
Graphical Models for Discrete Data
Part 2: Directed Graphs

1 Introduction
To introduce directed graphs and their models, we borrow the following ex-
ample from Edwards ([Edw00] ) . A market researcher wants to find out who
likes noodles, and to do this he interviews a representative sample of people,
recording their race (R) , gender (G) and answer (A) to the question “Do you
like noodles?” . Suppose the results are as shown in table 1.

Figure 1: G ⊥⊥ R|A
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Table 1: the noodles data
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The simplest undirected graphical model consistent with these data is

the one shown in figure 1. But, as Edwards remarks, this model is obviously
inappropriate. How can we suppose that race and gender are conditionally
independent given the response? The respondents’ race and gender, char-
acteristics determined decades before, cannot be affected by whether or not
they like noodles. Race and gender might me marginally independent, but
they can hardly be conditionally independent given the response.

The problem arises because we have not taken the ordering of the variables
into account. Here race and gender are clearly prior to the response. If we
analyse the data using directed graphs and the associated models, then we
obtain the graph shown in figure 2.

Figure 2: G ⊥⊥ R
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This resembles the previous graph, except that the edges are replaced by

arrows pointing towards the response. As we shall see, directed graphs have
different rules for the derivation of conditional independence relations. Now
the missing arrow between race and gender means that they are marginally
independent, not conditionally independent given the response.

2 Definition and Notation
A directed graph is a pair G = (K, E), where K is a set of vertices and E
is a set of edges with ordered pairs of vertices. If there is an arrow from i
to j , then we write this as i→ j , or equivalently as (ij) ∈ E. We restrict
atotte j,ntt ihonen two ediw rercitteedt graphs →witj h, no dqiurievcateledn cycles, ij.e). acyclic edr iresectrtiecdt



graphs (DAGs) . If i→ j , then Xi is called a parent of Xj, and Xj is called
a cahpihlds (oDf AXGi. )T.h Ief sie→ t o jf, ,ct ohoerndi Xnates of the parents of Xj is denoted pa(j),
so Xpa(j) denotes the set of parents of Xj. If there is a directed path from
i to j , then Xi is called an ancestor of Xj . The set of coordinates of the
ancestors of Xj is denoted an(j) . These definitions can be extended to apply
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to sets of nodes in the obvious way. For example, for a set S ⊆ K we define
tpoa( sSet) =o Si∈S epsa (ini) \h eSo, bthviaotu is, tahye. s Feot roe fx xnaomdpesle n,o fot rian sSe tthS a⊆t are parent ntoe
a node inS Si∈. pTah(ei )d \efS in,i ttihoant o isf, a tnhceess etotro ifs eoxdteesndn eodt isnim Silat hrlayt. aFreurp tahreremntotr oe
we defineS an+ (S) = S ∪ an(S) to be the ancestral set of S.

The absenc(Se )o= f any dainr(eSct)et do cycles ias equivalent o tof Sth.e existence of an
ordering of the nodes {1, 2, . . . , k} such that i→ j only when i < j . In
ootrdheerr nwgor odfst, htehe nreo eexsis {t1s an ordering ohf tthhaet ni o d→es jsuo cnhl ythw aht arrows point
only from lower-numbered nodes to higher-numbered nodes. Suppose that
a priori knowledge tells us the variables can be labeled X1,X2, . . . ,Xk such
that Xi is prior to Xi+1. Corresponding to this ordering we can factorize the
joint density of X1, X2, . . . , Xk as

P(X) = P(X1)P(X2 | X1) · · · P(Xk | Xk−1, Xk−2, . . . ,X1) (1)

In constructing a DAG, an arrow is drawn from ito j , where i< j , unless
P(Xj | Xj−1 , . . . ,X1) does not depend on Xi, in other words, unless

i⊥⊥ j |{1, . . . ,j} \ {i,j} (2)

This is the key difference between DAGs and undirected graphs. In both
types of graph a missing edge between Xi and Xj is equivalent to a conditional
independence relation between Xi and Xj . In undirected graphs they are
conditionally independent given all the remaining variables, whereas in DAGs
they are conditionally independent given all prior variables. Thus in figure 2
the missing arrow between G and R means that G ⊥⊥ R, not that G ⊥⊥ R|A.

Having ca ornrsotwru bcteetdw etehne GDAa Gnd fr Rom m (2) , we can w⊥  ⊥ritR e ,tn heo j oint density (1)

moree legantly as Yk

P(X) = YP(Xi | Xpa(i)) (3)
Yi=1

The pairwise conditional independence relations corresponding to a miss-
ing arrow between iand j can be expressed more elegantly as



i⊥⊥ j|an({i, j})

3 Interpretation
In this section we discuss the independence properties of directed indepen-
dence graphs. For undirected graphs, w e saw that a simple criterion of sep-
aration in the graph-theoretic sense was equivalent to conditional indepen-
dence in the statistical sense. A similar result is true of DAGs, though the
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graph-theoretic property, usually called d-separation, is somewhat more com-
plicated than the separation criterion in undirected graphs. There are in fact
two different formulations of the criterion. The original formulation is due
to Pearl [Pea86a, Pea86b] . The alternative formulation due to Lauritzen et
al. [LDLL90] is discussed here.

