
Data Mining 2013
Frequent Pattern Mining (1)

Ad Feelders

Universiteit Utrecht

October 8, 2013

Ad Feelders ( Universiteit Utrecht ) Data Mining October 8, 2013 1 / 53



Association Rules

Table db with schema R = {I1, . . . , In}, Ii is a binary attribute (item).
For X ,Y ⊆ R, with X ∩ Y = ∅, let:

s(X ) denote the support of X , i.e., the number of tuples that have
value 1 for all items in X .

for an association rule X → Y , define

the support is s(X ∪ Y )
the confidence is s(X ∪ Y )/s(X )

Find all association rules with support ≥ t1 and confidence ≥ t2.
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Association Rule Algorithm: sketch

There are two thresholds we have to satisfy:

1 Find all sets Z whose support exceeds the minimal threshold. These
sets are called frequent.

2 Test for all non-empty subsets X of frequent sets Z whether the rule
X → Y (with Y = Z \ X ) holds with sufficient confidence.
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Finding Frequent Sets

The first problem is then: how do we find the frequent sets?

Suppose we simply check all subsets of R. Then we would have to count

|P(R)| = 2|R|

subsets on the data base.

For example, if we can check 1024 sets/sec. then:

For 10 items, we are done in 1 second;

For 20 items, we need 1024 seconds, or 17 minutes;

For 100 items, we need (roughly) 4× 1018 years, which (far) exceeds
the age of the universe!
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The Apriori Property

Theorem
X is frequent ⇒ ∀Y ⊆ X : Y is frequent.

Proof
Y ⊆ X ⇒ s(Y ) ≥ s(X )

In other words, we can search levelwise for the frequent sets. The level is
the number of items in the set:

A set X is a candidate frequent set iff all its subsets are
frequent.

Denote by C (i) the sets of i items that are potentially frequent (the
candidate sets) and by F (i) the frequent sets of i items.
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Levelwise Search

Find frequent sets
C (1) := R
i := 1
While C (i) 6= ∅ do

F (i) := ∅
For each X ∈ C (i) do

If s(X ) ≥ t1 then F (i) := F (i) ∪ {X}
i := i + 1
C (i) := ∅
For each X ∈ F (i − 1) do

For each Y ∈ F (i − 1) that shares

all but one︷︸︸︷
i − 2 items with X do

If All Z ⊂ X ∪ Y of i − 1 items are frequent then
C (i) := C (i) ∪ {X ∪ Y }
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Example: the data

tid Items

1 ABE
2 BD
3 BC
4 ABD
5 AC
6 BC
7 AC
8 ABCE
9 ABC

Minimum support = 2
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Example: Level 1

tid Items

1 ABE
2 BD
3 BC
4 ABD
5 AC
6 BC
7 AC
8 ABCE
9 ABC

Candidate Support Frequent?

A 6 Yes
B 7 Yes
C 6 Yes
D 2 Yes
E 2 Yes
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Example: Level 2

tid Items

1 ABE
2 BD
3 BC
4 ABD
5 AC
6 BC
7 AC
8 ABCE
9 ABC

Candidate Support Frequent?

AB 4 Yes
AC 4 Yes
AD 1 No
AE 2 Yes
BC 4 Yes
BD 2 Yes
BE 2 Yes
CD 0 No
CE 1 No
DE 0 No

Ad Feelders ( Universiteit Utrecht ) Data Mining October 8, 2013 9 / 53



Example: Level 3

tid Items

1 ABE
2 BD
3 BC
4 ABD
5 AC
6 BC
7 AC
8 ABCE
9 ABC

Candidate Support Frequent?

ABC 2 Yes
ABE 2 Yes

Level 4: BCE is not frequent, so we don’t have to check ABCE.
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Order, order

The algorithm fragment:

For each X ∈ F (i − 1) do

For each Y ∈ F (i − 1) that shares

all but one︷︸︸︷
i − 2 items with X do

could lead to multiple generations of the set X ∪ Y .

