
Rule induction by bump hunting

1 Introduction

The objective of bump hunting is to find regions in the input (attribute/feature)
space with relatively high (low) values for the target variable. The regions are
described by simple rules of the type

if: condition-1 and ... and condition-n then: estimated target value.

There are many problems where finding such regions is of considerable practical
interest. Often these are problems where a decision maker can in a sense choose
or select the values of the input variables so as to optimize the value of the
target variable.

Consider, for example, the problem of loan acceptance faced by a bank.
Obviously, the bank would prefer to grant loans to people with a low risk of
defaulting, and reject applicants with a high risk. It is assumed (and evidence
shows) that the risk of defaulting depends on characteristics of the applicant,
such as income, age, occupation, and so on. Now the bank may have collected
data in the past concerning the characteristics of accepted applicants together
with the outcome of the loan (defaulted or not). Such data may be used to
find groups of applicants with a low probability of defaulting, which clearly is
valuable information in deciding whether or not to accept future applicants.

Other applications are for example, the identification of interesting market
segments and industrial process control.

2 Formal statement of the problem

In the introduction we gave an informal statement of the problem. In this
section we introduce some notation to give a more precise statement. We have
a collection of p input variables, denoted by x1, x2, . . . , xp, and a target variabe
denoted by y. The input variables may be numeric (e.g. income of a loan
applicant) or categorical (e.g. occupation of the applicant). The target variable
may be numeric or a binary class label. In the latter case it is most convenient to
code the two classes as 0 and 1, so that the average value of y may be interpreted
as the probability that y = 1. In the credit scoring problem, we could code a
defaulted loan by y = 0 and a non-defaulted loan by y = 1. In that case the
mean of y can be interpreted as an estimate of the probability that an applicant
will not default. If y is a class label, but there are more than two classes, then

1



the problem cannot be handled directly. It is possible however to reformulate
it as a collection of binary problems. Just code one class with label 1 and the
rest with label 0. Do this for each class in turn.

Let Sj denote the set of possible values (the domain) of xj (j = 1, . . . , p).
The input space is

S = S1 × S2 × . . .× Sp

The objective is to find subregions R ⊂ S for which

ȳR � ȳ,

where ȳ is the global mean of y and and ȳR the mean of y in R. The regions we
are looking for must have “rectangular” shape, hence we call them boxes.

Let si ⊆ Si. We define a box

B = s1 × s2 × . . .× sp

where x ∈ B ≡
⋂p

j=1(xj ∈ sj). When si = Si, we leave xi out of the box
definition since it may take any value in its domain. Figure 1 shows an example
of a box defined on two numeric variables, where x ∈ B ≡ x1 ∈ [a, b] ∩ x2 ∈
[c, d].

x
1

x
2

B

a b

c

d

a £ x
1

£ b Ç

x Î B º

c £ x
2

£ d

Figure 1: Example of a numeric box

Figure 2 shows an example of a categorical box where x ∈ B ≡ x1 ∈
{a, b} ∩ x2 ∈ {e, g}. Boxes may also be defined on combinations of numeric
and categorical variables. An important property of a box is its support, which
is the fraction of points from the data set that fall into the box.

2



a

b

c

d e f g

x1

x2

x1 Î{a,b} Ç

x Î B º

x2 Î {e,g}

Figure 2: Example of a categorical box

3 Covering

In bump hunting it is customary to follow a so-called covering strategy. This
means that the same box construction (rule induction) algorithm is applied
sequentially to subsets of the data. The first box, B1, is constructed on the
entire data set. For the construction of the second box, B2, we remove the data
points that fall into B1. In general, BK is constructed on {yi,xi|xi 6∈

⋃K−1
k=1 Bk}.

In computing the support of BK we count the data points that fall into BK (but
not into any of the previous boxes) and divide by number of observation of the
entire data set (not just the data we used to construct BK). Box construction
continues until there is no box in the remaining data with sufficient support and
sufficiently high target mean.

4 Box construction (rule induction)

Given the data (or a subset of the data), the goal is to produce a box B within
which the target mean is as large as possible. It is not feasible to simply consider
all possible boxes and pick the one with the highest target mean, so usually
some kind of heuristic search is performed to find a good box. We discuss two
approaches to this problem, and then review them to see where they differ.