To do this we need to define the moral graph of a DAG. Given a DAG
G = (K, E) we construct the moral graph Gm by marrying parents, and
deleting directions, that is,

1. For each i∈ K, we connect all vertices in pa(i) with lines.

2. We replace all arrows in E with lines.

Now the directed independence graph G possesses the conditional inde-
pendence properties of its associated moral graph Gm. We can see this as
follows. The j oint distribution factorizes as

Yk

P(X) = YP(Xi | Xpa(i))
iY= Y1

YYk

= Yg(Xi,Xpa(i)) (4)
Yi=1

by setting g(Xi, Xpa(i)) = P(Xi | Xpa(i)) . We thus have an expansion
for the j oint density function in term|s Xof functions g(Xa) for a = i∪ pa(i) ,
i= 1, 2, . . . ,k. Recall that random vectors X and Y are )cof onrdia tio= nai l∪l y pian(die),-



pendent given Z, X ⊥⊥ Y | Z if and only if there exist functions g and h
spuenchd etnhtatg

P(x, y, z) = g(x, z)h(y, z)

for all (x, y) and for all z for which P(z) > 0. By application of the factori-
sation criterion to the expansion (4) , we can deduce all pairwise conditional
independence statements of the form i ⊥⊥ j | rest. The edges of the undi-
rinedcteepde nindedencpeen sdteantecme egnrtaspho f f tohr eP fo(rXm) are cjh a |rr aecstet.risT edh as gedesgeo s b tehtewue ennd i-
and each of its parents, and edges between each pair of parents of i. That is,
the edge set of the moral graph, Gm.

Consider for example the directed graph in figure 3. This graph corre-
sponds to the factorisation

P(X) = P(X1)P(X2)P(X3)P(X4|X1, X2)P(X5|X3, X4)

= g1(X1)g2(X2)g3(X3)g4(X1, X2, X4)g5(X3, X4, X5) (5)

4

Figure 3: example directed graph

Using the factorisation criterion for conditional independence, we can
read the following pairwise independences from this factorisation

2 ⊥⊥ 3| rest
12 ⊥⊥⊥ ⊥ 3| rreesstt
11 ⊥⊥⊥ ⊥ 5| rreesstt
21 ⊥⊥⊥ ⊥ 55|| rreesstt



Representing these conditional independences in an undirected graph
gives the graph in figure 4 which is indeed the moral graph of the graph
in figure 3.

Figure 4: moral graph

We can use the moral graph to answer for example the question whether
X1 ⊥⊥ X3 |X5. Since {5} does not separate {1} from {3} in the moral graph,
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the answer is “no” . It does follow from the moral graph however that X1 ⊥⊥
X3 |X4, since {4} separates {1} from {3}. The full moral graph can obscu⊥⊥ re
cer|tXain, independencies hatoewse{ v1e}r. Ironm mth{ is3 example uXll1 manorda Xlg 2 are independent,
but this can not be inferred from the full moral graph. This fact may be
deduced though by strengthening the assertion of the equivalence of directed
and moral graphs to refer to the graph on the ancestral set of the variables
involved in the conditional independence statement. To determine whether
X1 and X2 are independent, we only have to look at “the smallest marginal
distribution that includes them both” , and since P(X1,X2) = P(X1)P(X2)
according to the factorisation in (5) , it is clear that they are independent.

More generally, suppose we want to check whether i⊥⊥ j | S for some set
S ⊆M Kor.e Tg ehnee friarlslty step piso teo wceon wsiadnetr othc eh aecnkcew sthrealt seert io⊥ f⊥ ⊥{ij , |jS} f∪o rSs ,o mthaet s eist
aSn⊆+ ({ Ki, .j}T ∪h eSf )i =st tAs ,t say. St oincc oe nfosird ie r∈t hAe, apanc(ie)s t∈r Al,s we kfn{ oiw,j t}h∪ atS t,ht eh j oint
distr({ibiu,jt}io n∪ Sof) X =A A is, given by



YP(Xi|Xpa(i))
Yi∈A

which corresponds to the subgraph GA of G. This is a product of factors
P(Xi |Xpa(i)) , that is, involving the variables Xi∪pa(i) only. So it factorizes
accor|dXing to GAm, and thus the global Markov properties for undirected graphs
apply. So, if S separates iand j in GAm, then i⊥⊥ j|S.