For example, the candidate ABC is generated 3 times

1 by combining AB with AC

2 by combining AB with BC

3 by combining AC with BC
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Order, order

The solution is to place an order on the items.

For each X ∈ F (i − 1) do

For each Y ∈ F (i − 1) that shares

all but the last one︷ ︸︸ ︷
the first i − 2 items with X do

Now the candidate ABC is generated just once, by combining AB with AC.

The order itself is arbitrary, as long as it is applied consistently.
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The search space

A

AB

ABC

ABCD

ABCDE

ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCE ABDE ACDE BCDE

AC AD AE BC BD BE CD CE DE

B C D E
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Item sets counted by Apriori

A

AB

ABC

ABCD

ABCDE

ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCE ABDE ACDE BCDE

AC AD AE BC BD BE CD CE DE

B C D E
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The Complexity of Levelwise Search

We rejected the naive algorithm because its complexity was O(2|R|). So,
what is the complexity of level wise search?

Take a database with just 1 tuple consisting completely of 1’s and set
minimum support to 1. Then, all subsets of R are frequent! Hence, the
worst case complexity of level wise search is O(2|R|) !

However, if we assume that db is sparse (by far the most values are 0),
then we expect that the frequent sets have a maximal size k with k << |R|

If that expectation is met, we have a worst case complexity of:

O

 k∑
j=1

(
|R|
j

) = O(|R|k) << O(2|R|)
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Generating Association Rules

Generating association rules from the frequent sets is done as follows:

Generate Association Rules
For each frequent set Z do

For all non-empty X ⊂ Z do
If s(Z )/s(X ) ≥ t2 then

Output X → Y where Y = Z \ X
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Continuing the Example

One of the frequent sets is ABE. This generates:

Itemset Rule Confidence

AB AB → E 2/4 = 50%
AE AE → B 2/2 = 100%
BE BE → A 2/2 = 100%
A A → BE 2/6 = 33%
B B → AE 2/7 = 29%
E E → AB 2/2 = 100%
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Complexity of the Generation

Clearly, this algorithms is again exponential. For every Z , we consider all
(2|Z | − 2) non-empty proper subsets X of Z . However:

|Z | ≤ k << |R|
Quite often one generates only those association rules with a
singleton Y . This makes the generation algorithm linear.

Ad Feelders ( Universiteit Utrecht ) Data Mining October 8, 2013 18 / 53



Drowning in Association Rules: Example

One frequent set may induce many association rules.

ABE generates:

Itemset Rule Confidence

AB AB → E 2/4 = 50%
AE AE → B 2/2 = 100%
BE BE → A 2/2 = 100%
A A → BE 2/6 = 33%
B B → AE 2/7 = 29%
E E → AB 2/2 = 100%
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Drowning in Association Rules

Mining for association rules has its own dilemma:

High confidence and high support rules are probably already known.

Low confidence and/or low support thresholds lead to a flood of
results (could be more than the original database!)

Moreover, not all discovered rules will be interesting: suppose you discover
that 60% of the people that buy bread also buy cheese. How interesting is
this if you know that 60% of all people buy cheese?
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Managing the Flood

Rank or (partially) order the results on support and confidence.

Filter for interesting rules (what is interesting?)

Mine for less rules (condensed representations)
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An Interestingness Measure: Lift

The lift of an association rule tells us how much better the rule predicts
the consequent than the random prediction:

lift(X → Y ) =
P(Y |X )

P(Y )
=

P(X ,Y )

P(X )P(Y )

For example, if a rule has a confidence P(Y |X ) of 0.9 while P(Y ) = 0.2,
then the lift of the rule is 4.5

Ad Feelders ( Universiteit Utrecht ) Data Mining October 8, 2013 22 / 53



Generating Less Results

Condensed representations:

Maximal Frequent Itemsets

Closed Frequent Itemsets
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Maximal Frequent Itemset

An itemset I is maximal frequent iff

I is frequent and

no proper superset of I is frequent

Clearly, each frequent itemset is a subset of at least one maximal frequent
itemset. Hence, the set of all maximal frequent itemsets is a condensed
representation of the set of all frequent itemsets.
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Closed Frequent Itemsets

For an itemset I , denote by σ(I ) the set of tuples in which all items in
I are “bought”, i.e., σ(I ) is the set of tuples that support I .