3



4.1 Patient Rule Induction with PRIM

In this section we discuss a bump hunting algorithm called PRIM (for Patient
Rule Induction Method), developped by Friedman and Fisher [FF99]. The box
construction strategy of PRIM consists of two phases:

1. Patient successive top-down refinement, followed by

2. bottom-up recursive expansion.

4.1.1 Top-down peeling

Begin with a box B that covers all the (remaining) data. At each step a small
subbox b within the current box B is removed. The particular subbox b∗ chosen
for removal is the one that yields the largest mean target value within B − b∗.
Each candidate subbox is defined on a single variable. Depending on the type
of variable concerned the candidate subboxes are defined as follows:

a) Numeric variable xj :

bj− = {x|xj < xj(α)}
bj+ = {x|xj > xj(1−α)}

with xj(α) the α-quantile of xj in the current box, i.e. P (xj < xj(α)) = α.

b) Categorical variable xj :

bjm = {x|xj = sjm}, sjm ∈ Sj

Typically α ≤ 0.1, so in each step only a small part of the data points in
the current box is peeled of (hence the term patient rule induction). For the
categorical variables it is obviously more difficult to control the fraction of data
that is peeled of, e.g. it may be a binary variable with an equal distribution
over the two categories.

Below we give pseudo-code for the top-down peeling algorithm:

Top-down peeling
Repeat

C(b)← set of candidates for removal
b∗ ← arg maxb∈C(b) ȳB−b

B ← B − b∗
βB ← support of B

Until βB ≤ β0

Return B

This is a so-called hill-climbing algorithm, because at each step in the search
we peel of the single subbox that gives the most improvement of the target mean.
The peeling sequence ends when the support of the current box has dropped
below the user defined minimum support β0.

4



Record age married? own house income gender y
1 22 no no 28,000 male 0
2 46 no yes 32,000 female 0
3 24 yes yes 24,000 male 0
4 25 no no 27,000 male 0
5 29 yes yes 32,000 female 0
6 45 yes yes 30,000 female 1
7 63 yes yes 58,000 male 1
8 36 yes no 52,000 male 1
9 23 no yes 40,000 female 1

10 50 yes yes 28,000 female 1

Table 1: Bank credit data

Example 1 We consider once more the credit scoring data given in table 1.
Note that the class label “bad” has been coded as 0 and “good” as 1.

Suppose we are interested in finding groups with low risk, i.e. groups with
a high mean for the class attribute y. We set the parameters α = 1/3 and
β0 = 0.4. In the complete table ȳ = 0.5 and we are looking for boxes with higher
mean than this overall average.

We can choose between a number of peeling actions. We start with the
discrete variables. Possible peeling actions on discrete variables:

1. If we peel off observations with married=no, the remaining tuples are:
3,5,6,7,8,10. For these tuples ȳ = 4/6 = 2/3.

2. If we peel off observations with married=yes, the remaining tuples are:
1,2,4,9. For these tuples ȳ = 1/4.

3. If we peel off observations with own house=no, the remaining tuples are:
2,3,5,6,7,9,10. For these tuples ȳ = 4/7.

4. If we peel off observations with own house=yes, the remaining tuples are:
1,4,8. For these tuples ȳ = 1/3.

5. If we peel off observations with gender=female, the remaining tuples are:
1,3,4,7,8. For these tuples ȳ = 2/5.

6. If we peel off observations with gender=male, the remaining tuples are:
2,5,6,9,10. For these tuples ȳ = 3/5.

Now we still have to consider the possible peeling actions on the numeric vari-
ables. A glance at table 2 shows that peeling off the people with high income is
pointless, because we would peel off the good risks. We can peel off people with
income below 28 (2 examples). Then we would get ȳ = 5/8 for the remaining
tuples. We cannot peel off all people with income below 30, because then we
would peel off 4 tuples out of 10 which is higher than α = 1/3.

5



Income 24 27 28 30 32 40 52 58
y 0 0 0,1 1 0,0 1 1 1

Table 2: Sorted income data with corresponding class labels

Age 22 23 24 25 29 36 45 46 50 63
y 0 1 0 0 0 1 1 0 1 1

Table 3: Sorted age data with corresponding class labels

Finally, we consider the possible peeling actions on age (see table 3). We
could peel off everyone older than 45, giving a mean of 3/7 in the remaining
tuples. We could also peel off everyone younger than 25, giving a mean of 4/7
in the remaining tuples.

