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Bernoulli random variable

A Bernoulli random variable X with probability of success p, has
probability density function

P(x) = px(1− p)1−x for x = 0, 1 and 0 ≤ p ≤ 1

This is a clever way of writing the probability density in one formula; check
that indeed P(1) = p and P(0) = 1− p as required.
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2× 2 Table

The density function P12 of bivariate Bernoulli random vector (X1,X2) is
determined by

P(x1, x2) = p(x1, x2)

where p(x1, x2) is the table of probabilities:

p(x1, x2) x2 = 0 x2 = 1 Total

x1 = 0 p(0, 0) p(0, 1) p1(0)
x1 = 1 p(1, 0) p(1, 1) p1(1)
Total p2(0) p2(1) 1
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Density function for 2× 2 Table

We can write this as one function:

P(x1, x2) = p(0, 0)(1−x1)(1−x2)p(0, 1)(1−x1)x2p(1, 0)x1(1−x2)p(1, 1)x1x2

Taking logarithms and collecting terms in x1 and x2 gives

log P(x1, x2) = log p(0, 0) + x1 log
p(1, 0)

p(0, 0)
+

x2 log
p(0, 1)

p(0, 0)
+ x1x2 log

p(1, 1)p(0, 0)

p(0, 1)p(1, 0)

Verify this using elementary properties of logarithms:

1 log ab = b log a,

2 log a
b = log a− log b, and

3 log ab = log a + log b.
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Log-linear expansion

Re-parameterizing the right hand side leads to the so-called log-linear
expansion

log P(x1, x2) = u∅ + u1x1 + u2x2 + u12x1x2

The coefficients, u∅, u1, u2, u12 are known as the u-terms.

For example, the coefficient of the product x1x2

u12 = log
p(1, 1)p(0, 0)

p(0, 1)p(1, 0)
= log cpr(X1,X2)

is the logarithm of the cross product ratio of X1 and X2.
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Independence and u-terms

Claim:
X1 ⊥⊥ X2 ⇔ u12 = 0

Proof: the factorisation criterion states that X1 ⊥⊥ X2 iff there exist two
functions g and h such that

log P(x1, x2) = g(x1) + h(x2) for all (x1, x2)

If u12 = 0, we get

log P(x1, x2) = u∅ + x1u1 + x2u2,

so
g(x1) = u∅ + x1u1 h(x2) = x2u2

suffices. If u12 6= 0, no such decomposition is possible.
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Three Dimensional Bernoulli

The joint distribution of three binary variables can be written:

P(x1, x2, x3) = p(0, 0, 0)(1−x1)(1−x2)(1−x3) · · · p(1, 1, 1)x1x2x3

Log-linear expansion

log P(x1, x2, x3) = u∅ + u1x1 + u2x2 + u3x3 + u12x1x2 +

u13x1x3 + u23x2x3 + u123x1x2x3

With

u123 = log
p(1, 1, 1)p(1, 0, 0)

p(1, 1, 0)p(1, 0, 1)
· p(0, 1, 0)p(0, 0, 1)

p(0, 0, 0)p(0, 1, 1)

= log
cpr(X2,X3|X1 = 1)

cpr(X2,X3|X1 = 0)
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Independence and the u-terms

Observation:
X2 ⊥⊥ X3|X1 ⇔ u23 = 0 and u123 = 0

Proof: use factorisation criterion.

X2 ⊥⊥ X3|X1 ⇔ there are functions g(x1, x2) and h(x1, x3) such that

log P(x1, x2, x3) = g(x1, x2) + h(x1, x3)

This is only possible when u23 = 0 (so the term x2x3 drops out), and
u123 = 0 (so the term x1x2x3 drops out).
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Log-linear expansion: non-binary variables

For a 2× 2 table the log-linear expansion is given by:

log P(x1, x2) = u∅ + u1x1 + u2x2 + u12x1x2

for x ∈ {0, 1}2.