An itemset I is closed iff for all proper supersets J, σ(I ) is a proper
superset of σ(J): itemset I can’t be extended without decreasing the
support.

An itemset I is a closed frequent itemset iff it is both frequent and
closed.
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Closure Operator

Two operators:
σ(I ) = {t ∈ db | ∀i ∈ I , i ∈ t}

“The set of tuples that contain all items in I ”.

f (T ) = {i ∈ R | ∀t ∈ T , i ∈ t}

“The set of items included in all transactions in T ”.
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Closure Operator

Let c(I ) be the set of items that are bought in all transactions in which all
items in I are bought, that is

c(I ) = f (σ(I ))

c(I ) is called the closure of I .

An itemset I is closed if and only if c(I ) = I

Ad Feelders ( Universiteit Utrecht ) Data Mining October 8, 2013 27 / 53



Running Example

tid Items

1 ACD
2 BCE
3 ABCE
4 BE
5 ABCE
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Example of Closure Operator

c({A,B}) = {A,B,C ,E}

Why?

c({A,B}) = f (σ({A,B})) = f ({3, 5})
= {A,B,C ,E}

Note that I ⊆ c(I ) and I has the same support as c(I ).
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Running Example

tid Items

1 ACD
2 BCE

3 ABCE
4 BE

5 ABCE

σ({A,B}) = {3, 5}
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Running Example

tid Items

1 ACD
2 BCE

3 ABCE
4 BE

5 ABCE

f ({3, 5}) = {A,B,C ,E}
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Example of Closure Operator

c({A,C}) = {A,C}

Why?

c({A,C}) = f (σ({A,C})) = f ({1, 3, 5})
= {A,C}

{A,C} is closed since c({A,C}) = {A,C}
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Running Example

tid Items

1 ACD
2 BCE

3 ABCE
4 BE

5 ABCE

σ({A,C}) = {1, 3, 5}

Ad Feelders ( Universiteit Utrecht ) Data Mining October 8, 2013 33 / 53



Running Example

tid Items

1 A C D
2 BCE

3 A B C E
4 BE

5 A B C E

f ({1, 3, 5}) = {A,C}
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Example

The closed frequent itemsets for

tid Items

1 ACD
2 BCE
3 ABCE
4 BE
5 ABCE

with minimum support 2 are

{C}, {A,C}, {B,E}, {B,C ,E}, {A,B,C ,E}
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Closure properties

Theorem

If X ⊂ Y and s(X ) = s(Y ) then c(X ) = c(Y ).

Proof.

1 Assume X ⊂ Y and s(X ) = s(Y ).

2 Since X ⊂ Y , it follows that σ(Y ) ⊆ σ(X ).

3 From s(X ) = s(Y ) it follows that σ(Y ) = σ(X ).

4 Hence c(X ) = f (σ(X )) = f (σ(Y )) = c(Y ).
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Closure properties

Theorem

If c(X ) = Z then s(X ) = s(Z ).

Proof.

The closure of an item set X is the set of items Z ⊇ X that is contained
in all transactions that contain X . So if c(X ) = Z , then σ(X ) = σ(Z ).

It follows that s(X ) = s(Z ).
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Closure properties

Theorem

If c(X ) = Z then Z is closed.

Proof.

1 Assume c(X ) = Z .

2 It follows that σ(X ) = σ(Z ).

3 So c(X ) = f (σ(X )) = f (σ(Z )) = c(Z ) = Z
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A-Close Algorithm

Phase 1: Discover all frequent closed itemsets in db.