The criterion is easily extended to se,tts hoefn nvi ar⊥ i⊥ abj le|Ss,. in the following sense.
The directed version of the global Markov property states that for three
disjoint sets S1, S2 and S3, S1 ⊥⊥ S2 | S3 whenever S3 separates S1 and S2 in
GAm, where A = an+ (S1 ∪ S2 ∪ ⊥S⊥ 3) .

4 Maximum Likelihood Estimation of Bayesian
Networks

In this section we consider the maximum likelihood estimation of the param-
eters of a given Bayesian network structure. This turns out to be pretty
straightforward: it is a collection of independent multinomial estimation
problems. Therefore w e start with a discussion of the ML estimation of
the parameters of a multinomial distribution. After that we show how this
applies to the estimation of the parameters of a Bayesian network.
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4.1 ML Estimation for multinomial distribution

We want to estimate the probabilities p 1,p2, . . . ,pJ of getting outcomes 1,2, . . . , J.
If in n trials, we observe n1 outcomes 1, n2 of 2, . . . , nJ of J, then the obvi-
ous guess is to estimate p j ,j = 1,. . . , J, by nj/n. This is also the maximum
likelihood estimate because the probability of getting the sequence x1, . . . , xn
of outcomes is given by

P(X1 = x1, X2 = x2, . . . ,Xn = xn) = pn11pn22 · · · pnJJ

and so the log-likelihood function is



L = n1logp1 + n2 logp2 + . . . + nJ logpJ

We want to maximize this expression, but we have to satisfy the constraint

p1 + p 2 + . . . + p J = 1

To apply the method of Lagrange multipliers, we form the auxiliary function

F(p1,...,pJ,λ) =n 1logp1+n 2logp2+. ..+ n JlogpJ+λ  Xj=J1pj−1 !

Taking the derivative with respect to p j , j = 1, . . . , J and equating to zero
we get

npjj+λ = 0 , j= 1 ,...,J

Solving for p j

pj=− nλj
Taking the derivative of F with respect to λ and equating to zero y ields

p1 + p 2 + . . . + p J −1 = 0 (6)

Substituting the p j in 6 gives

−?nλ1+nλ2+. .. +nλJ? = −λ1(n1+n 2+. ..+ n J)= 1

Hence
1 1

− =P

λ Pnj
7

So λ = −n, which immediately gives p j = nj/n
λC=o ns− idne,r a hriacnhdi momm veadriiaatbelley X gi vwesithp three possible values, and in a sample

of size 100, we observe n1 = 20, n2 = 70, n3 = 10. Let p i denote P(X = i),i=
1, 2, 3. The common sense estimator of p 1 is of course to take the relative
frequency of the value 1observed in the sample, i.e. ˆp 1 = 20/100 = 0.2.
Similar reasoning leads to pˆ2 = 70/100 = 0.7, and pˆ3 = 10/100 = 0.1.

Below we show that our common sense estimates coincide with the max-
imum likelihood estimates. For any value of p 1,p2 , p3, the probability of the



observed sample is

L(p1,p2,p3) = p210 ×p720 ×p130
Therefore the log-likelihood of the observed sample is

L(p1,p2, p3) = 20 logp1 + 70 logp2 + 10 logp3

We want to find the values of p 1,p2 , p3 that maximize the log-likelihood
function, subject to the constraint that p 1 + p 2 + p 3 = 1.

Rather than using the Lagrange multiplier method, we simply substitute
(1− p 1 − p2) for p 3 in the log-likelihood function:

L(p1, p2) = 20 logp1 + 70 logp2 + 10 log(1 − p 1 − p2)

Now we simply take the derivative of L with respect to p 1 and p2:

∂L 20 10 ∂L 70 10
∂L = − ∂L = −

∂p1 p1 1− p 1 − p 2 ∂p2 p2 1− p 1 − p 2

Here we used the fact that the derivative of log x is 1/x. To find the values
of p 1 and p 2 for which L is maximized, we equate the partial derivatives to
zero, and solvfeo rfow rh p 1 haL ndi p2. aUxpimoniz doing so, we efit nhde p 1 =rt i0a.l2 aenridv p 2 v=es s0t .7o
as expected.

4.2 ML estimation of Bayesian Networks

The probability of each observation is given by

Yk

P(X) = Yp(Xi | Xpa(i))
Yi=1
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where we use lower case p for the network parameters (probabilities and
conditional probabilities) . So the j oint probability for n independent obser-
vations is Yn Yk



P(X(1),...,X(n)) =YYp(X(ij) | X(pja()i))
Yj=1 Yi=1

If we write n(xi, xpa(i)) for the number of observations with Xi = xi and
Xpa(i) = xpa(i), we can write

Yk

L= Y Y p(xi | xpa(i))n(xi,xpa(i))
Yi=1 xi Y,xpa(i)

Taking the log-likelihood, this becomes

Xk

L= X X n(xi,xpa(i))logp(xi | xpa(i))
Xi=1 xiX,xpa(i)

