
Data Mining 2013
Classification Trees (1)

Ad Feelders

Universiteit Utrecht

September 12, 2013

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 1 / 43

Modeling: Data Mining Tasks

Classification / Regression

Dependency Modeling (Graphical Models; Bayesian Networks)

Frequent Patterns Mining (Association Rules)

Subgroup Discovery (Rule Induction; Bump-hunting)

Clustering

Ranking

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 2 / 43

Classification

The prediction of the class of an object on the basis of some of its
attributes.
For example, predict:

Good/bad credit for loan applicants, using

income
age
...

Spam/no spam for e-mail messages, using

% of words matching a given word (e.g. “free”)
use of CAPITAL LETTERS
...

Music Genre (Rock, Techno, Death Metal, ...) based on audio
features and lyrics.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 3 / 43

Building a classification model

The basic idea is to build a classification model using a set of training
examples. There are many techniques to do that:

Statistical Techniques

discriminant analysis
logistic regression

Data Mining/Machine Learning

Classification Trees
Bayesian Network Classifiers
Neural Networks
Support Vector Machines
...

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 4 / 43

Strong Points of Classification Trees

Are easy to interpret (if not too large).

Select relevant attributes automatically.

Can handle both numeric and categorical attributes.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 5 / 43

Example: Loan Data

Record age married? own house income gender class

1 22 no no 28,000 male bad
2 46 no yes 32,000 female bad
3 24 yes yes 24,000 male bad
4 25 no no 27,000 male bad
5 29 yes yes 32,000 female bad
6 45 yes yes 30,000 female good
7 63 yes yes 58,000 male good
8 36 yes no 52,000 male good
9 23 no yes 40,000 female good

10 50 yes yes 28,000 female good

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 6 / 43

Credit Scoring Tree

5 5
bad good

rec#

1…10

0 3

7,8,9

5 2

1…6,10

1 2

2,6,10

4 0

1,3,4,5

0 2

6,10

1 0

2

income > 36,000 income £ 36,000

age > 37 age £ 37

married not married

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 7 / 43

Partitioning the attribute space

30 40 50 60

3
0

4
0

5
0

bad

bad

bad

bad

bad

good

good

good

good

good

age

in
co

m
e

36

37

Good

Bad

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 8 / 43

Why not split on gender in top node?

5 5
bad good

rec#

1…10

2 3

2,5,6,9,10

gender = male gender = female

3 2

1,3,4,7,8

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 9 / 43

Impurity of a node

We strive towards nodes that are pure in the sense that they contain
observations of a single class.

We need a measure that indicates “how far” a node is removed from
this ideal.

We call such a measure an impurity measure.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 10 / 43

Impurity function

The impurity i(t) of a node t is a function of the relative frequencies of
the classes in that node:

i(t) = φ(p1, p2, . . . , pJ)

where the pj(j = 1, . . . , J) are the relative frequencies of the J different
classes in that node.

Sensible requirements of any quantification of impurity:

1 Should be at a maximum when the observations are distributed evenly
over all classes.

2 Should be at a minimum when all observations belong to a single
class.

3 Should be a symmetric function of p1, . . . , pJ .

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 11 / 43

Quality of a split (test)

We define the quality of binary split s in node t as the reduction of
impurity that it achieves

∆i(s, t) = i(t)− {π(`)i(`) + π(r)i(r)}

where ` is the left child of t, r is the right child of t, π(`) is the proportion
of cases sent to the left, and π(r) the proportion of cases sent to the right.

t

` r

π(`) π(r)

i(t)

i(`) i(r)

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 12 / 43

Well known impurity functions

Impurity functions we consider:

Resubstitution error

Gini-index (CART, Rpart)

Entropy (C4.5, Rpart)

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 13 / 43

Resubstitution error

Measures the fraction of cases that is classified incorrectly if we assign
every case to the majority class in that node. That is

i(t) = 1−max
j

p(j |t)

where p(j |t) is the relative frequency of class j in node t.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 14 / 43

Resubstitution error: credit scoring tree

5 5

0 3

i = 0

5 2

1 2

i = 1/3

4 0

i = 0

0 2

i = 0

1 0

i = 0

i = 1/2

i = 2/7

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 15 / 43

Resubstitution error for two classes

p(0)

1-
m

ax
(p

(0
),

1-
p(

0)
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 16 / 43

Resubstitution error

Questions:

Does resubstitution error meet the sensible requirements?

