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Node Labeled Graph

Definition (Node Labeled Graph)

A node labeled graph is a quadruple G = (V ,E ,Σ, L) where:

1 V is the set of nodes,

2 E is the set of edges,

3 Σ is a set of labels, and

4 L : V → Σ is a labeling function that assigns labels
from Σ to nodes in V .
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Labeled Rooted Unordered Tree

Definition (Labeled Rooted Unordered Tree)

A labeled rooted unordered tree U = (V ,E ,Σ, L, v r ) is an acyclic
undirected connected graph G = (V ,E ,Σ, L) with a special node v r called
the root of the tree such that there exists exactly one path between the
root node and any other node in V .
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Labeled Rooted Ordered Tree

Definition (Labeled Rooted Ordered Tree)

A labeled rooted ordered tree T = (V ,E ,Σ, L, v r ,≤) is an unordered tree
U = (V ,E ,Σ, L, v r ) where between all the siblings an order ≤ is defined.
To every node in an ordered tree a preorder (pre(v)) number is assigned
according to the depth-first (or preorder) traversal of the tree.
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Node Numbering according to Preorder Traversal

v1

v2 v7

v3 v4 v5 v6 v8 v9 v10
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Tree Inclusion Relations

1 Bottom-up subtree.

2 Induced subtree.

3 Embedded subtree.
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Induced Subtree

Let π(v) denote the parent of node v .

Definition (Induced Subtree)

Given two ordered trees D and T , we call T an induced subtree of D if
there exists an injective matching function φ of VT into VD satisfying the
following conditions:

1 φ preserves the labels: LT (v) = LD(φ(v)).

2 φ preserves the parent-child relation:
vi = πT (vj)⇔ φ(vi ) = πD(φ(vj)).

3 φ preserves the left to right order between the nodes: pre(vi ) <
pre(vj) ⇔ pre(φ(vi ))) < pre(φ(vj)).

An induced subtree T can be obtained from a tree D by repeatedly
removing leaf nodes, or possibly the root node if it has only one child.
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Induced Subtree
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Induced Subtree

Matching function

1 φ(v1) = w7

2 φ(v2) = w8

3 φ(v3) = w10

Verify that

1 LT (v1) = LD(w7) = A

2 LT (v2) = LD(w8) = A

3 LT (v3) = LD(w10) = B

Likewise, we can verify that the other conditions are met, so T is an
induced subtree of D.
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Embedded Subtree

Let π∗(v) denote the set of ancestors of v .

Definition (Embedded Subtree)

Given two ordered trees D and T , we call T an embedded subtree of D if
there exists an injective matching function φ of VT into VD satisfying the
following conditions:

1 φ preserves the labels: LT (v) = LD(φ(v)).

2 φ preserves the ancestor-descendant relation:
vi ∈ {π∗T (vj)} ⇔ φ(vi ) ∈ {π∗D(φ(vj))}.

3 φ preserves the left to right order between the nodes: pre(vi ) <
pre(vj) ⇔ pre(φ(vi ))) < pre(φ(vj)).
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Embedded Subtree
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Frequent Tree Mining

Given a database of trees D = {d1, d2, . . . , dn} and a tree inclusion
relation �, we define the support of a tree T as

supp(T ,D) =
|{d ∈ D | T � d}|

|D|

Given a minimum support threshold σ, compute

F(σ,D,�) = {T | supp(T ,D) ≥ σ}
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Anti-Monotonicity Property

Given a database of trees D, and two trees T1 and T2, then

T1 � T2 ⇒ supp(T1,D) ≥ supp(T2,D),

because ∀d ∈ D : T2 � d ⇒ T1 � d .

Hence, in a level-wise search for frequent trees, there is no point in
expanding infrequent trees.
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Mining Frequent Induced Trees with FREQT

We must address two basic issues:

1 Generate candidate frequent trees: add a single node with a frequent
label to a frequent tree. This is done by so-called right-most
extension.

2 Record the occurrences of the candidate trees in the data trees, and
determine whether they are frequent.
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Right-most Extension

Let Tk denote a tree of size k (a tree with k nodes).

Consider the node numbering of Tk according to pre-order
(depth-first) traversal of the tree.