Assuming the parameters are not related, this boils down to a whole
bunch of independent multinomial estimation problems (one for each possible
parent configuration) . From this it follows that we get maximum likelihood
estimates

ˆ p(xi|x pa(i))= nn(x(ix,xpap(ai)(i)))
So the value of the likelihood function evaluated at its maximum is

L= Xi=k1xi,Xxpa(i)n(xi,xpa(i))lognn(x(xi,pxap(ia)()i))
As an example, consider the data in table 2. Suppose we want to estimate

from this data set the network

P(X1, X2, X3, X4) = p 1(X1)p2(X2)p3|12(X3|X1, X2)p4|3(X4|X3)

Now we have to estimate the following parameters:
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p1(1) p1(2) = 1− p 1(1)
p2(1) p2(2) == 11 −− p p 2(1)
p3|1,2(1|1, 1) p3|1,2(2| 1, 1 −) =p 1−p 3|1,2(1|1, 1)
p3|1,2(1|1, 12)) p3|1,2(2|1, 12)) == 11 −− p 3|1,2(1|1, 12))
p3|1,2(1 ||12,, 21)) p3|1,2(2|2, 21)) == 11 −p 3|1,2(1 ||12,, 21))
p3|1,2(1|2, 2) p3|1,2(2|2, 2) = 11 − p 3|1,2(1|2, 2)
p4|3(1|1) p4|3(2|1) p4|3(3|1) = 1− p4|3(1| 1) − p 4|3(2|1)
p4|3(1|2) p4|3(2|2) p4|3(3|2) == 11 −p 4|3(1|2) −p 4|3(2|2)

This( m1|2ea)ns we hav(e2 t|2o) estimate 10 probabilities in t(o3t|a2)l. =Th1 e− −co pntr(i1b|u2t)io− n
of observation 1 to the likelihood function is

L(1, 1, 1, 1) = p1(1)p2(1)p3|1,2(1| 1, 1)p4|3(1|1)

Likewise, the contribution of observation 3 to the likelihood function is

L(1, 1, 2, 1) = p 1(1)p2(1)(1 − p 3|1,2(1|1, 1))p4|3(1|2)

Their j oint contribution is

p1(1)2p2(1)2p3|1,2(1|1, 1)(1 − p 3|1,2(1|1, 1))p4|3(1|1)p4|3(1|2)
Doing this for all observations, we get

L(D) = p1(1)5(1 −p 1(1))5p2(1)6(1 −p 2(1))4p3|1,2(1|1, 1)2(1 −p 3|1,2(1|1, 1))
(1−p 3|1,2(1|1, 2))2p3|1,2(1|2, 1)(1 −p 3|1,2(1|2, 1))2p3|1,2(1|2, 2)(1 −p 3|1,2(1|2, 2))



p4|3(1|1)2p4|3(2|1)(1 − p 4|3(1|1) − p 4|3(2|1))
p4|3(1 |2)2p4|3(2|2) (1− p 4|3(1 |2) − p 4|3(2|2))3
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Or in log form

L(D) = 5 logp1(1) + 5 log(1 − p 1(1)) + 6 log p2 (1) + 4 log(1 − p 2 (1))

+2 logp3|1,2 (1|1, 1) + log(1 − p 3|1,2 (1| 1, 1))

+2 log(1 − p3|1,2(1 |1, 2)) + log p3|1,2(1 |2, 1) + 2 log(1 − p 3|1,2 (1|2, 1))

+ log p3|1,2(1 |2, 2) + log(1 − p 3|1,2 (1|2, 2))

+2 logp4|3 (1|1) + log p4|3 (2 |1) + log(1 − p 4|3(1 |1) − p 4|3 (2|1))

+2 logp4|3 (1|2) + log p4|3 (2 |2) + 3 log(1 − p 4|3 (1|2) − p 4|3(2 | 2))

This looks like a very complicated function to optimize at first sight, but
upon closer inspection we see that it decomposes into a number of unrelated
optimization problems. In fact, only parameters corresponding to the same
parent configuration are related, because they are constrained to sum to
one. Otherwise, we can optimize all parameters separately. For example,
to find the optimal value of p 1(1) , we simply find the value that maximizes
p1(1)5(1 − p 1(1))5 , regardless of the other parameters. Hence, in the end we
just ha(v1e − a bunch of multinomial estimation problems (one for each parent
configuration) , which we know how to solve.
For example

pˆ1(1)= n(x1n= 1)=150 ˆ p3|1,2(2|1,2)= n(x1n(=x1 1,=x21 =,x22 ,=x32 )=2 )=1

5 Estimation from Incomplete Data
In this section we consider the problem of maximum likelihood estimation
of a Bayesian network when we have incomplete data, that is some values
are missing. We partition the complete data in an observed part Xobs and
a missing part Xmis, i.e. X = (Xobs, Xmis) . For observation j we write
X(j) = (X(obj)s,Xm(ji)s).