What is the impurity reduction of the second split in the credit
scoring tree if we use resubstitution error as impurity measure?

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 17 / 43

Resubstitution error

Questions:

Does resubstitution error meet the sensible requirements?

What is the impurity reduction of the second split in the credit
scoring tree if we use resubstitution error as impurity measure?

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 17 / 43

Which split is better?

400 400

300 100 100 300

s
1

400 400

200 400 200 0

s
2

These splits have the same resubstitution error, but s2 is preferable
because it creates a leaf node.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 18 / 43

Which split is better?

400 400

300 100 100 300

s
1

400 400

200 400 200 0

s
2

These splits have the same resubstitution error, but s2 is preferable
because it creates a leaf node.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 18 / 43

Class of suitable impurity functions

Problem: resubstitution error only decreases linearly as we move away
from 1

2 . Should be faster than linear.

We define the class F of impurity functions (for two-class problems) that
has this property:

1 φ(0) = φ(1) = 0 (minimum at p(0) = 0 and p(0) = 1)

2 φ(p(0)) = φ(1− p(0)) (symmetric)

3 φ′′(p(0)) < 0, 0 < p(0) < 1 (strictly concave)

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 19 / 43

Impurity function: Gini index

For the two-class case the Gini index is

i(t) = p(0|t)p(1|t) = p(0|t)(1− p(0|t))

Question 1: Check that the Gini index belongs to F .

Question 2: Check that if we use the Gini index, split s2 is indeed preferred.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 20 / 43

Gini index: credit scoring tree

5 5

0 3

i = 0

5 2

1 2

i = 2/9

4 0

i = 0

0 2

i = 0

1 0

i = 0

i = 1/4

i = 10/49

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 21 / 43

Can impurity increase?

Is it possible that a split makes things worse, i.e. ∆i(s, t) < 0?

Not if φ ∈ F . Because φ is a concave function, we have

φ(p(0|`)π(`) + p(0|r)π(r)) ≥ π(`)φ(p(0|`)) + π(r)φ(p(0|r))

Since
p(0|t) = p(0|`)π(`) + p(0|r)π(r)

it follows that

φ(p(0|t)) ≥ π(`)φ(p(0|`)) + π(r)φ(p(0|r))

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 22 / 43

Can impurity increase? Not if φ is concave.

p(0|`) p(0|r)

p(0|t) = π(`)p(0|`) + π(r)p(0|r)

φ(p(0|`))

φ(p(0|r))

φ(p(0|t))π(`)φ(p(0|`)) + π(r)φ(p(0|r))

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 23 / 43

Split s1 and s2 with resubstitution error

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 24 / 43

Split s1 and s2 with Gini

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 25 / 43

Impurity function: Entropy

For the two-class case the entropy is

i(t) = −p(0|t) log p(0|t)− p(1|t) log p(1|t)

= −p(0|t) log p(0|t)− (1− p(0|t)) log(1− p(0|t))

Question: Check that entropy impurity belongs to F .

Remark: this is the average amount of information generated by drawing
(with replacement) an example at random from this node, and observing
its class.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 26 / 43

Three impurity measures

p(0)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Entropy (solid), Gini (dot-dash) and resubstitution (dash) impurity.
Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 27 / 43

The set of splits considered

1 Each split depends on the value of only a single attribute.

2 If attribute x is numeric, we consider all splits of type x ≤ c where c
is halfway between two consecutive values of x .

3 If attribute x is categorical, taking values in {b1, b2, . . . , bL}, we
consider all splits of type x ∈ S , where S is any non-empty proper
subset of {b1, b2, . . . , bL}.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 28 / 43

Splits on numeric attributes

There is only a finite number of distinct splits, because there are at most n
distinct values of a numeric attribute in the training sample (where n is the
number of examples in the training sample).

