No
{I3, I5} 1 No
{I4, I5} 0 No

The third level yields:

Itemset Support Check
{I1, I2, I3} 2 Ok
{I1, I2, I5} 2 Ok

For example, {I1, I2, I3} is a candidate at level 3, because all its level 2 subsets
are frequent. The candidate is generated only once: by combining {I1, I2} and
{I1, I3}. The itemset {I2, I4, I5} is generated as a “pre-candidate” by combining
{I2, I4} and {I2, I5}, but then it is pruned because its level 2 subset {I4, I5} is
not frequent. Clearly there are no sets that qualify for the fourth level and we
are done.

We rejected the naive algorithm because its complexity was O(2|R|). So, what
is the complexity of level wise search? Take a database with just 1 tuple consist-
ing completely of 1’s and set minsup to 1. Then, all subsets of R are frequent.
Hence, the worst case complexity of level wise search is O(2|R|).

However, if we assume that db is sparse (by far the most values are 0), then
we expect that the frequent sets have a maximal size k with k << |R|. If that
expectation is met, we have a worst case complexity of:

O

k+1∑
j=1

(
|R|
j

) = O(|R|k+1) << O(2|R|)

4

This expression is derived as follows: in the worst case everything up to level k
is frequent. This means that at level j ≤ k + 1 we have to consider(

|R|
j

)
candidates. The total number of candidates is of course given by the sum over
all levels.

Generating association rules from the frequent sets is done as follows ([3]):

Generate Association Rules
For each frequent set X do

For all non-empty Y ⊂ X do
If s(X)/s(X \ Y) ≥ minconf then

Output X \ Y → Y

Let’s continue our example. One of the frequent sets is {I1, I2, I5}. This
generates:

Itemset Rule Confidence
{I1, I2} {I1, I2} → I5 2/4 = 50%
{I1, I5} {I1, I5} → I2 2/2 = 100%
{I2, I5} {I2, I5} → I1 2/2 = 100%
{I1} I1 → {I2, I5} 2/6 = 33%
{I2} I2 → {I1, I5} 2/7 = 29%
{I5} I5 → {I1, I2} 2/2 = 100%

Clearly, this algorithms is again exponential. For every X, we consider all
2|X| − 1 non-empty subsets Y of X. However, as long as |X| ≤ k << |R|, this
is not necessarily a problem. Quite often one generates only those association
rules with a singleton Y , which makes the generation algorithm linear.

3 Drowning in Association Rules

In practice, association rules suffer from an embarrassment of richness: one often
gets too many results. The number of association rules one discovers is inversely
related to both minsup and minconf. If one sets these thresholds (too) high,
one only discovers already well-known associations. If one lowers the thresholds
the number of discovered rules grows dramatically. Getting more results than
tuples in the database is not unheard of! Recall our earlier example in which
the frequent itemset {I1, I2, I5} generated 6 association rules.

If all discovered rules would be interesting, the fact that one gets many would
be a — perhaps unfortunate — fact of life. However, many of the rules convey
little or no useful information. Suppose you discover that 60% of the people
that buy bread also buy cheese. How interesting is this if you know that 60%
of all people buy cheese?

5

There are two approaches to this flood of results, i.e., pre-computing and
post-processing. Pre-computing means that we trie to generate less rules. Post-
processing means that the resulting set of rules is filtered or ordered such that the
user only has to consider the more interesting rules. Historically post-processing
was considered first, therefore we start with this approach.

3.1 Post-processing the Resultset

If there are so many rules, it may be a good idea to order the results. We can
use for example confidence and support; they define a partial order on the set
of rules. Given rules r1 and r2, r1 <sc r2 iff

1. s(r1) ≤ s(r2) ∧ conf(r1) < conf(r2) or

2. s(r1) < s(r2) ∧ conf(r1) ≤ conf(r2)

Additionally, r1 =sc r2 iff s(r1) = s(r2) and conf(r1) = conf(r2).
Using this partial order we can present the rules, e.g., as follows:

• order the rules on support, from high to low

• per fixed support level, order the rules on confidence, again from high to
low.