What if the xi have more than two levels? In that case the u terms
become functions of x rather than constants:

log P(x1, x2) = u∅ + u1(x1) + u2(x2) + u12(x1, x2)
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Log-linear expansion: non-binary variables

Suppose x ∈ {0, 1, 2}. We can write

P(x) = p(1)δx=1p(2)δx=2p(0)(1−δx=1−δx=2),

where δA is the indicator function, that is,

δA =

{
1 if A is true
0 otherwise

Taking logarithms left and right, we get

log P(x) = δx=1 log p(1) + δx=2 log p(2) + (1− δx=1 − δx=2) log p(0)

= δx=1 log p(1) + δx=2 log p(2) + log p(0)− δx=1 log p(0)− δx=2 log p(0)

= log p(0) + log
p(1)

p(0)
δx=1 + log

p(2)

p(0)
δx=2

= u∅ + u(x)
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Log-linear expansion: non-binary variables

Where

u(x) =


log p(1)

p(0) if x = 1

log p(2)
p(0) if x = 2

0 if x = 0

Similar rules apply to the case of multiple non-binary variables.
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Log-linear expansion: general

The log-linear expansion of the probability distribution PK is

log PK (x) =
∑
a⊆K

ua(xa)

where the sum is taken over all possible subsets a of K = {1, 2, . . . , k}.

To avoid getting too many parameters, we set ua(xa) = 0 whenever
xi = 0 and i ∈ a.

This is analogous to the case where x is binary.
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Independence and the u-terms: general

If (Xa,Xb,Xc) is a partitioned random vector (a ∪ b ∪ c = {1, 2, . . . , k})
then Xb ⊥⊥ Xc |Xa if and only if all u-terms in the log-linear expansion with
coordinates in both b and c , are zero.

Example: X = (X1, . . . ,X5), a = {1, 3}, b = {4}, c = {2, 5}, so
Xb ⊥⊥ Xc |Xa means X4 ⊥⊥ (X2,X5)|(X1,X3). This corresponds to setting
u-terms that contain elements from both the sets {4} and {2, 5} to zero.
So set u24, u45, u124, u145, . . . , u12345 to zero.

Otherwise we cannot write

log P(x1, . . . , x5) = g(x1, x3, x4) + h(x1, x2, x3, x5)
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Independence and the u-terms: proof

Let t be an arbitrary subset of a ∪ b ∪ c = {1, 2, . . . , k}.

If all u-terms, ut , are zero whenever t 6⊆ a ∪ b and t 6⊆ a ∪ c
(i.e. whenever t contains coordinates from both b and c)
then we can write

log PK (x) =
∑

t⊆a∪b
ut(xt) +

∑
t⊆a∪c

ut(xt)−
∑
t⊆a

ut(xt)

But this function is of the form g(xa, xb) + h(xa, xc) and hence
Xb ⊥⊥ Xc |Xa by the factorisation criterion.
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Hierarchical Models

In most applications, it does not make sense to include the three-way
association u123 unless the two-way associations u12, u13 and u23 are all
present.

A log-linear model is said to be hierarchical if the presence of a term
implies that all lower-order terms that are contained in it are also present.

Hence, a hierarchical model is identified by listing its highest order
interaction terms.
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Hierarchical Models for three dimensions

Model Omitted Interpretation

123 none saturated
12,13,23 u123 homogeneous association
12,13 u123, u23 X2 ⊥⊥ X3|X1

12,23 u123, u13 X1 ⊥⊥ X3|X2

13,23 u123, u12 X1 ⊥⊥ X2|X3

12,3 u123, u13, u23 (X1,X2) ⊥⊥ X3

13,2 u123, u12, u23 (X1,X3) ⊥⊥ X2

23,1 u123, u12, u13 (X2,X3) ⊥⊥ X1

1,2,3 u123, u12, u13, u23 mutual independence
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Graphical Log-linear Model

Given its independence graph G = (K ,E ), the log-linear model for the
random vector X is a graphical model for X if the distribution of X is
arbitrary apart from constraints of the form that for all pairs of coordinates
not in the edge set E , the u-terms containing the selected coordinates are
equal to zero.

All constraints can be read from the independence graph.

Ad Feelders ( Universiteit Utrecht ) Data Mining October 1, 2013 18 / 65



Hierarchical models and their independence graphs
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12, 13, 23:

not graphical!
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Maximum Likelihood Estimation

ML estimator of graphical log-linear model M returns estimates of the
cell probabilities that maximize the probability of the observed data,
subject to the constraint that the conditional independencies of M are
satisfied by the estimates.