Example: possible splits on income in the root for the loan data

Income Class Quality (split after)
0.25−

24 B 0.1(1)(0)+0.9(4/9)(5/9) = 0.03
27 B 0.2(1)(0) + 0.8 (3/8)(5/8) = 0.06
28 B,G 0.4(3/4)(1/4) + 0.6(2/6)(4/6) = 0.04
30 G 0.5(3/5)(2/5) + 0.5(2/5)(3/5) = 0.01
32 B,B 0.7(5/7)(2/7) + 0.3(0)(1) = 0.11
40 G 0.8(5/8)(3/8) + 0.2(0)(1) = 0.06
52 G 0.9(5/9)(4/9) + 0.1(0)(1) = 0.03
58 G

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 29 / 43

Splits on a categorical attribute

For a categorical attribute with L distinct values there are 2L−1 − 1
distinct splits to consider. Why?

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 30 / 43

Splitting on categorical attributes

For two-class problems, and φ ∈ F , we don’t have to check all 2L−1 − 1
possible splits. Sort the p(0|x = b`), that is,

p(0|x = b`1) ≤ p(0|x = b`2) ≤ . . . ≤ p(0|x = b`L)

Then one of the L− 1 subsets

{b`1 , . . . , b`h}, h = 1, . . . , L− 1,

is the optimal split. Thus the search is reduced from looking at 2L−1 − 1
splits to L− 1 splits.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 31 / 43

Splitting on categorical attributes: example

We’re in a node with 100 cases of class 0 and 100 cases of class 1. x is a
categorical attribute with possible values a, b, c, d with p(x = i) = 0.25 for
i ∈ {a, b, c , d}. Suppose

p(0|x = a) = 0.6, p(0|x = b) = 0.4, p(0|x = c) = 0.2, p(0|x = d) = 0.8

Sort the values of x according to probability of class 0

c b a d

We only have to consider the splits: {c}, {c, b}, and {c , b, a}.

Intuition: put values with low probability of class 0 in one group,
and values with high probability of class 0 in the other.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 32 / 43

Splitting on numerical attributes

Income Class Quality (split after)
0.25−

24 B 0.1(1)(0)+0.9(4/9)(5/9) = 0.03
27 B 0.2(1)(0) + 0.8 (3/8)(5/8) = 0.06
28 B,G 0.4(3/4)(1/4) + 0.6(2/6)(4/6) = 0.04
30 G 0.5(3/5)(2/5) + 0.5(2/5)(3/5) = 0.01
32 B,B 0.7(5/7)(2/7) + 0.3(0)(1) = 0.11
40 G 0.8(5/8)(3/8) + 0.2(0)(1) = 0.06
52 G 0.9(5/9)(4/9) + 0.1(0)(1) = 0.03
58 G

Optimal split can only occur between consecutive values with different
class labels.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 33 / 43

Splitting on numerical attributes

Income Class Quality (split after)
0.25−

24 B
27 B 0.2(1)(0) + 0.8 (3/8)(5/8) = 0.06
28 B,G 0.4(3/4)(1/4) + 0.6(2/6)(4/6) = 0.04
30 G 0.5(3/5)(2/5) + 0.5(2/5)(3/5) = 0.01
32 B,B 0.7(5/7)(2/7) + 0.3(0)(1) = 0.11
40 G
52 G
58 G

Optimal split can only occur between consecutive values with different
class labels.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 34 / 43

Boundary points and segment borders

164 T. Elomaa and J. Rousu

Y Y Y Y Z Z Z Z Z Z Y Y Y Z Z Z Z Y Y Y Y Z Y Y Y Z Z
1 2 2 3 3 3 4 4 4 4 4 4 5 5 5 5 5 6 7 7 7 8 8 9 9 9 9

Fig. 1. A set of examples sorted into ascending order according to the numerical value. The class
labels (Y and Z) of the examples are also shown.

each (x, y), x ∈ R = (xmin, xmax) ⊆ � and y is the label of x from the set of classes
C = { c1, . . . , cm }. A k-interval discretization of the sample is generated by pick-
ing k − 1 interval thresholds or cut points T1 < T2 < · · · < Tk−1, Tj ∈ (xmin, xmax).
Moreover, empty intervals are not allowed. The set of k − 1 thresholds defines a

partition
⊎k

i=1 Si of the set S as follows:

Si =





{ (x, y) ∈ S | x � T1 } if i = 1,

{ (x, y) ∈ S | Ti−1 < x � Ti } if 1 < i < k,

{ (x, y) ∈ S | x > Tk−1 } if i = k

Let ΠR be the set of all partitions of value range R and π ∈ ΠR. Then by |π|
we denote the number of subsets in π, or the arity of π, and by F(π) the value of
π with respect to an evaluation function F . A partition is optimal if it optimizes the
value of F . In machine learning algorithms there are many evaluation functions
that are suitable for measuring the class coherence of discretizations. Let us
consider, for the time being, the very simple function Training Set Error, or TSE.

Let δj(S) = |{ (x, y) ∈ S | y �= cj }| denote the error, or the number of disagree-
ments, with respect to class cj in the set S . That is, if all instances in S were
predicted to belong to class cj , we would make δj(S) errors on S . Furthermore, let
δ(S) = mincj∈C δj(S) denote the minimum error on S . A class cj ∈ C is called a
majority class of S , if predicting class cj leads to minimum number of errors on S ,
that is, δj(S) = δ(S). Note that more than one class can qualify as a majority class.
The majority classes of a set S are denoted by majC(S) = { cj ∈ C | δj(S) = δ(S) }.

For a k-interval partition
⊎k

i=1 Si of S the Training Set Error is given by

TSE

(
k⊎

i=1

Si

)
=

k∑

i=1

δ(Si)

Intuitively, TSE is the number of training instances falsely classified in the
partition when each interval is labeled by one of its majority classes.

The global minimum error discretization problem is to find a partition
⊎k

i=1 Si
of S that has the minimum TSE value over all partitions of S . The maximum
number of intervals k may be given as a parameter. Then the problem is to find
the TSE-optimal partition among those that have at most k intervals. This is
called bounded-arity discretization.

If one could make a partition interval out of each example, this partition
would have zero misclassification rate. However, in practice one cannot discern
between all examples. Only examples that differ in their x-value can be separated
from each other. Consider, for example, the data set shown in Fig. 1. There
are 27 examples ordered by the integer value x. The examples are instances
of two classes; Y and Z . Partition cut points can only be set on those points
where the value of x changes. Therefore, for partitioning purposes, we can pre-
process the data into bins as shown in Fig. 2. There is one bin for each separate

Necessary and Sufficient Pre-processing in Numerical Range Discretization 165

1/– 2/– 1/2 2/4 1/4 1/– 3/– 1/1 2/2

x 1 2 3 4 5 6 7 8 9

Fig. 2. Example bins for the sample of Fig. 1. The class distributions of examples belonging to a bin
are recorded. Partition cut points can be set at the bin borders.

value of x. Within each bin we record the class distribution of the instances that
belong to it.

It is easy to see that the optimal TSE value for a partition is achieved by the
partition that has all bins as separate intervals. Let V denote the number of bins.
There are also other partitions that are guaranteed to have the optimal value. We
will discuss them in the next section. However, this partition in which the number
of intervals, the arity of the partition, is not restricted is not always the optimal
partition that we are looking for. Sometimes the optimal partition of at most k
intervals is sought.

Let OPTk(R, F) be the set of optimal partitions of the numerical value range
R with respect to evaluation function F such that the partitions have at most k
intervals. In other words,

OPTk(R, F) = { π ∈ ΠR | k � |π| ∧ ∀π′ ∈ ΠR : F(π) � F(π′) }
For the members of OPTk

min(R, F) it is further required that the partition has as
few intervals as any optimal partition:

OPTk
min(R, F) = { π ∈ OPTk(R, F) | ∀π′ ∈ OPTk(R, F) : |π| � |π′| }

One can define many different versions of the optimal multisplitting problem.
From the practical viewpoint the interesting ones are the following:

• Globally optimal: Find an optimal partition π ∈ OPTV (R, F) of the given nu-
merical value range R. It is sufficient to return any optimal partition, be it of
any arity.