The right-most branch of the tree is the path from the root node to
the right-most leaf (i.e. the node with number k).

To expand the tree Tk , it is only allowed to add a node as the
right-most child of a node on the right-most branch of Tk . This node
gets number k + 1, as it is the last node in the pre-order traversal of
Tk+1.
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Right-most Extension with label set Σ = {a, b}
⊥
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Right-most Extension

The right-most extension technique generates each tree at most once.

Consider any tree Tk+1. This tree only has one predecessor (in the
generation sequence), namely the tree Tk that is obtained by removing the
right-most leaf of Tk+1 (i.e. the node with number k + 1 in the pre-order
traversal).

Also, the right-most expansion technique generates every possible tree, so
each tree is generated exactly once.
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Occurrence List

For counting the frequency of a pattern tree an occurrence list is
maintained that contains the list of nodes in the data tree to which
the nodes in the pattern tree can be mapped.

FREQT only stores the nodes of the data tree to which the
right-most node in the pattern tree can be mapped.

This is sufficient since only the nodes on the right-most branch are
needed for future extension.
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Right-most Occurrence List
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Example

Consider the following database of labeled ordered trees:

a

a

b a

d1 b

a a

d2

b
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d3

a

a

a b

d4

b

a

b a

d5

bc

Find all frequent induced subtrees with support at least 3.
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Example: Level 1

At level 1 we have the following three candidates:

a b c1 2 3

The right-most occurrence lists are:

(1) (2) (3)

d1 (1,3) (2) −
d2 (2,3) (1,4) −
d3 (1,2,4) (3) −
d4 (1,2) (3,4) (5)
d5 (1,3,4) (2,5) −
Support 5 5 1
Frequent? Y Y N
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Example: Level 2

At level 2 we have the following candidates:

a4

a

a

b

b

a

b

b

5 6 7

The RMO-lists are:

(4) (5) (6) (7)

d1 (3) (2) − −
d2 − (4) (2,3) −
d3 (2) (3) (4) −
d4 (2) (3,4) − −
d5 (3,4) (2,5) − −
Support 4 5 2 0
Frequent? Y Y N N
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Example: Level 3

The level 3 candidates are:

a
8
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b
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The RMO-lists are:

(8) (9) (10) (11) (12) (13) (14) (15)

d1 − − − − − − (3) −
d2 − − − − − − − −
d3 − (4) − − − (3) − (4)
d4 − − − − − (3,4) − −
d5 (4) − (5) − − (5) (3) −
Support 1 1 1 0 0 3 2 1
Frequent? N N N N N Y N N
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Example: Level 4

The level 4 candidates are:

a

a b

16

a

a b

a

a b

a

a

a b

b

a b

17 18 19

The RMO-lists are:

(16) (17) (18) (19)

d1 − − − −
d2 − − − −
d3 (4) − − −
d4 − − − (4)
d5 − − − −
Support 1 0 0 1
Frequent? N N N N
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Applications of frequent tree mining

Mining usage patterns in Web logs.

Mining frequent query patterns from XML queries.

Classification of XML documents according to subtree structures.

...
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Mining usage patterns in web logs

Mining data from web server log files to:

Study customer behavior.

Better organize web pages.
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LOGML

LOGML is a publicly available XML application to describe log
reports of web servers.

LOGML provides an XML vocabulary to structurally express the
contents of the log file in a compact manner.

LOGML documents have three parts
1 A web graph induced by the source-target pairs in the raw logs.
2 A summary of statistics.
3 A list of user sessions (subgraphs of the web graph) extracted from the

logs.

Ad Feelders ( Universiteit Utrecht ) Data Mining October 11, 2013 28 / 40



Example user session

Each user session has a session id (IP or host name), a list of edges
(uedges) giving source and target node pairs, and the time (utime) when
a link is traversed. Example user session:
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Figure 9: Performance Comparison

port TreeMiner outperforms PatternMatcher by more
than a factor of 20! The reason is that cslogs had a max-
imum pattern length of 7 at 0.5% support. The level-wise
pattern matching used in PatternMatcher is able to eas-
ily handle such short patterns. However, at 0.25% support
the maximum pattern length suddenly jumped to 19, and
PatternMatcher is unable to efficiently deal with such
long patterns. Exactly the same thing happens for D10 as
well. For supports lower than 0.5% TreeMiner outper-
forms PatternMatcher by a wide margin. At the low-
est support the difference is a factor of 15. Both T1M
and F5 have relatively short frequent subtrees. Here too
TreeMiner outperforms PatternMatcher, but for the
lowest support shown, the difference is only a factor of 4.
These experiments clearly indicate the superiority of scope-
list based-method over the pattern matching method, espe-
cially as patterns become long.
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Figure 10: Scaleup
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Figure 11: Pruning