ML estimator of graphical log-linear model M satisfies the likelihood
equations

n̂M
a = NP̂M

a = na

whenever the subset of vertices a in the graph form a clique.
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Maximum Likelihood Estimation

Slogan: Observed = Fitted for every marginal table corresponding to
a complete subgraph.

The same likelihood equations hold for all hierarchical models, where
the margins a correspond to the highest order interaction terms in the
model.
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ML: Determine the cliques
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Ad Feelders ( Universiteit Utrecht ) Data Mining October 1, 2013 22 / 65



ML: Observed=Fitted for margins corresponding to cliques

1

2

3

4

n̂(x1, x2, x3) = n(x1, x2, x3)

n̂(x2, x4) = n(x2, x4)
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ML: Example

P̂(x1, x2, x3, x4) = P̂(x1, x3, x4|x2)P̂(x2) (product rule)

= P̂(x1, x3|x2)P̂(x4|x2)P̂(x2) (X4 ⊥⊥ (X1,X3)|X2)

= P̂(x1, x3|x2)P̂(x2, x4) (product rule)

=
P̂(x1, x2, x3)P̂(x2, x4)

P̂(x2)
(product rule)

In terms of counts we have:

n̂(x1, x2, x3, x4) =
n̂(x1, x2, x3)n̂(x2, x4)

n̂(x2)

=
n(x1, x2, x3)n(x2, x4)

n(x2)
(fitted = observed for complete subgraph)

In this case we have a closed form solution for the maximum likelihood
fitted counts.
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ML Estimation: Example

n123 survival
clinic care no yes

clinic 1 less 3 176
more 4 293

clinic 2 less 17 197
more 2 23

clinic

care

survival
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Sufficient Statistics

n12 care
clinic less more

clinic 1 179 297
clinic 2 214 25

n13 survival
clinic no yes

clinic 1 7 469
clinic 2 19 220
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Fitted values

n̂123(x) =
n12(x1, x2)n13(x1, x3)

n1(x1)

n̂123 survival
clinic care no yes

clinic 1 less 2.63 176.37
more 4.37 292.63

clinic 2 less 17.01 196.99
more 1.99 23.01

Model seems to fit very well!
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Iterative Proportional Fitting (IPF)

IPF is an algorithm to compute the maximum likelihood fitted counts for
hierarchical log-linear models.

Fit independence model to

n(x1, x2) x2 = 0 x2 = 1 n1(x1)

x1 = 0 30 10 40
x1 = 1 30 30 60
n2(x2) 60 40 100

Sufficient statistics are row totals n1(x1) and column totals n2(x2).
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Iterative Proportional Fitting

We begin with a table n̂(0) of uniform counts

0 1
0 1 1 2
1 1 1 2

2 2

First step: fit to row margin

n̂(x1, x2)(1) = n1(x1)× n̂(x1, x2)(0)

n̂1(x1)(0)

We compute (row 1):

n̂(0, 0)(1) = 40× 1

2
= 20 n̂(0, 1)(1) = 40× 1

2
= 20
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Iterative Proportional Fitting

First step continued (row 2):

n̂(1, 0)(1) = 60× 1

2
= 30 n̂(1, 1)(1) = 60× 1

2
= 30

which yields n̂(1):

0 1
0 20 20 40
1 30 30 60

50 50
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Iterative Proportional Fitting

Second step: fit to column margin

n̂(x1, x2)(2) = n2(x2)× n̂(x1, x2)(1)

n̂2(x2)(1)

Which gives (first column):

n̂(0, 0)(2) = 60× 20

50
= 24 n̂(1, 0)(2) = 60× 30

50
= 36

and (second column):

n̂(0, 1)(2) = 40× 20

50
= 16 n̂(1, 1)(2) = 40× 30

50
= 24
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IPF

This yields n̂(2):

0 1
0 24 16 40
1 36 24 60

60 40

Notice that the row totals are still 40 and 60, so we have simultaneously
satisfied the conditions

n̂1(x1) = n1(x1) and n̂2(x2) = n2(x2)

so we have converged.
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IPF: Homogeneous association