• Minimal globally optimal: Find an optimal partition π ∈ OPTV
min(R, F) of the

given numerical value range R such that its arity is at most that of any other
optimal partition of R.

• Bounded-arity optimal: Find an optimal partition π ∈ OPTk(R, F) of the given
numerical value range R such that |π| � k � V . It is sufficient to return any
bounded-arity optimal partition as long as its arity is at most k.

• Minimal bounded-arity optimal: Find a bounded-arity optimal partition π ∈
OPTk

min(R, F) of the given numerical value range R such that its arity is at
most that of any other bounded-arity optimal partition of R.

• Fixed arity optimal: Find an optimal partition π ∈ OPTk(R, F) of the given
numerical value range R such that |π| = k � V .

Example 2.1. Consider the numerical value range shown in Figs 1 and 2. As
already observed, the partition with all bins as separate intervals is one of the
globally TSE-optimal partitions OPT9(R,TSE) for this numerical value range.
It has nine intervals and makes seven misclassifications. However, it is not a
OPT9

min(R,TSE) partition, because there is one partition with only three intervals
that obtains the same misclassification rate or TSE value: the one in which the
two first bins make up the first interval, the three next bins the second interval,
and the remaining bins are gathered into the third interval.

166 T. Elomaa and J. Rousu

3/– 1/2 2/4 1/4 4/– 1/1 2/2

x 2 3 4 5 7 8 9

Fig. 3. The blocks in the range R of x in the sample of Fig. 1. Block borders are the boundary
points in R.

Next, observe that the optimal 4-partition also has score 7. Since this is the
globally optimal score, it must also belong to bounded-arity optimal partitions
OPT4(R,TSE). However, the partition does not belong to minimal bounded-arity
optimal partitions OPT4

min(R,TSE) because of the existence of the three-interval
partition with the same TSE score.

TSE obtains its globally optimal value with all bins as separate partition in-
tervals. That is due to the fact that TSE does not penalize the number of intervals
in any way. The same is true for many other evaluation functions as well. Intuit-
ively, however, equal-score partitions with a smaller number of partition intervals
are better choices.

3. Pruning of Cut Point Candidates in Pre-processing

As discussed above, the partition containing all bins as its intervals is a globally
optimal partition for TSE. The same actually holds for all convex (and concave)
evaluation functions (see the next section). However, it is possible to pre-process
the numerical value range into an often radically smaller number of example
groups without losing the possibility to recover optimal partitions.

It has been proven that most known attribute evaluation functions cannot
obtain their optimal value within a sequence of examples – the so-called block
of examples (Elomaa and Rousu, 1999) – in between two consecutive boundary
points (Fayyad and Irani, 1992) or, more generally, within a segment of examples
in which the relative class distribution of the examples is static (Elomaa and
Rousu, 2000). Most often this is a consequence of the convexity of the evaluation
function within a block or a segment of examples, but some non-convex functions
also possess these properties.

We recapitulate blocks and segments of examples as well as boundary points.
We present them intuitively with the help of an illustration. Let us start with the
bins in the value range R. To determine the correlation between the numerical
value and that of the class it suffices to examine their mutual frequencies, which
have been stored to the bins.

To construct blocks of examples we merge together adjacent class uniform
bins with the same class label (see Fig. 3). The boundary points of the value
range are the borders of its blocks. Block construction still leaves all bins with a
mixed class distribution as their own blocks.

The evaluation functions that are known to have optimal partitions defined by
boundary points include Average Class Entropy, Information Gain (Quinlan, 1986),
Gain Ratio (Quinlan, 1986), Normalized Distance Measure (López de Màntaras,
1991), Gini Index (Breiman et al., 1984), Training Set Error, and the MDL measure
of Wallace and Patrick (1993).

From bins we obtain segments of examples by combining adjacent bins with
an equal relative class distribution (see Fig. 4). Segments group together adjacent
mixed-distribution bins that have equal relative class distribution. Also adjacent

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 35 / 43

Boundary points and segment borders

166 T. Elomaa and J. Rousu

3/– 1/2 2/4 1/4 4/– 1/1 2/2

x 2 3 4 5 7 8 9

Fig. 3. The blocks in the range R of x in the sample of Fig. 1. Block borders are the boundary
points in R.