First we should be clear about what it is we want to maximize: we want



to find those parameter values that maximize the probability of the observed
data. This means that if some values are missing, we have to obtain the
marginal probability of the observed data by summing out the missing data.
For observation j , the probability thus is:

P(Xo(jb)s) = X P(X(j))

XX(mji)s
11

For all observations together the probability is

So for example, ifw ejYn=h a1Pve(t Xho(rbjes))e= b injY=nar1y vXXam(rj)iiasbPl(eXsX (j))= ( X1,X2,X3),a ndw e
have an observation (1, 0, ?) , the probability is

P(1, 0, ?) = P(1, 0, 0) + P(1, 0, 1)

and for observation (?, 1, ?) the probability is

P(?, 1, ?) = P(0, 1, 0) + P(0, 1, 1) + P(1, 1, 0) + P(1, 1, 1)

So if we have a Bayesian network with X1 and X2 the parents of X3 (see
figure 5), then the probability of (1, 0, ?) is

P(1, 0, ?) = P(1, 0, 0) + P(1, 0, 1)

= p1(1)p2(0)p3|12(0|1, 0) + p 1(1)p2(0)p3|12(1|1, 0)

= p1(1)p2(0)

since p 3|12 (0|1, 0) + p 3|12 (1| 1,0) = 1. In this case, we still have a closed form
solution. S(u0|p1p,o0s)e+ +h opwev(e1r| t,h0a)t we an nobt hsiesrv caatsieo,nw (e1, t?,i 0l)h . Ivtes apr colobsaebdilif toyr mis

P(1, ?, 0) = P(1, 0, 0) + P(1, 1, 0)

= p1(1)p2(0)p3|12(0|1, 0) + p 1(1)p2(1)p3|12(0|1, 1)



Now if we want to maximize the log-likelihood, we get a sum of parameters
inside the log, making analytical maximization impossible.

Therefore direct maximization of the observed data likelihood is compli-
cated: in most cases there is no closed form solution of the ML estimates as
in the complete data case.

There is however an ingenious iterative scheme to compute the ML es-
timates, called Expectation Maximization (EM) . EM [DLR77] is a general
method for doing maximum likelihood estimation with incomplete data. The
computational scheme consists of the alternated application of an Expecta-
tion step and a Maximization step; hence the name EM. In the E-step, the
expected value of the complete-data loglikelihood is calculated, by integrat-
ing over the possible values of the missing data under its distribution given
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Figure 5: A Simple Bayesian Network

PWQVXRU1STBBBBBBBBBBWP  QVXRU3ST|~~||||||||PW|QVXRU2ST
the current parameter estimate θ(t) and the observed data. In the M-step
we choose the value of θ(t+1) that maximizes the loglikelihood in the last
E-step. It can be shown that under mild conditions the sequence θ(0) ,θ(1) , . . .
converges to a maximum likelihood estimate of the observed data likelihood.

Application of the EM-algorithm to Bayesian networks is conceptually
straightforward. We proceed as follows:

1. Pick initial values for network paramaters.

2. Use inference to find the expected values of the sufficient statistics.

3. Compute new estimates using the expected values of the sufficient
statistics.



4. If convergenced then stop, otherwise return to (2) .

Now inference in a Bayesian network is a complicated affair, and clever
algorithms have been developed to do this efficiently. We won’t go into that; if
your interested, follow the course probabilistic reasoning. We will do inference
the simple way by computing the full j oint distribution and computing any
probability we might need from that. For large networks this is of course
computationally not feasible.

To illustrate how EM works, we consider an extremely simple Bayesian
network: j ust one binary parent and a binary child (see figure 6).

Now suppose we pick the following initial values for the network param-
eters: ˆp(0)(X1 = 1) = 0.8, ˆp(0)(X2 = 1|X1 = 1) = 0.6, ˆp(0)(X2 = 1|X1 = 0) =
0.2. This gives the j oint distributio=n Pˆ|X(0) as given in the left part Xof t able 3.

We observe data as given in table 4. For the incomplete cases, columns 3
and 4 give the probabilities of different completions given the initial param-
eter estimates. For example, the probability t hat (0, ?) is completed t o (0, 0)
is equal to 0.8 because pˆ(0) (X2 = 0|X1 = 0) = 0.8.
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Table3 :J oint((((xd 10011,i,,,,0011sxt))))2ribu000P0tˆ....i8228(o0×n )×× ×  (x o 0   0001f....,2864 x(X=  = == 2)10  0 ,00 .X...410364822).000P0L ˆ....e227(71446f6)t(:× × × × x1o 0 0 0 0 ,n.x...363624b 646)a= = = = sis0 0 0 0 ....o 0421f8875i 6633n4466itialp arameter
estimates. Right: on basis of parameter estimates after one iteration.



Figure 6: Simple BN for EM example.