Fit the model: 12,13,23

IPF proportionally adjusts the estimated expected frequencies n̂123(x) to
satisfy the constraints

1 n̂12(x1, x2) = n12(x1, x2)

2 n̂13(x1, x3) = n13(x1, x3)

3 n̂23(x2, x3) = n23(x2, x3)
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IPF: One iteration

Fit to 12 margin:

n̂123(x)(t+1) = n12(x1, x2)

(
n̂123(x)(t)

n̂12(x1, x2)(t)

)

Fit to 13 margin:

n̂123(x)(t+2) = n13(x1, x3)

(
n̂123(x)(t+1)

n̂13(x1, x3)(t+1)

)

Fit to 23 margin:

n̂123(x)(t+3) = n23(x2, x3)

(
n̂123(x)(t+2)

n̂23(x2, x3)(t+2)

)

Ad Feelders ( Universiteit Utrecht ) Data Mining October 1, 2013 34 / 65



IPF: General Algorithm Sketch

Say we have m margins {a1, a2, . . . , am} to be fitted (∪iai = K ).

We have to find a table n̂(x) that agrees with the observed table n(x) on
the m margins corresponding to the subsets ai .

The algorithm cycles through the list of subsets

a = ai , i = 1, 2, . . . ,m

fitting n̂(x) to each margin in turn.
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IPF updating rule

For each margin a we apply the IPF updating rule

n̂ab(xa, xb)(t+1) = na(xa)

(
n̂ab(xa, xb)(t)

n̂a(xa)(t)

)

where b is the complement of a, until convergence is reached.

Show that n̂a(xa)(t+1) = na(xa).
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IPF updating rule

To fit to the margin a, the observed count na(xa) on xa is distributed over
n̂ab(xa, xb)(t+1) according to

P̂(xb|xa)(t) =
n̂ab(xa, xb)(t)

n̂a(xa)(t)
,

i.e., the current estimate of P(Xb = xb|Xa = xa).
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IPF updating rule

Proof:

n̂a(xa)(t+1) =
∑
xb

n̂ab(xa, xb)(t+1)

=
∑
xb

(
n̂ab(xa, xb)(t)

n̂a(xa)(t)

)
na(xa)

=
∑
xb

(
n̂ab(xa, xb)(t)∑
xb

n̂ab(xa, xb)(t)

)
na(xa)

= na(xa)
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IPF Pseudocode

Algorithm 1 IPF(n(x), A)

1: t ← 0
2: for all values x of X do

n̂(x)(t) ← 1
3: end for
4: repeat
5: for all margins a ∈ A do
6: for all values xa of Xa do
7: for all values xb of Xb do

n̂ab(xa, xb)(t+1) ← na(xa)
(
n̂ab(xa,xb)

(t)

n̂a(xa)(t)

)
8: end for
9: end for

10: t ← t + 1
11: end for
12: until convergence
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Decomposable Graphical Models

Decomposable models have explicit formulas for the MLE’s.

Decomposable models have triangulated independence graphs, i.e. have no
chordless cycles of length greater than three.

A cycle is chordless if only the successive pairs of vertices in the cycle are
adjacent in the graph (i.e. connected by an edge).
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Example

1 2

34

1 2

34

The left graph is not decomposable because it contains the chordless
4-cycle 1− 2− 3− 4− 1.

The graph on the right is decomposable.
The cycle 1− 2− 3− 4− 1 is no longer chordless because 2 and 4 are
adjacent in the graph but not successive in the cycle.
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Likelihood and log-likelihood

The likelihood of a model M is

LM =
∏
x

P̂M(x)n(x),

where P̂M(x) is the fitted probability of cell x according to model M.

Hence, the likelihood of model M is the probability of the observed data
using the fitted cell probabilities according to model M.

The log-likelihood of a model M is

LM =
∑
x

n(x) log P̂M(x)
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Model Deviance

Since for the saturated model

P̂(x) =
n(x)

N
,

the log-likelihood of the saturated model is

Lsat =
∑
x

n(x) log
n(x)

N

The deviance of a fitted model compares the log-likelihood of the fitted
model to the log-likelihood of the saturated model.

