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Overview of Coming Two Lectures

(Conditional) Independence

Graphical Representation

Log-linear Models

Hierarchical
Graphical
Decomposable

Maximum Likelihood Estimation

Model Testing/Selection (Data Mining)
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Graphical Models for Discrete Data

Task: model the associations (dependencies) between a collection of
discrete variables.

There is no target variable to be predicted: all variables are treated
equal.
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Graphical Model: Coronary Heart Disease
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The Saturated Model

Suppose we observe the following data on X and Y :

n(x , y) y

x 1 2 3 n(x)

1 2 5 3 10
2 10 20 10 40
3 8 35 7 50

n(y) 20 60 20 100
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The Saturated Model

Saturated Model

P̂(x , y) =
n(x , y)

n

requires the estimation of 8 probabilities.

The fitted counts n̂(x , y) = nP̂(x , y) are the same as the observed counts.

n̂(x , y) y

x 1 2 3 n(x)

1 2 5 3 10
2 10 20 10 40
3 8 35 7 50

n(y) 20 60 20 100
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The Saturated Model and the Curse of Dimensionality

The saturated model estimates cell probabilities by dividing the cell count
by the total number of observations. It makes no simplifying assumptions.
This approach doesn’t scale very well!

Suppose we have k categorical variables with m possible values each.

To estimate the probability of each possible combination of values would
require the estimation of mk probabilities. For k = 10 and m = 5, this is

510 ≈ 10 million probabilities

This is a manifestation of the curse of dimensionality: we have fewer data
points than probabilities to estimate.
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How to avoid this curse

Look for appropriate independence assumptions.

Independence Model

P̂(x , y) = P̂(x)P̂(y) =
n(x)

n

n(y)

n
=

n(x)n(y)

n2

requires the estimation of just 4 probabilities.
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Fit of independence model

The fitted counts of the independence model are given by

n̂(x , y) = nP̂(x , y) =
n(x)n(y)

n

Compare the fitted counts with the observed counts:

n̂(x , y) y

x 1 2 3 n̂(x)

1 2 6 2 10
2 8 24 8 40
3 10 30 10 50

n̂(y) 20 60 20 100

n(x , y) y

x 1 2 3 n(x)

1 2 5 3 10
2 10 20 10 40
3 8 35 7 50

n(y) 20 60 20 100
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Fit of independence model

The fitted counts of the independence model are quite close to the
observed counts.

We could conclude that the independence model gives a satisfactory
fit of the data.

Use a statistical test to make this more precise (discussed later).
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Independence Model

The saturated model requires the estimation of mk − 1 probabilities.

The mutual independence model requires just k(m − 1) probability
estimates.

Mutual independence model is usually not appropriate (all variables
are independent of one another).

Interesting models are somewhere in between saturated and mutual
independence: this requires the notion of conditional independence.
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Rules of Probability

Sum Rule: P(X ) =
∑
Y

P(X ,Y )

Product Rule: P(X ,Y ) = P(Y |X )P(X )
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Independence of random variables/vectors

Let X and Y be random variables, or vectors of random variables.
X and Y are independent iff

P(x , y) = P(x)P(y) for all values (x , y),

As a consequence

P(x | y) = P(x), and P(y | x) = P(y)

Y doesn’t provide any information about X (and vice versa)

We also write X ⊥⊥ Y .

For example: gender is independent of eye color.
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Factorisation criterion for independence

X and Y are independent iff there are functions g(x) and h(y) (not
necessarily the marginal distributions of X and Y ) such that

P(x , y) = g(x)h(y)

In logarithmic form this becomes (since log ab = log a + log b):

logP(x , y) = g∗(x) + h∗(y),

where g∗(x) = log g(x).
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Factorisation criterion for independence: proof

Suppose that for all x and y :

P(x , y) = g(x)h(y)

Then

P(x) =
∑
y

P(x , y) =
∑
y

g(x)h(y) =
∑
y

h(y)g(x) = c1 g(x)

So g(x) is proportional to P(x). Likewise, h(y) is proportional to P(y).
Therefore

P(x , y) = g(x)h(y) =
1

c1
P(x)

1

c2
P(y) = c3P(x)P(y)

Summing over both x and y establishes that c3 = 1, so X and Y are
independent.
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Independence: Example

X \ Y 1 2 3 P(x)

1 0.08 0.1 0.02 0.2
2 0.2 0.25 0.05 0.5
3 0.12 0.15 0.03 0.3

P(y) 0.4 0.5 0.1 1

For example,

PXY (1, 1) = 0.08 = 0.2× 0.4 = PX (1)PY (1)

Also,

PY |X (1|1) =
PXY (1, 1)

PX (1)
=

0.08

0.2
= 0.4 = PY (1)
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Conditional Independence

X and Y are independent given Z iff

P(x , y | z) = P(x | z)P(y | z)

for all values (x , y) and for all values z for which P(z) > 0. Equivalently:

P(x |y , z) = P(x |z)

If I know the value of Z , then Y doesn’t provide any additional
information about X .