Scaleup Comparison Figure 10 shows how the algorithms
scale with increasing number of trees in the database D,
from 10,000 to 1 million trees. At a given level of support,
we find a linear increase in the running time with increasing
number of transactions for both algorithms, though TreeM-
iner continues to be 4 times faster than PatternMatcher.

Effect of Pruning In Figure 11 we evaluated the effect of
candidate pruning on the performance of PatternMatcher
and TreeMiner. We find that PatternMatcher (de-
noted PM in the graph) always benefits from pruning, since
the fewer the number of candidates, the lesser the cost of
support counting via pattern matching. On the other hand
TreeMiner (labeled TM in the graph) does not always ben-
efit from its opportunistic pruning scheme. While pruning

tends to benefit it at higher supports, for lower supports
its performance actually degrades by using candidate prun-
ing. TreeMiner with pruning at 0.1% support on D10 is
2 times slower than TreeMiner with no pruning. There
are two main reasons for this. First, to perform pruning, we
need to store Fk in a hash table, and we need to pay the
cost of generating the (k−1) subtrees of each new k-pattern.
This adds significant overhead, especially for lower supports
when there are many frequent patterns. Second, the vertical
representation is extremely efficient; it is actually faster to
perform scope-list joins than to perform pruning test.

minsup No Pruning Full Pruning Opportunistic
1% 14595 2775 3505
0.5% 70250 10673 13736
0.1% 3555612 481234 536496

Figure 12: Full vs. Opportunistic Pruning

Table 12 shows the number of candidates generated on the
D10 dataset with no pruning, full pruning (in Pattern-
Matcher), and with opportunistic pruning (in TreeM-
iner). Both full pruning and opportunistic pruning are ex-
tremely effective in reducing the number of candidate pat-
terns, and opportunistic pruning is almost as good as full
pruning (within a factor of 1.3). Full pruning cuts down the
number of candidates by a factor of 5 to 7! Pruning is es-
sential thus for pattern matching methods, and may benefit
scope-list method in some cases (for high support).

7. APPLICATION: WEB/XML MINING
To demonstrate the usefulness of mining complex patterns,
we present below a detailed application study on mining
usage patterns in web logs. Mining data that has been col-
lected from web server log files, is not only useful for study-
ing customer choices, but also helps to better organize web
pages. This is accomplished by knowing which web pages
are most frequently accessed by the web surfers.
We use LOGML [16], a publicly available XML application,
to describe log reports of web servers. LOGML provides a
XML vocabulary to structurally express the contents of the
log file information in a compact manner. LOGML docu-
ments have three parts: a web graph induced by the source-
target page pairs in the raw logs, a summary of statistics
(such as top hosts, domains, keywords, number of bytes ac-
cessed, etc.), and a list of user-sessions (subgraphs of the
web graph) extracted from the logs.
There are two inputs to our web mining system: 1) web site
to be analyzed, and 2) raw log files spanning many days, or
extended periods of time. The web site is used to populate
a web graph with the help of a web crawler. The raw logs
are processed by the LOGML generator and turned into a
LOGML document that contains all the information we need
to perform various mining tasks. We use the web graph to
obtain the page URLs and their node identifiers.
For enabling web mining we make use of user sessions within
the LOGML document. User sessions are expressed as sub-
graphs of the web graph, and contain complete history of
the user clicks. Each user session has a session id (IP or
host name), a list of edges (uedges) giving source and target
node pairs, and the time (utime) when a link is traversed.
An example user session is shown below:
<userSession name="ppp0-69.ank2.isbank.net.tr" ...>
<uedge source="5938" target="16470" utime="7:53:46"/>
<uedge source="16470" target="24754" utime="7:56:13"/>
<uedge source="16470" target="24755" utime="7:56:36"/>
<uedge source="24755" target="47387" utime="7:57:14"/>
<uedge source="24755" target="47397" utime="7:57:28"/>
<uedge source="16470" target="24756" utime="7:58:30"/>
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Tree representation of example user session

5938

16470

24754 24755 24756

47387 47397
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Example of frequent subtree found

One day’s logs from CS web site (Rensselaer Polytechnic Institute). The
pattern refers to a popular Turkish poetry site maintained by one of the
department members.