Next, observe that the optimal 4-partition also has score 7. Since this is the
globally optimal score, it must also belong to bounded-arity optimal partitions
OPT4(R,TSE). However, the partition does not belong to minimal bounded-arity
optimal partitions OPT4

min(R,TSE) because of the existence of the three-interval
partition with the same TSE score.

TSE obtains its globally optimal value with all bins as separate partition in-
tervals. That is due to the fact that TSE does not penalize the number of intervals
in any way. The same is true for many other evaluation functions as well. Intuit-
ively, however, equal-score partitions with a smaller number of partition intervals
are better choices.

3. Pruning of Cut Point Candidates in Pre-processing

As discussed above, the partition containing all bins as its intervals is a globally
optimal partition for TSE. The same actually holds for all convex (and concave)
evaluation functions (see the next section). However, it is possible to pre-process
the numerical value range into an often radically smaller number of example
groups without losing the possibility to recover optimal partitions.

It has been proven that most known attribute evaluation functions cannot
obtain their optimal value within a sequence of examples – the so-called block
of examples (Elomaa and Rousu, 1999) – in between two consecutive boundary
points (Fayyad and Irani, 1992) or, more generally, within a segment of examples
in which the relative class distribution of the examples is static (Elomaa and
Rousu, 2000). Most often this is a consequence of the convexity of the evaluation
function within a block or a segment of examples, but some non-convex functions
also possess these properties.

We recapitulate blocks and segments of examples as well as boundary points.
We present them intuitively with the help of an illustration. Let us start with the
bins in the value range R. To determine the correlation between the numerical
value and that of the class it suffices to examine their mutual frequencies, which
have been stored to the bins.

To construct blocks of examples we merge together adjacent class uniform
bins with the same class label (see Fig. 3). The boundary points of the value
range are the borders of its blocks. Block construction still leaves all bins with a
mixed class distribution as their own blocks.

The evaluation functions that are known to have optimal partitions defined by
boundary points include Average Class Entropy, Information Gain (Quinlan, 1986),
Gain Ratio (Quinlan, 1986), Normalized Distance Measure (López de Màntaras,
1991), Gini Index (Breiman et al., 1984), Training Set Error, and the MDL measure
of Wallace and Patrick (1993).

From bins we obtain segments of examples by combining adjacent bins with
an equal relative class distribution (see Fig. 4). Segments group together adjacent
mixed-distribution bins that have equal relative class distribution. Also adjacent

Necessary and Sufficient Pre-processing in Numerical Range Discretization 167

3/– 3/6 1/4 4/– 3/3

x 2 4 5 7 9

Fig. 4. The segments in the range R of x in the sample of Fig. 1. Segment borders are a subset of the
boundary points in R.

class uniform bins fulfill this condition; hence, uniform blocks are a special
case of segments and segment borders are a subset of boundary points. Elomaa
and Rousu (2000) have shown that for the above-mentioned attribute evaluation
functions (with the exception of the MDL measure) only segment borders need
to be examined.

How can blocks and segments of examples be used in finding optimal par-
titions? The results show that the functions mentioned do not have a cut point
within a block or a segment. Therefore, when searching for an optimal partition
of any arity, it suffices to inspect the respective combinations of boundary points
or segment borders. When the evaluation function is cumulative, the combina-
tions can be checked in quadratic time using dynamic programming (Fulton
et al., 1995; Elomaa and Rousu, 1999). Not all of the above-mentioned evalu-
ation functions possess this property. For example, the non-convex evaluation
functions Gain Ratio and Normalized Distance Measure are not cumulative and,
thus, cannot be optimized efficiently using dynamic programming.

We will look into whether through efficient pre-processing further advantage
could be obtained in searching for optimal partitions. First we examine general
properties of convex evaluation functions. Then the evaluation function TSE is
inspected separately.

4. Optimal Discretization with Strictly Convex Evaluation
Functions

Many of the most widely used attribute evaluation functions are either convex
(upwards) or concave (i.e., convex downwards) (Breiman, 1996; Hickey, 1996;
Codrington and Brodley, 1997; Elomaa and Rousu, 1999); both are usually
referred to as convex functions.

