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Bernoulli random variable

A Bernoulli random variable X with probability of success p, has
probability density function

P(x)=p*(1—p)!™ forx=0,1and0<p<1

This is a clever way of writing the probability density in one formula; check
that indeed P(1) = p and P(0) =1 — p as required.

Ad Feelders ( Universiteit Utrecht ) Data Mining October 1, 2013 3/65



]
2 x 2 Table

The density function Pj» of bivariate Bernoulli random vector (X1, X3) is
determined by

P(x1,x2) = p(x1,x)

where p(x1, x2) is the table of probabilities:

p(x1, x2) =0 x=1 Total
X1 = p(0,0) p(0,1) pi(0)
x1=1 p(1,0) p(1,1) pi(1)
Total  p2(0)  p2(1) 1
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Density function for 2 x 2 Table

We can write this as one function:
P(X]_, X2) — p(O, 0)(1_X1)(1_X2)p(0, 1)(1—X1)X2p(1’ O)Xl(l_x2)p(]_, 1)X1X2
Taking logarithms and collecting terms in x; and x» gives

p(1,0)
log P(x1,x2) = logp(0,0)+ x1lo
g P(x1, x2) gp(0,0) + x1 € 5(0,0)

p(0,1)
p(0,0)

Verify this using elementary properties of logarithms:
@ loga® = bloga,

_|_

P(L 1)P(07 O)
21086 1)p(1,0)

xo log

Q log ; = loga — log b, and
© logab = loga + log b.
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Log-linear expansion

Re-parameterizing the right hand side leads to the so-called log-linear
expansion

log P(x1,x2) = ug + u1x1 + Upxo + U12X1x2

The coefficients, uy, u1, Uz, u12 are known as the u-terms.

For example, the coefficient of the product x;x»

p(1,1)p(0,0)
p(0,1)p(1,0)

is the logarithm of the cross product ratio of X and Xs.

uy2 = log = log cpr(X1, X2)
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Independence and u-terms

Claim:
X1 A Xg < U1p = 0

Proof: the factorisation criterion states that Xj; 1L X5 iff there exist two
functions g and h such that

log P(x1,x2) = g(x1) + h(x2) for all (x1,x2)
If u3p =0, we get

log P(x1,Xx2) = up + x1u1 + xau2,

so
g(x1) = up + x1u h(x2) = xpun

suffices. If u1o # 0, no such decomposition is possible.
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Three Dimensional Bernoulli

The joint distribution of three binary variables can be written:
P(x1, X2, x3) = p(0,0,0)1 )I=)=0) . p(1 1, 1)

Log-linear expansion

log P(x1,X2,x3) = up+ uixy + toxo + uzx3 + u1axyxo +
U13X1X3 + U23X2X3 + U123X1X2X3
With

von —  log P(:1,1)p(1,0,0) p(0,1,0)p(0,0,1)
T T p(1,1,00p(1,0,1)  p(0,0,0)p(0,1,1)
o cpr(X2, X3| X1 = 1)

Cpr(X27 X3|Xl = O)
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Independence and the u-terms

Observation:
Xo AL X3’X1 < Up3z = 0 and uio3 = 0

Proof: use factorisation criterion.

Xo 1l X3| Xy < there are functions g(x1,x2) and h(xi, x3) such that
log P(x1,x2,x3) = g(x1,x2) + h(x1, x3)

This is only possible when wup3 = 0 (so the term x2x3 drops out), and
u123 = 0 (so the term xjx2x3 drops out).
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-
Log-linear expansion: non-binary variables

For a 2 x 2 table the log-linear expansion is given by:
log P(x1,Xx2) = ug + u1xy + uaxp + U12x1X2
for x € {0,1}2.