Phase 2: Derive all frequent itemsets from the frequent closed
itemsets found in phase 1.
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A-Close: Phase 1

Determine a set of generators that will produce all frequent closed
itemsets by application of the closure operator c.

An itemset I is a generator of a closed itemset J if it is one of the smallest
itemsets with c(I ) = J.

Example: BC and CE are generators of the closed itemset BCE .
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A-Close: Phase 1

Levelwise construction: Gi+1 is constructed using Gi .

Using their support, and the support of their i-subsets in Gi , infrequent
generators and generators that have the same support as one of their
subsets are deleted from Gi+1.

The support of BCE is the same as the support of its subsets BC and CE ,
so they have the same closure.
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Example: G1

Generator Support

A 3
B 4
C 4
D 1
E 4

=⇒

Generator Support

A 3
B 4
C 4
E 4

Minimum support = 2
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Example: G2

Generator Support

AB 2
AC 3
AE 2
BC 3
BE 4
CE 3

=⇒

Generator Support

AB 2
AE 2
BC 3
CE 3

AC is pruned, because subset A has the same support (and therefore the
same closure)
BE is pruned because it has the same support as B (and E).

Level 3 candidate ABE is pruned, because its subset BE is not a level 2
generator.
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Why can ABE be pruned?

1 BE is a subset of ABE and BE is not a generator.

2 BE is not a generator, because it has the same support as its subset B.

3 Since BE has the same support as B, it follows that AB has the same
support as ABE.

4 Therefore ABE is not a generator and can be pruned.
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General Justification

1 Let XA be a candidate generator, where X is an itemset, and A is a
single item.

2 Suppose X is not a generator, because there is some Y ⊂ X with
s(Y ) = s(X ).

3 Then s(YA) = s(XA) and since YA ⊂ XA, it follows that XA is not a
generator.
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Example: Computing Closures

Generator Closure Support

A AC 3
B BE 4
C C 4
E BE 4

AB ABCE 2
AE ABCE 2
BC BCE 3
CE BCE 3

=⇒

Closure Support

AC 3
BE 4
C 4

ABCE 2
BCE 3

c(I ) = ∩t ∈ db : I ⊆ t
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Phase 2

To determine all frequent itemsets and their support, we use two
properties:

All maximal frequent itemsets are closed (proof?)

The support of an itemset equals the support of the smallest closed
itemset in which it is contained (its closure).

Select maximal itemsets, generate all their subsets, and determine their
support.
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Example: Phase 2

{A,B,C ,E} is the only maximal frequent itemset.

Subset Support

ABC 2
ABE 2
ACE 2

+ the generators and closed itemsets themselves.
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Example

Transaction Items

1 ABCD
2 ABCD
3 ABCD
4 ABCD
5 ABCD
6 BCDE
7 BCDE
8 BCDE
9 BCDE

10 BCDE

Minsup = 4. Use A-close to find all closed frequent itemsets and their
support.
How does it compare to Apriori?
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Example: G1 and G2

Generator Support

A 5
B 10
C 10
D 10
E 5

Generator Support

AB 5
AC 5
AD 5
AE 0
BC 10
BD 10
BE 5
CD 10
CE 5
DE 5

All level 2 generators are pruned, AE because it is infrequent, the
remaining itemsets because they have a subset with the same support.

Apriori would only prune AE (and its supersets).
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Example: Computing Closures

Generator Closure Support

A ABCD 5
B BCD 10
C BCD 10
D BCD 10
E BCDE 5

Only 3 closed frequent itemsets.

How many frequent itemsets are there?
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Comparison with Apriori

Comparable to Apriori on sparse, weakly correlated data (e.g.
supermarket basket data).

Significantly better on dense, correlated data.
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Comparison with Apriori

Why more improvement on strongly correlated data?

For strongly correlated data, the difference between the number of
frequent itemsets, and the number of closed frequent itemsets is larger.
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