The larger the model deviance, the poorer the fit.
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Example

Suppose we have data

n(x) x2 = 0 x2 = 1

x1 = 0 30 10 40
x1 = 1 30 30 60

60 40 100

The independence model gives probability estimates: P̂(0, 0) = 0.24,
P̂(0, 1) = 0.16, P̂(1, 0) = 0.36, P̂(1, 1) = 0.24.

The probability of the observed data according to this model is

0.2430 × 0.1610 × 0.3630 × 0.2430

This is the likelihood of the model given the data. The log-likelihood is

L = 30 log 0.24 + 10 log 0.16 + 30 log 0.36 + 30 log 0.24 ≈ −134.6
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Example (continued)

Suppose we have data

n(x) x2 = 0 x2 = 1

x1 = 0 30 10 40
x1 = 1 30 30 60

60 40 100

The saturated model gives probability estimates: P̂(0, 0) = 0.3,
P̂(0, 1) = 0.1, P̂(1, 0) = 0.3, P̂(1, 1) = 0.3.

The probability of the observed data according to this model is

0.330 × 0.110 × 0.330 × 0.330

This is the likelihood of the model given the data. The log-likelihood is

L = 30 log 0.3 + 10 log 0.1 + 30 log 0.3 + 30 log 0.3 ≈ −131.4

Of course this is better than the independence model.
Ad Feelders ( Universiteit Utrecht ) Data Mining October 1, 2013 45 / 65



Model Deviance

Deviance of M is 2 (log-likelihood of the saturated model − log-likelihood
of M), i.e.

dev(M) = 2

(∑
x

n(x) log
n(x)

N
−
∑
x

n(x) log P̂M(x)

)

= 2

(∑
x

n(x)

(
log

n(x)

N
− log P̂M(x)

))

= 2
∑
x

n(x) log
n(x)

NP̂M(x)

which can be summarised by the slogan

2
∑
cells

observed× log
observed

fitted
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Deviance difference

Let M0 ⊆ M1, that is M0 is the simpler model (the u-terms present in M0

are a subset of the u-terms present in M1).

The deviance difference between M0 and M1 is

dev(M0)− dev(M1) = −2LM0 + 2LM1 = 2(LM1 − LM0)

For large N
2(LM1 − LM0) ≈M0 χ

2
ν

ν: number of additional restrictions (zero u-terms) of M0 compared to M1.
(ν is called the degrees of freedom)
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Likelihood Ratio Test

We reject the null hypothesis that M0 is the true model when

2(LM1 − LM0) > χ2
ν;α,

where α is the significance level of the test.

The test is called a likelihood ratio test because we are looking at logs, and

log
LM1

LM0
= log LM1 − log LM0 = LM1 − LM0
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Model Testing: example

Does
survival ⊥⊥ care|clinic

give a good fit of the observed table? Test against the saturated model.

Compute the deviance

2
∑
cells

observed× log
observed

fitted
≈ 0.082

χ2
2;0.05 ≈ 6

So we “accept” the model.
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Fitted Counts and Observed Counts

n̂(clinic, care, survival) survival
clinic care no yes

clinic 1 less 2.63 176.37
more 4.37 292.63

clinic 2 less 17.01 196.99
more 1.99 23.01

n(clinic, care, survival) survival
clinic care no yes

clinic 1 less 3 176
more 4 293

clinic 2 less 17 197
more 2 23
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Test of survival ⊥⊥ care|clinic; χ2
2 distribution.
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Model Testing: example

Does the mutual independence model give a good fit of the observed
table? Test against the saturated model.