What if the x; have more than two levels? In that case the u terms
become functions of x rather than constants:

log P(x1,x2) = ug + u1(x1) + u2(x2) + u12(x1, x2)
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Log-linear expansion: non-binary variables
Suppose x € {0,1,2}. We can write

P(x) = p(1)p(2)’=2p(0)(F 1 0-2),

where 4 is the indicator function, that is,

P 1 if Alis true
A7 0 otherwise

Taking logarithms left and right, we get

log P(x) = dx=1log p(1) + dx=2 log p(2) + (1 — dx=1 — dx=2) log p(0)
= dx=1log p(1) + dx=2 log p(2) + log p(0) — dx=1log p(0) — dx=2 log p(0)
(1), P(2) 5

= log p(0) + log == »(0) p(O) Ox=2

x 1+|

= uy + u(x)
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Log-linear expansion: non-binary variables

Where
log Zgéi if x=1
u(x) =9 log g(g) if x=2
0 ifx=0

Similar rules apply to the case of multiple non-binary variables.
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-
Log-linear expansion: general

The log-linear expansion of the probability distribution Py is

log Pk (x) = Z Ua(xa)

aCK

where the sum is taken over all possible subsets a of K = {1,2,..., k}.

e To avoid getting too many parameters, we set uy(x;) = 0 whenever
xi=0and i€ a.

@ This is analogous to the case where x is binary.
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Independence and the u-terms: general

If (X5, Xp, Xc) is a partitioned random vector (aUbUc ={1,2,...,k})
then Xp 1L Xc|X, if and only if all u-terms in the log-linear expansion with
coordinates in both b and ¢, are zero.

Example: X = (Xi,...,X5), a={1,3},b= {4}, c ={2,5}, so

Xp 1L Xc|Xa means Xy 1L (X2, X5)|(X1, X3). This corresponds to setting
u-terms that contain elements from both the sets {4} and {2,5} to zero.
So set U4, Uss, U124, U145, . . ., U12345 tO zero.

Otherwise we cannot write

log P(x1,...,x5) = g(x1,Xx3,%s) + h(x1, X2, X3, X5)
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R —
Independence and the u-terms: proof

Let t be an arbitrary subset of aUbU c ={1,2,..., k}.

If all u-terms, uy, are zero whenever t Z aUband t £ aUc
(i.e. whenever t contains coordinates from both b and c)
then we can write

log Pk (x) = Z ue(xe) + Z ue(xe) — Z ue(xe)

tCaUb tCaUc tCa

But this function is of the form g(xa, xp) + h(xa, xc) and hence
Xp 1L Xc| X5 by the factorisation criterion.

Ad Feelders ( Universiteit Utrecht ) Data Mining October 1, 2013 15 / 65



]
Hierarchical Models

In most applications, it does not make sense to include the three-way
association wujp3 unless the two-way associations uyp, uiz and up3 are all
present.

A log-linear model is said to be hierarchical if the presence of a term
implies that all lower-order terms that are contained in it are also present.

Hence, a hierarchical model is identified by listing its highest order
interaction terms.
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R —
Hierarchical Models for three dimensions

Model Omitted Interpretation

123 none saturated

12,13,23  uq23 homogeneous association
12,13 ui23, U23 X2 aiR X3|X1

12,23 U123, U13 X1 1L X3| Xz

13,23 ui23, U12 Xl AL X2|X3

12,3 U123, U13, U23 (X1, X2) 1L X3

13,2 U123, U12, U23 (X1, X3) 1L X

23,1 U123, U12, U13 (X2, X3) 1L X4

1,2,3 U123, U12, U13, Up3  mutual independence
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-
Graphical Log-linear Model

Given its independence graph G = (K, E), the log-linear model for the
random vector X is a graphical model for X if the distribution of X is
arbitrary apart from constraints of the form that for all pairs of coordinates

not in the edge set E, the u-terms containing the selected coordinates are
equal to zero.

All constraints can be read from the independence graph.
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R —
Hierarchical models and their independence graphs

123: saturated z[ 12,13

12,3 12,13, 23:
@/@ not graphical!
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]
Maximum Likelihood Estimation

@ ML estimator of graphical log-linear model M returns estimates of the
cell probabilities that maximize the probability of the observed data,
subject to the constraint that the conditional independencies of M are
satisfied by the estimates.