Itemset Mining To discover frequent sets of pages accessed
we ignore all link information and note down the unique
nodes visited in a user session. The user session above pro-
duces a user “transaction” containing the user name, and
the node set, as follows: (ppp0-69.ank2.isbank.net.tr, 5938
16470 24754 24755 47387 47397 24756).
After creating transactions for all user sessions we obtain a
database that is ready to be used for frequent set mining. We
applied an association mining algorithm to a real LOGML
document from CS web site (one day’s logs). There were
200 user sessions with an average of 56 distinct nodes in each
session. An example frequent set found is shown below. The
pattern refers to a popular Turkish poetry site maintained
by one of our department members. The user appears to be
interested in the poet Akgun Akova.
Let Path=http://www.cs.rpi.edu/∼name/poetry
FREQUENCY=16, NODE IDS = 16395 38699 38700 38698 5938

Path/poems/akgun akova/index.html
Path/poems/akgun akova/picture.html
Path/poems/akgun akova/biyografi.html
Path/poems/akgun akova/contents.html
Path/sair listesi.html

Sequence Mining If our task is to perform sequence min-
ing, we look for the longest forward links [6] in a user ses-
sion, and generate a new sequence each time a back edge
is traversed. We applied sequence mining to the LOGML
document from the CS web site. From the 200 user sessions,
we obtain 8208 maximal forward sequences, with an average
sequence size of 2.8. An example frequent sequence (shown
below) indicates in what sequence the user accessed some
of the pages related to Akgun Akova. The starting page
sair listesi contains a list of poets.
Let Path=http://www.cs.rpi.edu/∼name/poetry
FREQUENCY = 20, NODE IDS = 5938 -> 16395 -> 38698

Path/sair listesi.html ->
Path/poems/akgun akova/index.html ->
Path/poems/akgun akova/contents.html

Tree Mining For frequent tree mining, we can easily ex-
tract the forward edges from the user session (avoiding cy-
cles or multiple parents) to obtain the subtree corresponding
to each user. For our example user-session we get the tree:
(ppp0-69.ank2.isbank.net.tr, 5938 16470 24754 -1 24755 47387
-1 47397 -1 -1 24756 -1 -1)
We applied the TreeMiner algorithm to the CS logs. From
the 200 user sessions, we obtain 1009 subtrees (a single user
session can lead to multiple trees if there are multiple roots
in the user graph), with an average record length of 84.3
(including the back edges, -1). An example frequent subtree
found is shown below. Notice, how the subtree encompasses
all the partial information of the sequence and the unordered
information of the itemset relating to Akgun Akova. The
mined subtree is clearly more informative, highlighting the
usefulness of mining complex patterns.

Let Path=http://www.cs.rpi.edu/~name/poetry
Let Akova = Path/poems/akgun_akova
FREQUENCY=59, NODES = 5938 16395 38699 -1 38698 -1 38700

Path/sair_listesi.html
|

Path/poems/akgun_akova/index.html
/ | \

Akova/picture.html Akova/contents.html Akova/biyografi.html

We also ran detailed experiments on logs files collected over
1 month at the CS department, that touched a total of
27343 web pages. After processing the LOGML database
had 34838 user graphs. We do not have space to shows
the results here (we refer the reader to [16] for details), but
these results lead to interesting observations that support
the mining of complex patterns from web logs. For exam-
ple, itemset mining discovers many long patterns. Sequence

mining takes longer time but the patterns are more useful,
since they contain path information. Tree mining, tough it
takes more time than sequence mining, produces very in-
formative patterns beyond those obtained from set and se-
quence mining.