Compute the deviance

2
∑
cells

observed× log
observed

fitted
≈ 211

χ2
4;0.05 ≈ 9.5

So we reject the mutual independence model.
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Test of Independence Model; χ2
4 distribution.
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Fitting Hierarchical Loglinear Models in R

Here’s the clinic example in R:

> a <- array(c(3,17,4,2,176,197,293,23),dim=c(2,2,2),

dimnames=list(c("clinic 1","clinic 2"),

c("less","more"),c("no","yes")))

> a <- as.table(a)

> names(dimnames(a)) <- c("clinic","care","survival")

> a

, , survival = no

care

clinic less more

clinic 1 3 4

clinic 2 17 2

, , survival = yes

care

clinic less more

clinic 1 176 293

clinic 2 197 23
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Fitting a model

> model.1 <- loglin(a,margin=list(c("clinic","care"),c("clinic","survival")),fit=TRUE)

> model.1

$lrt

[1] 0.08228918

$df

[1] 2

$fit

, , survival = no

care

clinic less more

clinic 1 2.632353 4.367647

clinic 2 17.012552 1.987448

, , survival = yes

care

clinic less more

clinic 1 176.367647 292.632353

clinic 2 196.987448 23.012552
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Model Selection

The Problem: find a good model for a high-dimensional table when little
prior knowledge is available.

Solution: Search the space of possible models.
Two approaches:

Use significance testing

Use a quality function
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Quality Function: Akaike’s Information Criterion

Akaike’s Information Criterion assigns quality AIC(M) to model M as
follows

AIC(M) = dev(M) + 2dim(M)

where dim(M) is the number of parameters of the model.

Two components:

the lack-of-fit of the model

complexity of the model
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Search

Exhaustive search is usually not feasible. A straightforward approach is hill
climbing:

1 pick some initial model

2 consider the quality of all neighbors of the current model

3 if they all have lower quality, stop and return the current model.

4 otherwise move to the neighbor with highest quality and return to 2.
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Example: Hierarchical Models

1 pick a hierarchical model, e.g. the loglinear model containing just the
constant term.

2 neighbors

add a term whose lower order terms are all present
delete a term whose higher order terms are all absent

3 if all neighbors have higher AIC, stop and return the current model.

4 otherwise move to the neighbor with lowest AIC and return to 2.
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Fitting an initial model

loglm calls loglin, just syntactic sugar

> library(MASS)

> m.init <- loglm( ~ clinic + care + survival,data=a)

> m.init

Call:

loglm(formula = ~clinic + care + survival, data = a)

Statistics:

X^2 df P(> X^2)

Likelihood Ratio 211.4820 4 0

Pearson 199.6457 4 0

Ad Feelders ( Universiteit Utrecht ) Data Mining October 1, 2013 60 / 65



Hill climbing with stepAIC

Scope now specifies the upperbound of the search space, that is, the most complex
model considered. Here we specified the saturated model.

> model.step <- stepAIC(m.init,scope= ~ clinic*care*survival)

Start: AIC=219.48

~clinic + care + survival

Df AIC

+ clinic:care 1 27.83

+ clinic:survival 1 203.74

+ care:survival 1 215.87

<none> 219.48

- care 1 224.54

- clinic 1 297.55

- survival 1 985.30

Step: AIC=27.83

~clinic + care + survival + clinic:care
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Hill climbing with stepAIC (continued)

Step: AIC=27.83

~clinic + care + survival + clinic:care

Df AIC

+ clinic:survival 1 12.08

+ care:survival 1 24.22

<none> 27.83

- clinic:care 1 219.48

- survival 1 793.65

Step: AIC=12.08

~clinic + care + survival + clinic:care + clinic:survival

Df AIC

<none> 12.082

+ care:survival 1 14.043

- clinic:survival 1 27.828

- clinic:care 1 203.736
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Hill climbing with stepAIC

The anova component of the call to stepAIC summarizes the search process:

> model.step$anova

Stepwise Model Path

Analysis of Deviance Table

Initial Model:

~clinic + care + survival

Final Model:

~clinic + care + survival + clinic:care + clinic:survival

Step Df Deviance Resid. Df Resid. Dev AIC

1 4 211.48204459 219.48204

2 + clinic:care 1 193.65365 3 17.82839924 27.82840

3 + clinic:survival 1 17.74611 2 0.08228918 12.08229
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Decomposable Graphical Models

1 pick an initial model, e.g. the empty graph
2 neighbors

add an edge that does not create a chordless cycle of length > 3.
delete an edge without creating a chordless cycle of length > 3.

3 if all neighbors have higher AIC, stop and return the current model.

4 otherwise move to the neighbor with lowest AIC and return to 2.
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