@ ML estimator of graphical log-linear model M satisfies the likelihood
equations

aM = NPM = p,

whenever the subset of vertices a in the graph form a clique.
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]
Maximum Likelihood Estimation

@ Slogan: Observed = Fitted for every marginal table corresponding to
a complete subgraph.

@ The same likelihood equations hold for all hierarchical models, where
the margins a correspond to the highest order interaction terms in the
model.
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R —
ML: Determine the cliques
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ML: Observed=Fitted for margins corresponding to cliques

i(x1, x2, x3) = n(x1, x2, x3)

f(x2,xa) = n(x2, xa)
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R —
ML: Example

P(x1, %2, x3, x3) = P(x1, X3, xa|x2) P(x2) (product rule)
= P(x1, x3|x2) P(xalx2) P(x2) (Xa 1L (X1, X3)|X2)
= P(x1, x3]x2) P(x2, xa) (product rule)
= P(X17X21X3)P(X27X4) (product rule)

P(x2)

In terms of counts we have:

f(x1, x2, x3)A(x2, Xa)
f?(Xz)
= n(Xl’Xz;:((i);(Xz’ x) (fitted = observed for complete subgraph)
2

A(x1, X2, X3, Xa) =

In this case we have a closed form solution for the maximum likelihood
fitted counts.
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R —
ML Estimation: Example

nio3 survival
clinic care  no yes
clinicl less 3 176

more 4 293

clinic 2 less 17 197
more 2 23

carc

clinic

survival
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Sufficient Statistics

Ad Feelders

( Universiteit Utrecht )

nio care
clinic less more
clinicl 179 297

clinic2 214 25

ni3 survival
clinic no yes
clinic 1 7 469
clinic2 19 220
Data Mining October 1, 2013
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R —
Fitted values

I712(X1, Xz)n13(X17 X3)

fo3(x) =

nm (Xl)
N123 survival
clinic care no yes

clinic1 less 2.63 176.37
more  4.37 292.63
clinic 2 less 17.01 196.99
more  1.99  23.01

Model seems to fit very well!
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o
lterative Proportional Fitting (IPF)

IPF is an algorithm to compute the maximum likelihood fitted counts for
hierarchical log-linear models.

Fit independence model to

n(x1, x2) xx=0 xx=1 ni(x)
x1=0 30 10 40
x1=1 30 30 60
nz(XQ) 60 40 100

Sufficient statistics are row totals ni(x1) and column totals ny(x2).
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Iterative Proportional Fitting

We begin with a table (%) of uniform counts

o
N = =[O
N[ = ==
N

First step: fit to row margin

ﬁ(Xl , X2 ) (0)

A (1) —
n(Xl,XQ) = n1(x1) X ﬁl(xl)(o)

We compute (row 1):

1 1
n(0,0)®) = 40 x 5 =20 7(0,1)®) = 40 x 5 =20
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-
Iterative Proportional Fitting

First step continued (row 2):

1
hﬂmﬂ”:60x§:30

which yields A(1):

Ad Feelders

( Universiteit Utrecht )

1
ﬁ@ﬂﬂ”:60x§:30

0 1

20 20 | 40
30 30|60
50 50
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Iterative Proportional Fitting

Second step: fit to column margin

f'l(X]_,Xz)(2) = n2(x2) X

Which gives (first column):
20 30
0 @ = — = f @ = = =
n(0,0) 60 x = 24 n(1,0) 60 x e 36
and (second column):
20 30
2 — () — e
A0.1)® =40 x =5 =16 AL 1)® =40 x 5 =24
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IPF

This yields 7(2):

0 1
024 16|40
1136 24|60

60 40

Notice that the row totals are still 40 and 60, so we have simultaneously
satisfied the conditions

ﬁl(Xl) = n1(x1) and ﬁz(XQ) = n2(x2)

so we have converged.
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IPF: Homogeneous association

Fit the model: 12,13,23

IPF proportionally adjusts the estimated expected frequencies fij23(x) to
satisfy the constraints