The peeling action that leads to highest mean in the remaining box is to peel
off married=no, with a box mean of 2/3. The support of this box is 0.6, which
is larger than β0 = 0.4, so we continue peeling.

Of the subsequent peeling possibilities there are two that lead to a box mean
of 1, namely own house = yes and age < 36. The former leads to a box with
support 0.1, and the latter to a box with support 0.4, so we prefer the latter.
The final box is

if married=yes and age ≥ 36 then ȳ = 1 (support = 0.4)

4.1.2 Bottom-up pasting

After top-down peeling we have a sequence of boxes, each box in the sequence
obtained by peeling of a part of its predecessor in the sequence. At each point
in the search process we only look one step ahead: we choose the peel that leads
to the best subbox. This means that box boundaries are determined without
knowledge of later peels. Therefore the final box can sometimes be improved
by readjusting its boundaries. In bottom-up pasting we enlarge te final box
recursively until the next paste will cause ȳ in the box to decrease.

4.1.3 Cross-validation

After peeling and pasting we still face the problem of which box from the se-
quence to select. An obvious choice would be to select the box with the highest
target mean, but we also have to consider the well-known problem of overfitting:
the box found may have a hight target mean on the data used to find it, but
this may be due to the peculiarities of the sample. This danger increases as the
number of observations in the box becomes smaller. Thus, we run the danger
of selecting a small box with a very high target mean on the sample used to
construct the sequence, but with a considerably lower target mean when applied
to new data.

6



A well-known solution to this problem is to partition the available data in
a training set and a test set. The peeling and pasting is appied to the training
data with a small value for β0. Subsequently, the test data is used to obtain an
estimate of the target mean in each succesive box in the sequence. Since the
estimates obtained in this manner are unbiased it is now a sensible strategy to
simply select the box with the highest target mean on the test data.

4.1.4 Example: family expenditure

We give an illustration of PRIM using a cross section of 1519 households drawn
from the 1980-1982 British Family expenditure survey. For each household we
have data on the budget share spent on different expense categories (e.g. food,
clothing, alcohol, and so on), as well as data on total household expenditure
(totexp), total net household income (inc), age of household head (age), and
number of children in the household (nk).

With bump hunting we may for example look for groups of households that
spend a relatively large share of their budget on food. On average the households
in the sample spend about 36% of their budget on food.

Rule 1 peeling trajectory

Support

B
o
x

m
e
a
n

0.0 0.2 0.4 0.6 0.8 1.0

0
.3

5
0
.4

0
0
.4

5
0
.5

0
0
.5

5

17

Figure 3: Peeling sequence of rule1

Figure 3 shows support and box mean (on the test set) of the sequence of
boxes constructed on the entire training data set. The last (i.e. leftmost) point
in the sequence, labeled “17” has the highest estimated target mean, and is
therefore selected as the best rule. The rule is:

if totexp < 45 and age > 33 and inc < 135, then wfood = 58%

7



where wfood denotes the budget share spent on food. This group has support
of about 1% (the value of β0), and the estimate of 58% was calculated on the
test set.

Next the data points that match this rule are removed from that training
data, and we proceed with the remaining data.

4.2 Rule induction with Data Surveyor

In this section we discuss an alternative bump hunting algorithm called Data
Surveyor [HKS96, Sie95]. In the discussion we emphasize those aspects of Data
Surveyor that differ substantially from PRIM.

Like in PRIM rule induction begins with a box B that covers all the data.
At the first step a number of subboxes B′

(i) (i = 1, . . . , w) within the initial box
B are selected. The w subboxes are chosen as follows:

1. It is required that the mean value of the target variable in the subbox is
significantly higher than the mean in the current box. When the respective
confidence intervals for the means in the boxes are non-overlapping the
difference is considered to be significant.

2. It is required that the subbox has support of at least β0.

3. From the subboxes with a significantly higher mean than their “parent”
box, and enough support, the w boxes with the largest target mean are
chosen.

After the first step in the search we have (at most) w boxes with which the
search continues. In the second step we apply the same procedure to find the
best subboxes of those w boxes, and so on. Notice that at each level in the
search we only consider a total of w subboxes of the boxes at the previous level,
rather than the w best subboxes of each box at the previous level. In the latter
case, the search process would explode very rapidly.