We also write X ⊥⊥ Y | Z .
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Conditional Independence

Real life examples of conditional independence?

1 Ice cream sales is independent of beach visit given the weather.

2 Ice cream sales is independent of mortality among elderly given the
weather.
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Conditional Independence: Example

z = 1 1 2 P(x |z = 1)

1 0.18 0.42 0.6
2 0.12 0.28 0.4

P(y |z = 1) 0.3 0.7 1

z = 2 1 2 P(x |z = 2)

1 0.24 0.06 0.3
2 0.56 0.14 0.7

P(y |z = 2) 0.8 0.2 1

For example,

PXY |Z (1, 1 | 1) = 0.18 = 0.6× 0.3

= PX |Z (1 | 1)PY |Z (1 | 1)
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Conditional Independence

An equivalent formulation is

P(x , y , z) =
P(x , z)P(y , z)

P(z)

Factorisation criterion: X ⊥⊥ Y | Z iff there exist functions g and h such
that

P(x , y , z) = g(x , z)h(y , z)

or alternatively
logP(x , y , z) = g∗(x , z) + h∗(y , z)

for all (x , y) and for all z for which P(z) > 0.
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Conditional Independence Graph

Random Vector X = (X1,X2, . . . ,Xk).
Graph G = (K ,E ), with K = {1, 2, . . . , k}.

The conditional independence graph of X is the undirected graph
G = (K ,E ) where {i , j} is not in the edge set E iff

Xi ⊥⊥ Xj |rest
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Conditional Independence Graph: Example

X = (X1,X2,X3,X4), 0 < xi < 1 with probability density

P(x) = ec+x1+x1x2+x2x3x4

Application of the factorisation criterion gives

X1 ⊥⊥ X4|(X2,X3) and X1 ⊥⊥ X3|(X2,X4)

1 2 4

3
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Separation

1 2 3

4 5 6

7

X1 ⊥⊥ X3|(X2,X4,X5,X6,X7)
{2, 5} separates 1 from 3 ⇒ X1 ⊥⊥ X3|(X2,X5)
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Separation

Coordinate projection notation:

Xa = (Xi ; i ∈ a)

where a is a subset of {1, 2, . . . , k}.

The set a separates node i from node j : every path from node i to node j
has to pass through one or more of the nodes in a.

a separates b from c (a, b, c disjoint):

∀i ∈ b ∀j ∈ c : a separates i from j
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Equivalent Markov Properties

1 Pairwise: for all non-adjacent vertices i and j

Xi ⊥⊥ Xj |rest

This is how we created the graph.

2 Global: a separates b from c (a, b, c disjoint)

Xb ⊥⊥ Xc |Xa

3 Local:
Xi ⊥⊥ rest | boundary(i)

If all pairwise independencies corresponding to graph G hold for a given
probability distribution, then all the global independencies corresponding
to G also hold for that distribution (and vice versa).
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A Famous Example

Data on the survival of 715 infants attending two clinics and the amount
of care received by the mother.

Table of counts for clinic, care and survival:

n(clinic, care, survival) survival
clinic care no yes

clinic 1 less 3 176
more 4 293

clinic 2 less 17 197
more 2 23
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A Famous Example

Assume survival and care are independent within both clinics.

This conditional independence assumption corresponds to the following
factorization:

P̂(care, survival|clinic) = P̂(care|clinic)P̂(survival|clinic)

Multiplying left and right by P̂(clinic) we get

P̂(care, survival, clinic) = P̂(care,clinic)P̂(survival|clinic)

=
P̂(care,clinic)P̂(survival,clinic)

P̂(clinic)
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A Famous Example

Writing n̂ for nP̂ we get fitted counts (multiply left and right by n):

n̂(clinic, care, survival) =
n(clinic,care)n(clinic,survival)

n(clinic)