Q (X1, x2) = ni2(x1, x2)
Q M13(x1,x3) = ma(x1,x3)

Q M3(x2,x3) = no3(x2, x3)
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R —
IPF: One iteration

Fit to 12 margin:

A1a(x1, x2) ()

A (t)
123 ()Y = npa(x1, x2) (Imb())

Fit to 13 margin:

A (t+1)
P23 (%)) = my3(x1, x3) <A123(X)>

Pz (x, x3)(tF)

Fit to 23 margin:

A A x (t+2)
,,123(X)(t+3) = np3(x2, x3) <123()

fioz(x2, x3)(t+2)
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-
IPF: General Algorithm Sketch

Say we have m margins {a1, a,...,am} to be fitted (U;a; = K).

We have to find a table 7i(x) that agrees with the observed table n(x) on
the m margins corresponding to the subsets a;.

The algorithm cycles through the list of subsets
a=aj, i=12,....m

fitting N(x) to each margin in turn.

Ad Feelders ( Universiteit Utrecht ) Data Mining October 1, 2013 35/ 65



-
IPF updating rule

For each margin a we apply the IPF updating rule

o +1) ﬁab(xanxb)(t)
nab(xa,xb)(t ) = na(Xa) (ﬁa(Xa)(t)

where b is the complement of a, until convergence is reached.

Show that fiz(x,)(t+1) = ny(xa).
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IPF updating rule

To fit to the margin a, the observed count n,(x,) on xj is distributed over
frab(Xa, xp) (1) according to

A (1)
fo (1) _ Pab(Xa, Xp)
Plebe) = = )@

i.e., the current estimate of P(Xp = xp| X5 = xa).

Ad Feelders ( Universiteit Utrecht ) Data Mining October 1, 2013 37 / 65



-
IPF updating rule

Proof:

Ad Feelders

ﬁa(xa)(t+1)

( Universiteit Utrecht )

Z ﬁab(Xaa Xb)(t+1)
Xb

Prab(Xa, Xp) ()
> (")

Xb

na(xa)

Z Aab(Xa, xp) (1)
=\ 2ox, Nab(Xa; Xb)
na(xs)

Data Mining

(t)) nalxa)

October 1, 2013

38 / 65



]
IPF Pseudocode

Algorithm 1 IPF(n(x), A)
1. t+0
2: for all values x of X do
Ax)® 1

3: end for

4: repeat

5. for all margins a € A do

6: for all values x; of X, do

7: for all values x;, of X, do
Pab(xa, X5) ) <= n,(x,) (%ﬁgm)

8: end for

9: end for

10: t—t+1

11:  end for
12: until convergence
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R —
Decomposable Graphical Models

Decomposable models have explicit formulas for the MLE's.

Decomposable models have triangulated independence graphs, i.e. have no
chordless cycles of length greater than three.

A cycle is chordless if only the successive pairs of vertices in the cycle are
adjacent in the graph (i.e. connected by an edge).
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Example

@ The left graph is not decomposable because it contains the chordless
4-cyclel —2—-3—-4—1.
@ The graph on the right is decomposable.

The cycle 1 —2 —3 —4 — 1 is no longer chordless because 2 and 4 are
adjacent in the graph but not successive in the cycle.
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-
Likelihood and log-likelihood

The likelihood of a model M is

LM _ H :bM(X)n(X),

X

where PM(x) is the fitted probability of cell x according to model M.

Hence, the likelihood of model M is the probability of the observed data
using the fitted cell probabilities according to model M.

The log-likelihood of a model M is

LM =" n(x)log PM(x)

X
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Model Deviance

Since for the saturated model

the log-likelihood of the saturated model is

£t — Z n(x) log nEVX)

The deviance of a fitted model compares the log-likelihood of the fitted

model to the log-likelihood of the saturated model.

The larger the model deviance, the poorer the fit.
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R —
Example

Suppose we have data

nx) [ xx=0 x=1
x1=0 30 10 | 40
x1 =1 30 30| 60
60 40 | 100

The independence model gives probability estimates: P(0,0) = 0.24,
P(0,1) = 0.16, P(1,0) = 0.36, P(1,1) = 0.24.