8. RELATED WORK
Tree mining, being an instance of frequent structure min-
ing, has obvious relation to association [3] and sequence [4]
mining. Frequent tree mining is also related to tree isomor-
phism [18] and tree pattern matching [8]. Given a pattern
tree P and a target tree T , with |P | ≤ |T |, the subtree iso-
morphism problem is to decide whether P is isomorphic to
any subtree of T , i.e., there is a one-to-one mapping from P
to a subtree of T , that preserves the node adjacency rela-
tions. In tree pattern matching the pattern and target trees
are labeled and ordered. We say that P matches T at node
v if there exists a one-to-one mapping from nodes of P to
nodes of T such that: a) the root of P maps to v, b) if x
maps to y, then x and y have the same labels, and c) if x
maps to y and x is not a leaf, then the ith child of x maps
to the ith child of y. Both subtree isomorphism and pattern
matching deal with induced subtrees, while we mine embed-
ded subtrees. Further we are interested in enumerating all
common subtrees in a collection of trees. The tree inclusion
problem was studied in [13], i.e., given labeled trees P and T ,
can P be obtained from T by deleting nodes? This problem
is equivalent to checking if P is embedded in T . The paper
presents a dynamic programming algorithm for solving or-
dered tree inclusion, which could potentially be substituted
for the pattern matching step in PatternMatcher. How-
ever, PatternMatcher utilizes prefix information for fast
subtree checking, and its three step pattern matching is very
efficient over a sequence of such operations.
There has been very little previous work in mining all fre-
quent subtrees. In a recent paper, Asai et al. [5] presented
FREQT, an apriori-like algorithm for mining labeled or-
dered trees; they independently proposed a candidate gen-
eration scheme similar to ours. Wang and Liu [20] devel-
oped an algorithm to mine frequently occurring subtrees in
XML documents. Their algorithm is also reminiscent of the
level-wise Apriori [3] approach, and they mine induced sub-
trees only. A related problem of accurately estimating the
number of matches of a small node-labeled tree in a large
labeled tree, in the context of querying XML data, was pre-
sented in [7]. They compute a summary data structure, and
then give frequency estimates based on this summary, rather
than using the database for exact answers. In contrast we
are interested in exact frequency of subtrees. Furthermore,
their work deals with traditional (induced) subtrees, while
we mine embedded subtrees.
With the advent of XML as a data representation and ex-
change standard, there has been active work in indexing and
querying XML documents [15, 23, 2, 11], which are mainly
tree (or graph) structured. To efficiently answer ancestor-
descendant queries various node numbering schemes similar
to ours have been proposed [15, 23, 1]. Other work has
looked at path query evaluation that uses local knowledge
within data graph based on path constraints [2] or graph
schemas [11]. The major difference between these works and
ours is that instead of answering user-specified queries based
on regular path expressions, we are interested in finding all
frequent tree patterns among the documents.
There has been recent work in mining frequent graph pat-
terns. The AGM algorithm [12] discovers induced (possibly
disconnected) subgraphs. The FSM algorithm [14] improves
upon AGM, and mines only the connected subgraphs. Both
methods follow an Apriori-style level-wise approach. If one
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Mining frequent query patterns

As XML prevails over the internet, the efficient retrieval of XML data
becomes more important.

Research to improve query response times has largely concentrated on
indexing XML documents and processing regular path expressions.

Another approach is to discover frequent query patterns since the
answers to those queries can be stored and indexed.
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Mining frequent query patterns

Given an XML data source and the history of XML queries {q1, . . . , qN}
issued against it, transform them into a corresponding history of query
pattern trees D = {QPT1, . . . ,QPTN}.

Mining frequent query patterns is equivalent to finding the rooted subtrees
that occur frequently over the set of pattern trees D.
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Document Type Definition

Q1 {resultPattern = {/book/author, /book/title, /book/price}, 
predicates = {/book/author/lastname/data() = ”Buneman”}, 
documents = {book.xml}} 

where resultPattern is the schema pattern of the result, 
predicates are the filtering conditions used in the query, 
and documents are the XML data files involved.  

author+

book

title section+

address
title

title

source

para*firstname

lastname

figure*

image width height
section*

publisher

price

year

 
Figure 1. Book DTD Tree. 