Like in PRIM each eligible sub-box is defined on a single variable, but in a
different manner:

a) Numeric variable xj :

B′
jcd = {x ∈ B|xj ∈ [c, d]}, c, d ∈ Sj and c < d.

b) Categorical variable xj :

B′
jm = {x ∈ B|xj = sjm}, sjm ∈ Sj .

Notice that the way the subboxes are constructed is potentially more greedy
than in PRIM, in the sense that it may lead to a more rapid fragmentation
of the data. Rather than peeling of a small part of the numeric variables, the
algorithm goes directly for intervals with the highest target mean, provided of
course that they have the minimum cover β0 and the mean differs significantly
from the current box. When in PRIM the value of α is set for example to 0.05,

8



then at each step only 5% of the data in the current box is removed. In Data
Surveyor the best interval [c, d] for xj may lead to the removal of 50% or even
more at early levels in the search. Likewise, for categorical variables PRIM peels
of one value, whereas Data Surveyor selects one value, which clearly leads to
faster fragmentation.

Below we give the pseudo-code for the Data Surveyor box induction algo-
rithm. The parameter w determines the width of the beam search, d determines
the depth of the search.

Beam Search
Beamset ← {initial box}
Repeat

all-subboxes ← ∅
For each box Bi in Beamset do

C(Bi)← set of candidate subboxes of Bi

all-subboxes ← all-subboxes ∪ C(Bi)
Beamset ← best w subboxes from all-subboxes

Until no improvement possible or depth = d
Return Beamset

The important difference with PRIM regarding the search strategy is that
PRIM uses a hill-climber, i.e. it only considers the best peeling action on the
current box. The Data Surveying search algorithm on the other hand employs a
beam search, i.e. at each level in the search the best w subboxes are considered.
To put it differently, PRIM employs a beam search with w = 1. The advantage
of taking w > 1 is that boxes that are suboptimal at the first level in the search
may turn out to lead to better boxes at higher levels in the search process.

Another important difference between the two algorithms is the way in which
the subboxes are constructed. In PRIM the subboxes are obtained by peeling
off a typically small part of the current box. This strategy has the effect that
a peeling sequence can become relatively long before the amount of data in
the current box becomes too small. This means that the sequence has the
opportunity to recover from unfortunate choices at early stages of the search.

Figure 4 shows the result of a beam search by Data Surveyor, with both
the beam width and depth set to three, and minimum support set to 1%. The
dataset contains data from car insurance policies where the target value indicates
whether the insurant claimed or not. We are interested in high risk groups so
we look for subgroups in the data that have an above average tendency to
claim. The leftmost node in the figure represents the entire data set, which has
exactly 50% claimers and 50% non-claimers (the data was selected to achieve
this balance). The confidence interval for the probability of claiming is indicated
between square brackets. The number of data points in a box is given next to
the confidence interval. Note that at depth 3 in the search we only have two
boxes, even though the beam width was set to three. This is simply because
there was no other group with a non-overlapping confidence interval and support

9



higher than 1%. Also note the rapid fragmentation of the data: the best group
at level 1 in the search (age in [19,24]) only contains about 14% of the data.

No condition

[49.7%,50.3%] 100,000

age in [19,24]

[54.6%,56.2%] 14,249

gender = m age in [19,24]

[52.8%,53.7%] 53,179 [60.2%,62.3%] 8,130

age in [19,24] carprice in [59000,79995]

[55.9%,59.6%] 2,831 [61.2, 67.4] 1,134

category = lease gender = m age in [19,24]

[50.7%,52.0%] 20,315 [53.5%,55.4%] 10,778 [59.4%,64.1%] 1,651

Figure 4: Example of beam search in Data Surveyor: beam width = 3, depth
= 3 and minimum support = 1%

Note also that Data Surveyor uses a stopping rule: a node isn’t expanded
any further if we can find no subgroup with a significantly higher target mean.
We saw that such a strategy is suboptimal for classification trees. PRIM on the
other hand just continues peeling until the support of the current box becomes
too small. Then by default the box that performs best on the test set is selected.