PWWPVQQVXXR?UUR?21STST
Now we can compute the expected values of the sufficient statistics. For

example, the observation (?, 0) contributes for 0.67 to nˆ1 (1), because



Pˆ(0)(X1=1 |X2=0 )= Pˆ(0)(PˆX(01)(=X1 2,=X0 2)=0 )=0.320+ .320 .16=0 .67.

Continuing in this fashion, we get the following expected sufficient statistics:

nˆ1(1) = 20 + 40 + 8 + 6 ×0.67 + 4 ×0.923 = 75.712

nˆ1(0) = 100 − 75.712 = 24.288

nˆ12(0, 0) = 12 + 2 ×0.8 + 6 ×0.33 = 15.58

nˆ12(0, 1) = 24.288 − 15.58 = 8.708

nˆ12(1, 0) = 20 + 8 ×0.4 + 6 ×0.67 = 27.22

nˆ12(1, 1) = 75.712 −2 7.22 = 48.492

From these expected sufficient statistics, we compute the new parameter
estimates:

pˆ(1)(X1=1 ) = nˆ1n(1)=751.07012≈0 .76
ˆ p(1)(X2=1 |X1=1 ) = ˆ n 1ˆn21((11,)1)=7458..741922≈0 .64

ˆ p(1)(X2=1 |X1=0 ) = nˆ 1ˆn21((00,)1)=284..720888≈ 0.36

From these new parameter estimates, we compute the new j oint distribu-
tion as given in the right part of table 3. Then we perform inference again
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using Pˆ(1) , and compute the new expected values of the sufficient statistics.
This procedure is iterated until the parameter estimates converge. In figure 7
the iterates of pˆ(X1 = 1) are shown; the sequence converges to approximately
0.7515.



iteration

Figure 7: EM iterations for pˆ(X1 = 1) .

6 Model Selection with Complete Data
We have seen that maximum likelihood estimation of a given Bayesian net-
work structure is pretty straightforward: you could do the required calcula-
tions by hand if the dataset is not too big. In many cases the structure is not
known however, so we would like to use the data to find a good structure.
The approach we take is very similar to the one for undirected graphs: we
define a measure for the quality of a structure, and then search for a model
with high quality. As you probably know by now, it is not a good idea to
use a quality measure that only takes into account how well the model fits
the data. This is a sure way to get an overfitted model; in fact the saturated
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Algorithm1 E M forB ayesianN etworks

1:pˆ (0)← availablec asee stimateso fp arameters

2: t ← 0←
3: repeat
4: for all xi, xpa(i) do

5: ˆn(t+1)(xi,xpa(i)) ← Pjn=1 P(Xi = xi, Xpa(i) = xpa(i)|Xo(bjs), p(t))
6: nˆ(t+1)(xpa(i)) ← PxPi ˆn(t+1)(xi,xpa(i))
7: pˆ(t+1)(xi|xpa(i)) ←P ˆn (t+1)(xi,xpa(i))/n ˆ(t+1)(xpa(i))
8: end for
9: t ← t + 1

10: untt←i l P t + +|pˆ 1 (t) − pˆ(t−1)| < ε

11: returnP ˆp
P

model (a fully connected graph) will always have the best fit. We saw this
problem before, and one way to deal with it is to include a penalty term for
the complexity of the model. Let LM denote the value of the log-likelihood
fthunecc tioomnp elvexalituyat oefdt hate pm  ˆ Mo;d telh.e LMetL Lestimates of p under model M. Akaike’s
Information Criterion would give the following quality for model M:

AIC(M) = −2LM + 2dim(M)

where dim(M) is the number of parameters of the model. It is customary to
define the criterion in such a way that a higher value means higher quality,
so we divide by −2 to get

AIC(M) = LM − dim(M)

AIC gives a relatively low penalty for complexity, and therefore has a ten-
dency to select overly complex models. A more popular quality measure for
Bayesian networks is the Bayesian Information Criterion (BIC) :

BIC(M) =L M−log2ndim(M)
This measure has an asymptotic j ustification from a Bayesian statistics view-
point, but we won’t be bothered with that here. This score can also be j us-



tified by the Minimum Discription Length (MDL) principle, but again we
omit the details.

So now we have a well-defined optimization problem. Given
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1. Training data

2. Scoring function (BIC)

3. Space of possible models (all DAG’s)

find a network (or the networks) that maximizes the score. Unfortunately,
finding the maximal scoring network structure (i.e. model) is NP-hard in
general. This means that for all practical purposes we have to resort to
heuristic search algorithms. We define which models are neighbours of a given
model (typically: addition, removal, reversal of an arc) and then traverse the
search space looking for high scoring models. The simplest approach is to
use a greedy hill-climbing search. This works as follows. Start with a given
network (e.g. the empty network, or a random network), and compute the
score of this network and all its neighbours. Then apply the change that
leads to the biggest improvement in the score. Compute the score of all
neighbours of the new model, and again apply the change that gives the
biggest improvement in the score, and so on. The iteration stops when none
of the neighbours improves the score. You might get stuck in local maxima.
One way to escape local maxima is to use random restarts.