Next, we extract the paths from the set predicates by 
ignoring the selection conditions. For example, we can 
extract the path “/book/author/lastname/” from the 
predicate /book/author/lastname/data() = “Buneman” in 
Q1. We combine these extracted path expressions with the 
paths in the set resultPattern to generate the query pattern 
tree. Figure 2(a) shows the query pattern tree obtained for 
Q1. A query pattern tree may not only consist of element 
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Definition 2 (Rooted Subtree): Given a query pattern 
tree QPT = <V, E>, a rooted subtree RST = <V’, E’> of 
QPT is a subtree of QPT if it satisfies the conditions: (1) 
Root (RST) = Root (QPT), and (2) V’⊆ V, E’ ⊆ E. 

Figure 2(b) shows a rooted subtree of the query pattern 
tree in Figure 2(a). 
 
2.2 Frequent Query Pattern Trees 

Having transformed a set of queries into query pattern 
trees, we obtain a database of query pattern trees D = 
{QPT1,….,QPTN}. The query pattern mining problem is to 
find all the frequent rooted subtrees that occur in D with 

some minimum support level. The total occurrence of a 
rooted subtree RST in D is denoted as freq(RST), and its 
support is given by supp(RST) = freq(RST)/|D|. For some 
positive number σ, we say that an RST is σ-frequent in D 
if supp(RST) ≥ σ. Figure 3 shows a database of three 
query pattern trees and a frequent root subtree. RST 
occurs in QPT1 and QPT2. Hence, its frequency is 
freq(RST) = 2, with a support of supp(RST) = 2/3. 
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2.3 Tree Pattern Matching 

In general, a tree T = <V, E> matches another tree T’ 
= <V’, E’> if there exists a mapping ϕ such that 
1. Root(T’) = ϕ (Root(T)) and ∀v ∈ V, ∃v’∈ V’s.t. v’ = 

ϕ (v) where v.label = v’.label 
2. ϕ preserves the parent-child relation: if (v1,v2) ∈ E, 

then (ϕ(v1), ϕ(v2)) ∈ E’  
then we say that T is a subtree of T’ or T is contained in T’. 

This naïve definition is not applicable to our tree 
matching problem due to the presence of wildcards and 
relative paths in the query pattern trees. Figure 4 shows 
two query trees T1 and T2. Intuitively, the path 
“book/section/figure/title” in T2 matches the path 
“book//title” in T1 since “//” in “book//title” indicates zero 
or more labels between the nodes book and title. Since the 
wildcard “*” can be substituted by ANY single node, then 
“book/section/figure/image” matches “book/section/*/ 
image”. We say that T2 matches T1. In other words, T2 is 
contained in T1, written as T2 ⊆ T1.  
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While one could try to expand the non-deterministic 
paths such as “book//title” to become a deterministic path 
“book/section/figure/title”, this is only feasible when the 
XML DTD (or schema) is a directed acyclic graph. The 
expansion method will fail if the DTD contains cycles. 
Nonetheless, expanding “//” remains crucial. This is 
because without the context information, one cannot tell 
whether a path is contained in “//” or not.  

Figure 5 shows a query pattern containing two relative 
path expressions and three rooted subtrees. RST1 and 

(a) Query Pattern Tree for Q1 (b) A Rooted Subtree 
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The purpose of a DTD (Document Type Definition) is to define the legal
building blocks of an XML document.
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Abstract 

As XML prevails over the Internet, the efficient retrieval 
of XML data becomes important. Research to improve 
query response times has been largely concentrated on 
indexing XML documents and processing regular path 
expressions. Another approach is to discover frequent 
query patterns since the answers to these queries can be 
stored and indexed. Mining frequent query patterns 
requires more than simple tree matching since the XML 
queries involves special characters such as “*” or “//”. 
In addition, the matching process can be expensive since 
the search space is exponential to the size of XML 
schema. In this paper, we present two mining algorithms, 
XQPMiner and XQPMinerTID, to discover frequent query 
pattern trees from a large collection of XML queries 
efficiently. Both algorithms exploit schema information to 
guide the enumeration of candidate subtrees, thus 
eliminating unnecessary node expansions. Experiments 
results show that the proposed methods are efficient and 
have good scalability. 
 