The probability of the observed data according to this model is
0.24%% x 0.16'° x 0.36>° x 0.24°°
This is the likelihood of the model given the data. The log-likelihood is

£ =30log0.24 + 10log 0.16 + 30 log 0.36 + 30 log 0.24 ~ —134.6
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Example (continued)

Suppose we have data

nx)| xx=0 x=1
x1 =0 30 10 | 40
x3 =1 30 30| 60
60 40 | 100

The saturated rAnodeI gives proAbability estimates: ﬁ’(O, 0) =0.3,
P(0,1) =0.1, P(1,0) = 0.3, P(1,1) =0.3.
The probability of the observed data according to this model is
0.3% x 0.1'% x 0.3% x 0.3%°
This is the likelihood of the model given the data. The log-likelihood is
L =301log0.3+10log0.1 4 30log0.3 + 30log 0.3 ~ —131.4

Of course this is better than the independence model.
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]
Model Deviance

Deviance of M is 2 (log-likelihood of the saturated model — log-likelihood
of M), i.e.

dev(M) = 2(2 n(x) log —2 (X) Zn(x)logﬁM(x)>

X X

- 2 (Z n(x) <Iog "SVX) — log ﬁM(X)))

! n(x)
= 2 Z x) log W(x)

which can be summarised by the slogan

observed

2 Z observed x log fitted

cells
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Deviance difference

Let My C M, that is My is the simpler model (the u-terms present in My
are a subset of the u-terms present in My).

The deviance difference between Mg and Mj is
dev(Mp) — dev(My) = —2£Mo - 2£M — (LM — £Mo)

For large N
2(£Ml - ﬁMO) ~ Mo XE

v: number of additional restrictions (zero u-terms) of My compared to Mj.
(v is called the degrees of freedom)
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]
Likelihood Ratio Test

We reject the null hypothesis that My is the true model when
2(LM — LMoy > 2.,
where « is the significance level of the test.

The test is called a likelihood ratio test because we are looking at logs, and

My

log T = log LM — log LMo = M _ Mo
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Model Testing: example

Does
survival 1L care|clinic

give a good fit of the observed table? Test against the saturated model.

Compute the deviance

observed
2 b d X log —— ~ 0.082
Z observed x log ftted
cells
X%;o.os ~ 6

So we “accept” the model.
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]
Fitted Counts and Observed Counts

Ad Feelders

f(clinic, care, survival) survival
clinic care no yes
clinic 1 less 263 176.37
more  4.37 292.63
clinic 2 less 17.01 196.99
more 1.99 23.01
n(clinic, care, survival) survival
clinic care  no yes
clinic 1 less 3 176
more 4 293
clinic 2 less 17 197
more 2 23

( Universiteit Utrecht )
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|
Test of survival 1L care|clinic; X% distribution.

L
o

0.4

0.3
|

0.2

0.1

area=0.05

deviance
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Model Testing: example

Does the mutual independence model give a good fit of the observed
table? Test against the saturated model.

Compute the deviance

observed

2 Z observed x log frted 211
itte

cells

2 ~
X2:0.05 ~ 9.5

So we reject the mutual independence model.
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|
Test of Independence Model; Xﬁ distribution.

[Te)
-
S
o
—
=}
[Te)
o
S
area=0.05
o
O_ —
e T T T T T
0 5 10 15 20
deviance
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-
Fitting Hierarchical Loglinear Models in R

Here's the clinic example in R:

> a <- array(c(3,17,4,2,176,197,293,23) ,din=c(2,2,2),
dimnames=1list(c("clinic 1","clinic 2"),
C("leSS","mOre"),C("no","yes")))

> a <- as.table(a)
> names (dimnames(a)) <- c("clinic","care","survival")

> a
, , survival = no

care
clinic less more
clinic 1 3 4
clinic 2 17 2

, , survival = yes

care
clinic less more
clinic 1 176 293
clinic 2 197 23
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-
Fitting a model