5 Diagnostics in PRIM

PRIM offers a number of tools to post-process or inspect the results of rule
induction. We give a short discussion of three of them

1. Redundant variables.

2. Interbox dissimilarity.

3. Relative frequency ratio plots.

10



Remove variable (+below)
Definition Mean Support
totexp < 65.00 0.3558 0.9901
age > 36.50 0.4240 0.1578
105.0 < inc < 135.0 0.4377 0.0375

Table 4: Analysis of the effect of removing variables

5.1 Redundant variables

After a box has been selected we can look at ways of simplifying the box by
removing variables from its definition. As an example we look at the second
rule constructed to find households that spend a relatively large part of their
income on food. The rule is:

if totexp < 65 and age > 36 and 105 < inc < 135, then wfood =
48%

where wfood denotes the budget share spent on food. This group has support
of about 0.7%, and the estimate of 48% was calculated on the test set.

For each variable we consider the decrease in box mean when it is removed
from the definition. The variable yielding the smallest decrease in target mean
is provisionally removed, and we do the same thing for the remaining variables.
In table 4 we see the result of such an analysis for the rule above. Apparently,
the removal of income from the box definition yields the smallest decrease in
target mean. From table 4 we can read that when it’s dropped, the mean in the
box becomes about 44%, and the support of the box goes up to about 4%. If
we drop both income and age, the box mean decreases to about 42%, and the
box support goes up to approximately 16%. Finally, if we drop all variables we
simply end up with all data points not covered by the first rule. In that case
the box mean becomes approximately 36%, and the support about 99%. The
choice whether or not to remove any variables from the box definition is entirely
up to the user.

5.2 Dissimilarity of boxes

The covering procedure produces a sequence of boxes that cover a subregion
of the attribute space. These boxes can overlap or be disjoint, be close or far
apart, depending on the nature of the target function. For example, if the
target function has a single prominent mode, the covering procedure might
produce a sequence of nested boxes, where each box in the sequence completely
covers all of those induced before it. Alternatively, successive boxes might cover
different “shoulders” of that mode, and produce a “cluster” of closely related
boxes. If there are several different prominent modes, the boxes might divide
into corresponding groups of nested/clustered sequences. By inspecting the

11



dissimilarities of pairs of boxes in the sequence, we can learn about the modal
structure of the target function.

The dissimilarity D(Bk, Bl) between boxes Bk and Bl is defined as the dif-
ference between the support of the smallest box Bk,l that covers both of them,
and the support of their union

D(Bk, Bl) = β(Bk,l)− β(Bk ∪Bl)

Here the support β(B) of a box B, is defined as the fraction of observations in
the entire dataset that it covers. The smallest box Bk,l that covers both Bk and
Bl is defined as follows:

1. If xj is categorical and appears in the box definition of Bk with constraint
xj ∈ sjk and in the box definition of Bl with constraint xj ∈ sjl, then it
appears in the box definition of Bk,l with constraint xj ∈ sjk ∪ sjl.

2. If xj is numeric and appears in the box definition of Bk with constraint
xj ∈ [t−jk, t+jk], and in the box definition of Bl with constraint xj ∈
[t−jl, t

+
jl], then it appears in the box definition of Bk,l with constraint

xj ∈ [min(t−jk, t−jl),max(t+jk, t+jl)].

Example 2 If we have boxes B1 = x1 ∈ {a, c} ∧ x3 ∈ [6, 11] ∧ x12 ∈ [80, 106]
and B2 = x1 ∈ {b, c}∧x3 ∈ [15, 23]∧x5 ∈ [2, 4] then B1,2 = x1 ∈ {a, b, c}∧x3 ∈
[6, 23].

The dissimilarity between boxes assumes values in the interval [0, 1). Nested
boxes will have zero dissimilarity, as will “adjacent” boxes that have contiguous
intervals on one numerical variable, and identical subsets on all other variables.

Notice that two boxes can be defined in terms of very different sets of vari-
ables and still be quite similar, if the two sets are highly correlated. A simple
measure for this kind of similarity is box overlap

O(Bk, Bl) =
β(Bk ∩Bl)
β(Bk ∪Bl)

Question 1 Suppose two boxes cover disjoint sets of observations, what can
you say about box overlap? Suppose furthermore that their box definitions have
no variables in common. What can you say about their dissimilarity?

5.3 Relative frequency ratio plots

From the perspective of interpretation, it is important to be aware of possible
alternative definitions for each induced box. Other descriptions, based on dif-
ferent attributes, may lead to very similar boxes in terms of the actual data
points that are covered. This is caused by correlation between the attributes.