(This will be explained in more detail in the next lecture.)
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Sufficient Statistics

n(clinic, care) care
clinic less more

clinic 1 179 297
clinic 2 214 25

n(clinic, survival) survival
clinic no yes

clinic 1 7 469
clinic 2 19 220
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Fitted Counts and Observed Counts

n̂(clinic, care, survival) survival
clinic care no yes

clinic 1 less 2.63 176.37
more 4.37 292.63

clinic 2 less 17.01 196.99
more 1.99 23.01

n(clinic, care, survival) survival
clinic care no yes

clinic 1 less 3 176
more 4 293

clinic 2 less 17 197
more 2 23

Fitted counts are quite close to observed counts! Hence assuming care and
survival are independent within both clinics seems justified.
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Relation between care and survival

Graph representing conditional independence assumption:

clinic

care

survival
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Relation between care and survival

Summing out clinic gives:

survival
care no yes (%)

less 20 373 5.1
more 6 316 1.9

Infant mortality for mother receiving less care is 5.1%, and for mothers
receiving more care just 1.9%.
Cross-product ratio between care and survival

cpr(care,survival) =
n(less, no)n(more, yes)

n(less, yes)n(more, no)
=

20× 316

373× 6
= 2.82

But we just saw that care and survival are independent in both clinics!
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Relation between care and survival

Collapsing over clinic gives the spurious association

care

survival
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Bernoulli random variable

Let X be a Bernoulli random variable with probability of success p, that is,
P(x = 1) = p and P(x = 0) = 1− p.

We can write the probability density function in a single formula as follows:

P(x) = px(1− p)1−x for x = 0, 1 and 0 ≤ p ≤ 1

Check that indeed P(1) = p and P(0) = 1− p as required.
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2× 2 Table

The density function P12 of bivariate Bernoulli random vector (X1,X2) is
determined by

P(x1, x2) = p(x1, x2)

where p(x1, x2) is the table of probabilities:

p(x1, x2) x2 = 0 x2 = 1 Total

x1 = 0 p(0, 0) p(0, 1) p1(0)
x1 = 1 p(1, 0) p(1, 1) p1(1)
Total p2(0) p2(1) 1
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Density function for 2× 2 Table

Again we can write this as one function:

P(x1, x2) = p(0, 0)(1−x1)(1−x2)p(0, 1)(1−x1)x2p(1, 0)x1(1−x2)p(1, 1)x1x2

Taking logarithms and collecting terms in x1 and x2 gives

logP(x1, x2) = log p(0, 0) + x1 log
p(1, 0)

p(0, 0)
+

x2 log
p(0, 1)

p(0, 0)
+ x1x2 log

p(1, 1)p(0, 0)

p(0, 1)p(1, 0)

Verify this using elementary properties of logarithms:

1 log ab = b log a,

2 log a
b = log a− log b, and

3 log ab = log a + log b.
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Log-linear expansion

Reparameterizing the right hand side leads to the so-called log-linear
expansion

logP(x1, x2) = u∅ + u1x1 + u2x2 + u12x1x2

The coefficients, u∅, u1, u2, u12 are known as the u-terms. For example,
the coefficient of the product x1x2

u12 = log
p(1, 1)p(0, 0)

p(0, 1)p(1, 0)
= log cpr(X1,X2)

is the logarithm of the cross product ratio of X1 and X2.

Ad Feelders ( Universiteit Utrecht ) Data Mining September 26, 2013 37 / 40



Independence and u-terms

Claim:
X1 ⊥⊥ X2 ⇔ u12 = 0

Proof: the factorisation criterion states that X1 ⊥⊥ X2 iff there exist two
functions g and h such that

logP(x1, x2) = g(x1) + h(x2) for all (x1, x2)

If u12 = 0, we get

logP(x1, x2) = u∅ + x1u1 + x2u2,

so
g(x1) = u∅ + x1u1 h(x2) = x2u2

does the trick.
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Three Dimensional Bernoulli

The joint distribution of three binary variables can be written:

P(x1, x2, x3) = p(0, 0, 0)(1−x1)(1−x2)(1−x3) · · · p(1, 1, 1)x1x2x3

Log-linear expansion

logP(x1, x2, x3) = u∅ + u1x1 + u2x2 + u3x3 + u12x1x2 +

u13x1x3 + u23x2x3 + u123x1x2x3

With

u123 = log
p(1, 1, 1)p(1, 0, 0)

p(1, 1, 0)p(1, 0, 1)
· p(0, 1, 0)p(0, 0, 1)

p(0, 0, 0)p(0, 1, 1)

= log
cpr(X2,X3|X1 = 1)

cpr(X2,X3|X1 = 0)
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Independence and the u-terms

Observation:
X2 ⊥⊥ X3|X1 ⇔ u23 = 0 and u123 = 0

Proof: use factorisation criterion.
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