An important observation is that the score is decomposable: it is a sum
of terms, where each term contains the variables i∪ pa(i). This means that
wofh teenr we move fe raomch one m coondteal ntos atnhoetv haerria, we d io ∪n’pt h(ai)v.e Ttoh compute thhaet
score all over again. We only have to recompute the score for those variables
for which the parent set has changed. This means the score computations
can be done efficiently. As an example, consider again the data in table 2.
Suppose the current model is:

P(X1, X2, X3, X4) = p 1(X1)p2(X2)p3|12(X3|X1, X2)p4|3(X4|X3)

Now suppose we consider adding an edge from X1 to X2. Only the parent



set of X2 changes, but the rest of the score is unaffected. The part of the
log-likelihood score of the current model that is affected by adding an arc
from X1 to X2 is boxed in the formula below:
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L(D) = 5log150+5 log150+6 log160+4 log140
+2log32+l og31
+2log1 +l og31+2 log32
+log21+l og21
+2log42+l og41+l og41
+2log62+l og61+3 log63≈− 29.09

After we add an edge from X1 to X2 the log-likelihood score becomes:

L(D) = 5log150+5 log150+3 log53+2 log25+3 log53+2 log52
+2log32+l og31
+2log1 +l og31+2 log32
+log21+l og21
+2log42+l og41+l og41



+2log62+l og61+3 log63≈− 29.09

In this particular case the score doesn’t increase, because X1 and X2 are
independent in the data. Since the model with the extra edge has one extra
parameter, it scores lower on AIC or BIC.

Now suppose we consider adding an edge from X1 to X4. Again we boxed
the part of the log-likelihood score that would be affected by this.
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L(D) = 5log150 +5 log150 +6 log160 +4 log140
+2log32+l og31
+2log1 +l og31+2 log32
+log21+l og21

+ 2log24+l og41+l og41
+ 2log26+l og61+3 log63≈− 29.09

If we add the edge, the log-likelihood score becomes:

L(D) = 5log150 +5 log150 +6 log160 +4 log140
+2log32+l og31
+2log1 +l og31+2 log32



+log21+l og21

+2 log1+ 2 log23+l og31
+ log21+l og21+3 log1≈ − 22.16

We see this leads to an improvement of the log-likelihood score, and
depending on the complexity penalty to an improvement of the overall score.
We added 4 parameters and improved the log-likelihood score by −22.16 +
W29.e0 9a = d6.4 93p . rBamothet eArsICa nadnd im BpIrCov give tehl eo more complex rmeo bdyel a higher
score in this case.

Algorithm 2 gives the pseudo-code for a simple Bayesian Network struc-
ture learning algorithm.
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Algorithm2 B N StructureL earning
1:G← i nitialg raph

2: max ← in score(G)
3: repeat
4: nb ← neighbours(G)
5: nfobr ←alln Geig0 h∈b onbu ds(oG
6: if score ∈(Gn 0)b >d max then
7: max ← score(G0)
8: Gm ← ←G0

9: enGd i←f
10: end for
11: until no change to G
12: return G

Appendix: The EM-algorithm



The distribution of the complete data X = (Xobs, Xmis) can be factored as

P(X|θ) = P(Xobs|θ)P(Xmis|Xobs, θ) (7)

Viewing each term as a function of θ it follows that

L(θ|X) = L(θ|Xobs) + log P(Xmis|Xobs, θ) (8)

where L(θ|X) = log P(X|θ) denotes the complete-data loglikelihood and
Lw(hθe|rXeoL bs)( |=X log =L( loθg|XPo(bXs) θth)e d eonbosetervse dth-deac taom loglikelihood. iBkeeclaihuosoed dX amndis
iLs uθ|nXknow)n= , we Lca(θnn|Xot calculate the second term on the right-hand side
of equation ( 8) , so instead we take the average of (8) over the predictive
distribution P(Xmis |Xobs , θ(t) ) , where θ(t) is a preliminary estimate of the
unknown parameter |θX. Taking the expectation left and right with respect to
P(Xmis|Xobs, θ(t)) yields

Q(θ|θ(t)) = L(θ|Xobs) + H(θ|θ(t)) (9)

where

Q(θ|θ(t)) = Eθ(t)L(θ|X)

= ZL(θ|X)P(Xmis|Xobs,θ(t))dXmis
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is the expected complete-data loglikelihood, and

H(θ|θ(t))= ZlogP(Xmis|Xobs,θ)P(Xmis|Xobs,θ(t))dXmis

A central result of [DLR77] is that if we let θ(t+1) be the value of θ that
maximizes Q(θ|θ(t) ) , then θ(t+1) is a better estimate than θ(t) in the sense
tmhaaxt mitsi oesbs eQr(vθe|dθ-data loglikelihood is at least as high as that of θ(t) ,

