Data Mining: Frequent Tree Mining

Consider the following database of labeled ordered trees:

dy (@ ds (b) ds (a)
b (@ (@ (@ @

) @

dy (@ ds (@
@ b b (@

© @ 3

We aim to find all frequent ordered induced subtrees with o = 0.6, i.e. a subtree is frequent
if it occurs in at least three of the five data trees. The FREQT algorithm performs a level
wise search starting with trees consisting of a single labeled node. To generate candidate
frequent trees for level k£ + 1 we add a frequent node to a frequent tree of size k, using the
rightmost extension technique. Nodes in a tree are assumed to be numbered according to
the pre-order traversal of the tree. At level 1 we have the following three candidates:

1 2 3
@ " "©
The following table contains the information for counting. The column numbers refer to
the numbers of the candidate trees as given above. Each entry of the table contains the
right-most occurrence list (RMO-list) of a candidate in a data tree. This is a list of node
numbers in the data tree to which the right-most leaf of the candidate tree can be mapped.

A candidate subtree is also called a pattern tree (as opposed to a data tree, which is a tree
in the database).

L @ B
dq (1,3) (2 -
do (2,3) (14) -
ds (124) (3) -
dy (12) (34) ()
ds (1,34) (2,5) -—
Support 5 5 1
Frequent? Y Y N

It turns out that level 1 candidate (3), i.e. the single node with label ¢, is not frequent.
Therefore it will not be extended, and neither will it be used to extend frequent trees.

At level 2 we have the following candidates:
4 @ by @ 6 @ 7@
@ & @

The RMO-lists are:

4 (6 (© (@
dy @ @ - -
do — 4) (23 -
ds 2 G @ -
d4 (2) (374) - -
ds (34) (2,5) - —
Support 4 5) 2 0
Frequent? | Y Y N N

As an example, let us consider how the RMO-list of pattern tree (4) in data tree d; is
determined. First of all, we note that (4) is an extension of (1), where we added a node
labeled a to the rightmost leaf of (1). To determine the RMO-list of pattern tree (4) in
dy, we consider each element of the RMO-list of pattern tree (1), jump to that node in
the data tree, and check whether it has a child with label a. If it does, we add the node
number of that child to the RMO-list of pattern tree (4). So to process the first element of
the RMO-list of pattern tree (1) in d;, we jump to node 1 in d; (recall that the nodes are
numbered according to pre-order traversal), and check whether it has a child node labeled
a. As it turns out, it does, and we add its node number (which is 3) to the RMO-list of
pattern tree (4). The second element of the RMO-list of pattern tree (1) is 3, so we jump
to node 3 in data tree d; and check whether it has a child with label a. This is not the
case, so we don’t add anything to the RMO-list of pattern tree (4) in d;. Now we have
processed all elements of the RMO-list of pattern tree (1) in d;, so we are done.

The level 3 candidates are:

11 12

@ @@ ®»® @ & 6

®) (9) (10) (11) (12) (13) (14) (15)

The RMO-lists are:

d - - - - - - -
ds - - - - = ===
d e R) N)
ds W - 6 - - 6 B -

Support 1 1 1 0 0 3
Frequent? | N N N N N Y N N

The level 4 candidates are:

; S
@® @® @®@® @ bb
@ ®

The RMO-lists are:

Support 1 0 0 1
Frequent? | N N N N

As a final example, let us consider how the RMO-list of pattern tree (19) in dy is deter-
mined. We note that (19) is an extension of (13), so we process the RMO-list of (13) in d,
which is (3,4). Pattern tree (19) is obtained from (13) by adding a node labeled b as the
rightmost child to the parent of the rightmost child of (13). To process an element of the

RMO-list, we jump to that node in the data tree, jump to its parent, and check whether
it has a child labeled b that is to the right of the element of the RMO-list. So to process
the first element of the RMO-list, we jump to node 3 in dy, then jump to its parent (node
1), and check whether node 1 has a child labeled b that is to the right of node 3. It does,
namely node 4, so node 4 is added to the RMO-list of pattern tree (19) in d4. To process
the second element, we do the same thing and find out that this does not lead to success.
Now all elements of the RMO-list of (13) in d4 have been processed, so we have established
the RMO-list of (19) in dy4 to be (4).

Since all level 4 candidates are infrequent, there are no level 5 candidates.

As the final result, the algorithm returns all frequent induced subtrees and their support:

R

4 o 3