We can compare the relative frequency distribution of values of each variable
xj within the box to that over the entire data sample by looking at their ratio

rjk =
pj(xj |x ∈ Bk)

pj(xj)

12



A uniform distribution for rjk(xj) implies that xj is totally irrelevant for the
definition of Bk; the relative frequency of its values is the same inside and
outside the box. A highly peaked distribution for rjk(xj) means that xj is
highly relevant for the definition of Bk whether or not it is one of the defining
variables.

6 Using the results of bump hunting

We have discussed the covering strategy of bump hunting: find the best rule
(box) on the complete dataset, remove the datapoints that fall into that box,
and proceed to find the best rule on the remaining data. The end result is a list
of rules where each rule specifies a box on the input variables and an estimated
target mean in that box.

The most obvious use of such a list of rules is for the prediction of the target
value of a new case with unknown target, or the selection of cases with high
predicted target value. For example in credit scoring we may want to use the
list of rules to select applicants with a low probability of defaulting. When
a new applicant arrives, we collect the relevant data on the input variables,
and proceed as follows. We look whether the applicant matches the first rule
in the list. If so we look at the associated probability of defaulting, which is
presumably very low for the first rule. The applicant would be accepted in that
case. If he or she does not match the first rule, we proceed to the second rule,
and so on. If the applicant does not match any of the rules, or we consider
the probability of defaulting associated with the first matching rule to high, the
applicant is rejected.

Of course this is only one example of how the results can be used; for other
applications they may be used in a different way. We always have to be aware
however that we are dealing with an ordered list of rules, and not with a collec-
tion of independent rules. The target mean in BK was estimated on a dataset
with the data points falling in B1, . . . , BK−1 removed. The target mean in
BK computed on the entire data set is likely to be different, unless BK does
not overlap with B1, . . . , BK−1. When there is overlap however, the estimated
target mean is probably too low, since the target means in B1, . . . , BK−1 are
typically (though not necessarily) all higher than the mean in BK .

In the past it has been quite customary to use different types of algorithms,
e.g. classification or regression trees (like classification trees but with numeric
target value), for finding groups in the data with a high value for the target
variable. In that case the tree obtained is “post-processed” by selecting the
leaf nodes with high target values. Friedman and Fisher [FF99] show, in an
experimental comparison of CART and PRIM, that the latter tends to yield
better results for this task. The explanation of this experimental observation
is that CART fragments the data much faster than PRIM: since CART makes
binary trees on average half of the data is removed at each step in the search.
This means that it is more difficult to recover from unfortunate greedy steps in
the search since we run out of data too fast.

13



7 Summary

Bump hunting algorithms are very suited when we are interested in finding
groups in the data that have a particularly high (or low) value for the target
variable. The groups are typically described by the conjunction of a number of
simple conditions, each condition based on a single input variable. This has the
advantage that the individual rules are easy to interpret.

Because the number of boxes that can be defined using the input variables
is very large, we have to employ some heuristic search strategy to find good
boxes. PRIM only continues the search with the best subbox of the current
box (hill climbing), but the subboxes considered only remove a small amount of
data from the current box. This gives PRIM the opportunity the recover from
“unfortunate” choices before the algorithm runs out of data. Data Surveyor
tends to remove more data from the current box at each step in the search,
but it employs a beam search. Therefore it may find better boxes than a hill
climber.

Experiments with PRIM suggest that bump hunting algorithms give better
performance at the task considered in this chapter than post-processing the
output of a tree-based algorithm such as CART.

References

[FF99] J.H. Friedman and N.I. Fisher. Bump-hunting in high-dimensional
data. Statistics and Computing, 9:123–143, 1999.

[HKS96] M. Holsheimer, M. Kersten, and A. Siebes. Data surveyor: Searching
the nuggets in parallel. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and U. Uthurusamy, editors, Advances in Knowledge Discovery and
Data Mining, pages 447–467. AAAI Press, 1996.

[Sie95] A. Siebes. Data surveying: Foundations of an inductive query lan-
guage. In U. Fayyad and U. Uthurusamy, editors, Proceedings of the
first international conference on knowledge discovery and data mining,
pages 269–274. AAAI Press, 1995.

14