> model.1l <- loglin(a,margin=list(c("clinic","care"),c("clinic","survival")),fit=TRUE)
> model.1

$1lrt

[1] 0.08228918

$df
[1] 2

$fit
, , survival = no

care

clinic less more
clinic 1 2.632353  4.367647
clinic 2 17.012552 1.987448

, , survival = yes
care
clinic less more
clinic 1 176.367647 292.632353
clinic 2 196.987448 23.012552
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]
Model Selection

The Problem: find a good model for a high-dimensional table when little
prior knowledge is available.

Solution: Search the space of possible models.
Two approaches:

@ Use significance testing

@ Use a quality function
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Quality Function: Akaike's Information Criterion

Akaike's Information Criterion assigns quality AIC(M) to model M as
follows

AIC(M) = dev(M) + 2dim(M)

where dim(M) is the number of parameters of the model.

Two components:
@ the lack-of-fit of the model

@ complexity of the model
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]
Search

Exhaustive search is usually not feasible. A straightforward approach is hill
climbing:

@ pick some initial model

@ consider the quality of all neighbors of the current model

© if they all have lower quality, stop and return the current model.

@ otherwise move to the neighbor with highest quality and return to 2.
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Example: Hierarchical Models

© pick a hierarchical model, e.g. the loglinear model containing just the
constant term.
@ neighbors

o add a term whose lower order terms are all present
o delete a term whose higher order terms are all absent

@ if all neighbors have higher AIC, stop and return the current model.

@ otherwise move to the neighbor with lowest AIC and return to 2.
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Fitting an initial model
loglm calls loglin, just syntactic sugar

> library(MASS)
> m.init <- loglm( ~ clinic + care + survival,data=a)
> m.init

Call:
loglm(formula = “clinic + care + survival, data = a)
Statistics:
X"2 df P(> X72)
Likelihood Ratio 211.4820 4 0
Pearson 199.6457 4 0
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Hill climbing with stepAlC

Scope now specifies the upperbound of the search space, that is, the most complex
model considered. Here we specified the saturated model.

> model.step <- stepAIC(m.init,scope= ~ clinic*care*survival)
Start: AIC=219.48
“clinic + care + survival

Df AIC
+ clinic:care 1 27.83
+ clinic:survival 1 203.74
+ care:survival 1 215.87
<none> 219.48
- care 1 224.54
- clinic 1 297.55
- survival 1 985.30

Step: AIC=27.83
“clinic + care + survival + clinic:care

Ad Feelders ( Universiteit Utrecht ) Data Mining October 1, 2013 61 / 65



o
Hill climbing with stepAIC (continued)

Step: AIC=27.83
“clinic + care + survival + clinic:care

Df AIC
+ clinic:survival 1 12.08
+ care:survival 1 24.22
<none> 27.83
- clinic:care 1 219.48
- survival 1 793.65

Step: AIC=12.08
“clinic + care + survival + clinic:care + clinic:survival

Df AIC
<none> 12.082
+ care:survival 1 14.043
- clinic:survival 1 27.828
- clinic:care 1 203.736
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-
Hill climbing with stepAlC

The anova component of the call to stepAIC summarizes the search process:

> model.step$anova
Stepwise Model Path
Analysis of Deviance Table

Initial Model:
“clinic + care + survival

Final Model:
“clinic + care + survival + clinic:care + clinic:survival

Step Df Deviance Resid. Df Resid. Dev AIC
1 4 211.48204459 219.48204
2 + clinic:care 1 193.65365 3 17.82839924 27.82840
3 + clinic:survival 1 17.74611 2 0.08228918 12.08229
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Decomposable Graphical Models

@ pick an initial model, e.g. the empty graph
@ neighbors

e add an edge that does not create a chordless cycle of length > 3.
o delete an edge without creating a chordless cycle of length > 3.

© if all neighbors have higher AIC, stop and return the current model.

@ otherwise move to the neighbor with lowest AIC and return to 2.
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