L(θ(t+1)) ≥ L(θ(t))

This can be seen by writing

L(θ(t+1)|Xobs) − L(θ(t)|Xobs) = {Q(θ(t+1)|θ(t)) − Q(θ(t)|θ(t))}



−{H(θ(t+1)|θ(t)) − H(θ(t)|θ(t))}

The first difference is nonnegative since θ(t+1) is chosen so that

Q(θ(t+1)|θ(t)) ≥ Q(θ|θ(t))
for all θ. It remains to show that the second difference is nonpositive, that is

H(θ(t+1)|θ(t)) − H(θ(t)|θ(t)) ≤ 0

Now for any θ

H(θ(t+1)|θ(t)) − H(θ(t)|θ(t))

= ZlogP(Xmis|Xobs,θ)P(Xmis|Xobs,θ(t))dXmis

−ZlogP(Xmis|Xobs,θ(t))P(Xmis|Xobs,θ(t))dXmis

= ZlogPP(X(Xmmisi|sX|Xobosbs,θ,θ(t)))P(Xmis|Xobs,θ(t))dXmis

= Eθ(t)?logPP((XXmmisis|X|Xoobsbs,,θθ(t)))?

≤ logEθ(t)?PP((XXmmisis|X|Xoobsbs,,θθ(t)))?

= logZPP(X(Xmmisi|sX|Xobosbs,θ,θ(t)))P(Xmis|Xobs,θ(t))dXmis

== 0logZP(Xmis|Xobs,θ)dXmis
22

where the inequality is a consequence of Jensen’s inequality and the concavity
of the logarithmic function.

Thus, we have established that the observed-data likelihood is not de-
creased after an EM iteration. So for a bounded sequence of likelihood v al-
ues {θ(t) } , θ(t) converges monotonically to some L∗ , which is almost always a
stationary θvalue of L. Moreover, in many practical applications, L∗ will be
a local maximum. For a detailed discussion of the convergence properties of



EM, see [MK97].

A Simple Example

We illustrate the EM-algorithm with a particularly simple example that does
not require EM for its solution. This allows us to discuss the computational
steps of EM without being distracted by technical detail. Consider a sequence
of 4 independent coin tosses with the following outcome (1,1,0,?), where we
use 1to denote that heads has come up, and 0 for tails. The question mark for
the fourth toss indicates that its outcome was not observed for some reason.
The parameter of interest is the probability of heads, which we denote by θ.
We partition the complete data X into the observed part and the missing
part, i.e. X = (Xobs, Xmis) . The probability of the observed data is obtained
from the probability of the complete data by summing out the missing data,
i.e.

P(Xobs | θ) = X P(X | θ) =P ((1,1,0,0) | θ)+ P ((1,1,0,1) | θ) =
XXmis

θ3(1 − θ) + θ2(1 − θ)2 = θ2(1 − θ){θ + (1− θ)} = θ2(1 − θ),

since θ + (1− θ) = 1. As was to be expected the observed data likelihood
redusicnecse t θo +t(h1e −likθe)l= iho1 o.dA osbw taaisnt eod by ignoring thhee o fbosuerrtvhed to dasst altogether.
Hence the maximum likelihood estimate is simply the fraction of heads ob-
served, i.e. θˆ = 2/3.

For illustratory purposes we consider how w e w ould arrive at this estimate
using the EM computational scheme. In the E-step we form the expected
complete-data loglikelihood based on the current estimate θ(t) ,

Q(θ|θ(t)) = θ(t) (3 log θ + log(1 − θ)) + (1 − θ(t)) (2 log θ + 2 log(1 − θ))

= (2 + θ(t)) logθ + (1+ (1 − θ(t))) log(1 − θ)
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Since we choose θ(t+1) to maximize this function with respect to θ, it is

obvious that



Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t))

Now the observed-data loglikelihood is

L(θ|Xobs) = 2 log θ + log(1 − θ)

and
H(θ|θ(t)) = θ(t) logθ + (1 −θ (t)) log(1 −θ )

Verify that
Q(θ|θ(t)) = L(θ|Xobs) + H(θ|θ(t))

Now

ddθH(θ|θ(t)) = ddθ?θ(t)logθ+  (1− θ (t))log(1 −θ )?
θ(t) 1− θ(t)

= − 1− θ

θ 1− θ

Equating to zero and solving for θ yields θ = θ(t) , and hence

H(θ|θ(t)) ≤ H(θ(t)|θ(t))

for any value of θ.
In this particularly simple case one may obtain a closed-form solution

for the iterates: θ(t+1) = 1/2 + 1/4 θ(t) . Thus if we make an initial guess
θ(0) = 0.25, we obtain the sequence 0.2500, 0.5625, 0.6406, 0.6602, 0.6650, . . .,
which converges to 2/3.
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