Note, we can do this interactively, allowing the user to play with support and
confidence levels, presenting only those rules that meet the currently set levels.

We could also present the rules as follows:

• Order the rules by consequent

• per consequent order the rules by confidence and support

While this presentation creates some order in the chaos of rules, they do not
solve the problem of uninteresting results. Is there anything we can do?

In principle, a rule is interesting if it gives useful (actionable) information.
But is that something you can decide syntactically? Lots of different measures
[5] have been defined as an attempt to do just that, e.g., lift, interest, conviction,
collective strength, gain, gini, entropy, χ2, ... We’ll discuss one of these, the lift.
The lift of an association rule is defined (in terms of probabilities, and, once
more, in a major abuse of notation) as

lift(A→ C) =
P (C|A)

P (C)
=

P (A,C)

P (A)P (C)

In other words, if a rule has a confidence P (C|A) of 0.9 while P (C) = 0.2,
then the lift of the rule is 4.5. Hence, the lift measures whether people that buy
A actually have an increased probability of buying C. The lift should be bigger
than one for a rule to be interesting.

6

3.2 Generating Less Rules

Rather than post-processing the rules, one can also try to generate just the more
interesting rules. One of the approaches is that one puts extra constraints on
the frequent sets. Two important concepts in this field are the maximal frequent
itemsets and the closed frequent itemsets. The underlying idea of both concepts
is that the set of all maximal/closed frequent itemsets represent all frequent
itemsets but is far smaller than the set of all frequent itemsets. Both are an
example of what is also known as a condensed representation.

Maximal frequent itemsets are frequent itemsets that have no frequent su-
persets. Clearly, each frequent itemset is a subset of a maximal frequent itemset.
MaxMiner [4] is an algorithm that directly mines the maximal frequent item-
sets from the database. This is especially useful if one expects large frequent
itemsets. Mining for just the maximal frequent itemsets is cheaper than the
Apriori algorithm in that case.

Closed frequent itemsets are itemsets that completely characterise their as-
sociated set of transactions. That is, a frequent itemset I is closed if I contains
all items that occur in all transactions in the support of I. We discuss the
A-Close algorithm for mining closed frequent itemsets [7] in some more detail.

For an itemset I, denote by σ(I) the set of tuples in which all items in I are
bought, that is,

σ(I) = {t ∈ db | ∀i ∈ I, i ∈ t}.

For a set of transactions T let f(T) denote the set of items that are bought in
all transactions in T , that is,

f(T) = {i ∈ R | ∀t ∈ T, i ∈ t}

The closure of an itemset is obtained by first applying σ and then f :

c(I) = f(σ(I)).

Hence, c(I) is the set of items that are bought in all transactions in which all
items in I are bought. To give a procedural description of applying the closure
operator to an itemset I: first get the transactions in which all items in I are
bought, and then see whether there are any more items that are common to
all these transactions. If so, add them to I and return the result. Clearly,
I ⊆ c(I) and I has the same support as c(I). An itemset I is closed if and only
if c(I) = I. An itemset I is a closed frequent itemset iff it is both frequent and
closed.

For example, the closed frequent itemsets for

Transaction Items
1 A, C, D
2 B, C, E
3 A, B, C, E
4 B, E
5 A, B, C, E

7

with minimum support 2/5 are

{C}, {A,C}, {B,E}, {B,C,E}, {A,B,C,E}

The A-Close Algorithm for finding all frequent closed itemsets consist of 2
phases:

Phase 1: Discover all frequent closed itemsets in db.

Phase 2: Derive all frequent itemsets from the frequent closed itemsets found
in phase 1.

In phase 1 the algorithm determines a set of so-called generators that will pro-
duce all frequent closed itemsets by application of the closure operator c. An
itemset I is a generator of a closed itemset J if it is one of the smallest itemsets
with c(I) = J . For example: BC is a generator of the closed itemset BCE
because

c({B,C}) = f(σ({B,C})) = f({2, 3, 5}) = {B,C,E},

and there is no smaller set with closure {B,C,E}. {C,E} is another generator
of {B,C,E}.