Definition 4.1. A function f(x) is said to be convex over an interval (a, b) if for
every x1, x2 ∈ (a, b) and 0 � ρ � 1,

f(ρx1 + (1 − ρ)x2) � ρf(x1) + (1 − ρ)f(x2)

A function f is said to be strictly convex if equality holds only if ρ = 0 or ρ = 1.
A function f is concave if −f is convex.

Let X be a variable with domain X. Let E denote the expectation. In the
discrete case EX =

∑
x∈X p(x)x, where p(x) = �{X = x }.

Theorem 4.1 (Jensen’s inequality (Cover and Thomas, 1991)). If f is a convex
function and X is a random variable, then

Ef(X) � f(EX)

Moreover, if f is strictly convex, then the above inequality implies that X = EX
with probability 1, i.e., X is a constant.

A segment is a block of consecutive values of the split attribute for which
the class distribution is identical.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 36 / 43

Optimal splits of gini index

Theorem

The gini index optimal splits can only occur on segment borders.

Consider the two-class case and binary splits. Let B be a segment, and let
A be everything to the left of B, and C everything to the right of B.

We show that the optimal split cannot occur inside B. Define:

a: the number of cases in part A.

a1: the number of cases in part A belonging to class 1.

b: the number of cases in segment B.

p1: the relative frequency of class 1 in segment B.

`: the number of cases from segment B sent to the left by the split.
` ∈ [0, b].

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 37 / 43

Optimal splits of gini index

A B C

`

L R

We perform a binary split into a left part L and a right part R.

` denotes the number of cases of segment B that goes to the left.

Wherever we split inside B, the class distribution of the part of B
that goes to the left (right) is the same, and has probability of class 1
equal to p1.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 38 / 43

Optimal splits of gini index

Note that the probability of class 1 in the left part is given by

pL =
a1 + `p1

a + `

So the impurity of the left group as a function of ` is given by

i(L) = pL(1− pL) = pL − p2
L =

a1 + `p1

a + `
−
(

a1 + `p1

a + `

)2

The weighted average of the gini index of the child nodes is given by:

NL

N
i(L) +

NR

N
i(R)

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 39 / 43

Optimal splits of gini index

The contribution of the left part is:

f (`) = NL × i(L) = (a + `)

(
a1 + `p1

a + `
− (a1 + `p1)2

(a + `)2

)

= (a1 + `p1)− (a1 + `p1)2

a + `

We show that this is a concave function of `, which implies that the
minimum is attained either for ` = 0, or ` = b. The second derivative with
respect to ` is given by

f ′′(`) = −2
(ap1 − a1)2

(a + `)3
≤ 0

The second derivative is negative everywhere, so the function is indeed
concave.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 40 / 43

Optimal splits of gini index

1 By symmetry, the contribution of the right child to the weighted
average is also a concave function of `, and therefore the average gini
index as a whole is a concave function of `.

2 Hence, it attains its minimum for ` = 0, or ` = b (i.e. at the segment
borders), so the optimal split can never occur inside segment B.

3 This result is true for arbitrary concave impurity measures (e.g.
entropy) and generalizes to arbitrary number of classes.

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 41 / 43

Optimal splits of gini index

Numeric example with a = 50, a1 = 10, b = 60, p1 = 0.8,c = 30,c1 = 10.

0 10 20 30 40 50 60

0.
21

0.
22

0.
23

0.
24

0.
25

gi
ni

−
in

de
x

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 42 / 43

Basic Tree Construction Algorithm

Construct tree
nodelist ← {{training sample}}
Repeat

current node ← select node from nodelist
nodelist ← nodelist − current node
if impurity(current node) > 0
then

S ← candidate splits in current node
s* ← arg maxs∈S impurity reduction(s,current node)
child nodes ← apply(s*,current node)
nodelist ← nodelist ∪ child nodes

fi
Until nodelist = ∅

Ad Feelders (Universiteit Utrecht) Data Mining September 12, 2013 43 / 43