A-Close performs a levelwise search like Apriori: Gi+1 (the set of generators
at level i+ 1) is constructed using Gi. Using their support, and the support of
their i-subsets in Gi,

• infrequent itemsets, and

• itemsets that have the same support as one of their subsets

are deleted from Gi+1. The rationale of the second pruning rule is that if an
itemset has a subset with the same support, then this subset also has the same
closure.

Let’s apply A-close to our example, to see how it works.

Generator Support
A 3
B 4
C 4
D 1
E 4

=⇒

Generator Support
A 3
B 4
C 4
E 4

The first step is no different then Apriori. Now we find the level 2 generators:

Generator Support
AB 2
AC 3
AE 2
BC 3
BE 4
CE 3

=⇒

Generator Support
AB 2
AE 2
BC 3
CE 3

8

AC is pruned, because subset A has the same support (and therefore the same
closure). BE is pruned for the same reason. Level 3 candidate ABE cannot
be a generator, because one of its subsets (BE) is not a level 2 generator. The
correctness of this last step may not be immediately obvious. BE is not a level
2 generator because subset B has the same support as BE. It follows that AB
must have the same support as ABE, and hence ABE is not a generator.

Now that the generators have been determined, we compute their closures,
where

c(I) = ∩t ∈ db : I ⊆ t
Different generators may produce the same closure; in the table on the right the
duplicates have been romoved:

Generator Closure Support
A AC 3
B BE 4
C C 4
E BE 4

AB ABCE 2
AE ABCE 2
BC BCE 3
CE BCE 3

=⇒

Closure Support
AC 3
BE 4
C 4

ABCE 2
BCE 3

In phase 2 we determine all frequent itemsets and their support. We use the
following properties:

1. All maximal frequent itemsets are closed.

2. Every frequent itemset is a subset of a maximal frequent itemset.

3. The support of an itemset equals the support of the smallest closed itemset
in which it is contained (its closure).

Our strategy is therefore to select the maximal itemsets, generate all their sub-
sets, and determine their support using the third property.

To continue our example, {A,B,C,E} is the only maximal frequent itemset.
Hence, we generate all its subsets and compute their support. In the table below
the closed sets themselves have been left out:

Subset Support
A 3
B 4
E 4

AB 2
AE 2
BC 3
CE 3

ABC 2
ABE 2
ACE 2

9

The performance of A-Close is comparable to that of Apriori on sparse,
weakly correlated data (e.g. supermarket basket data). In that case almost all
itemsets are closed, and A-Close can perform very little extra pruning compared
to Apriori. For dense, strongly correlated data, the difference between the
number of frequent itemsets, and the number of closed frequent itemsets will be
larger, and therefore A-Close will outperform Apriori.

4 Conclusions

Association rules are a powerful tool in the toolbox of the data miner. Asso-
ciation rules can be computed cheaply and provide useful insight in the data
at hand. Although one tends to generate too many association rules, there are
many useful techniques to filter the more interesting results from this flood. The
concept of a frequent set and its monotonicity (the Apriori property) has been
generalized and adapted to many other cases. One can easily fill a book on this
topic; see [1, 6].

References

[1] J-M. Adamo. Data Mining for Association Rules and Sequential Patterns:
Sequential and Parallel Algorithms. Springer Verlag, 2001.

[2] R. Agrawal, T. Imilinski, and A. Swami. Mining association rules between
sets of items in large databases. In Proc. SIGMOD 1993. ACM Press, 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
Proc. 20th VLDB. Morgan Kaufmann, 1994.

[4] Bayardo. Efficiently mining long patterns from data. In Proc. SIGMOD
1998. ACM Press, 1998.

[5] Bayardo and Agrawal. Mining the most interesting rules. In Proc. 5th KDD.
ACM Press, 1999.

[6] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufman, 2001.

[7] Pasquier, Bastide, Taouil, and Lakhal. Discovering frequent closed itemsets
for association rules. In Proc. 7th International Conference on Database
Theory (ICDT). Springer Verlag, 1999.

10