1. Introduction 

With the rapid increase in XML applications such as e-
business transactions, XML middleware systems, efficient 
delivery of XML data has become an important issue. 
Regular path expression (RPE) is a common feature of 
XML query languages[3,4]. Processing such RPE can be 
expensive since it involves navigation through the 
hierarchical structure of XML, which can be deeply 
nested. Much research efforts have been focused on the 
storage and indexing of XML documents, and the efficient 
evaluation of regular path expressions [8, 9,10]. 

Another approach to improve query response time is to 
discover frequent query patterns since the answers to these 
queries can be stored and indexed. Given an XML data 
source and the history of XML queries {q1,….,qN} issued 
against it, we can transform them into a corresponding 
history of query pattern trees D = {QPT1,….,QPTN}. This 
gives us a database of query pattern trees. Each transaction 
is then a query pattern tree QPTi while an itemset is a 
rooted subtree of QPTi. Mining frequent query patterns is 
equivalent to finding the rooted subtrees that occur 
frequently over the set of pattern trees D. This requires 
more than simple tree matching since the XML queries 
involves special characters such as “*” or “//”. In addition, 
the matching process can be expensive since the search 

space is exponential to the size of XML schema. Since the 
candidate patterns in this mining problem are rooted 
subtrees, an efficient enumeration technique is critical to 
reduce unnecessary node expansion and comparisons. 

In this paper, we describe two efficient mining 
algorithms, XQPMiner and XQPMinerTID, to discover 
the frequent query pattern trees from a large collection of 
XML queries. Both algorithms exploit schema information 
to guide the enumeration of candidate subtrees, thus 
eliminating unnecessary node expansions. To speed up the 
matching process required in determining the frequency 
counts of the enumerated subtrees, we develop an 
algorithm to quickly determine if a rooted subtree is 
contained in the query pattern trees. Experiments results 
on real datasets show that the proposed methods are 
efficient and have good scalability. 

The rest of the paper is organized as follows. Section 2 
first defines some basic concepts. Section 3 describes the 
XQPMiner algorithm. Section 4 presents the optimizations 
for XQPMiner. Section 5 gives the results of the 
experiments. We discuss related work in Section 6, before 
concluding in Section 7. 
 
2. Preliminaries 

We first define the concepts of query pattern trees and 
rooted subtrees that form the basis of the algorithms 
XQPMiner and XQPMinerTID. We also illustrate how an 
XML query can be transformed into a query pattern tree. 
In order to determine the frequent query patterns, we need 
to compute the frequency counts of rooted subtrees 
efficiently. This entails a tree pattern matching technique 
that takes into consideration the wildcards and relative 
paths that may occur in the query patterns. 

 
2.1 Query Pattern Tree 

Figure 1 shows an example Book DTD and the 
corresponding XML tree. The following query Q1,written 
in XQuery syntax [4], retrieves the title, author and price 
of books written by “Buneman”.  
Q1: for $b in document(book.xml) /book 

 where some $a in $b/author  
satisfies $a/lastname/data()=”Buneman” 

return <result>  
<book>{$b/title, $b/author, $b/price}<book> 

  </result> 
We can extract the following information from Q1 

We extract the following information from Q1:

resultpattern={/book/author, /book/title, book/price}
predicates={/book/author/lastname/data()=”Buneman”}
documents={book.html}
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A query and its corresponding query pattern tree

To construct a query pattern tree we:

Extract the paths from the set predicates by ignoring the selection
conditions.

Combine these extracted path expressions with the paths in the set
resultpattern to generate the query pattern tree.

Exactly how they are combined is unfortunately not clear from the
source article!

Q1 {resultPattern = {/book/author, /book/title, /book/price}, 
predicates = {/book/author/lastname/data() = ”Buneman”}, 
documents = {book.xml}} 

where resultPattern is the schema pattern of the result, 
predicates are the filtering conditions used in the query, 
and documents are the XML data files involved.  
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Figure 1. Book DTD Tree. 

Next, we extract the paths from the set predicates by 
ignoring the selection conditions. For example, we can 
extract the path “/book/author/lastname/” from the 
predicate /book/author/lastname/data() = “Buneman” in 
Q1. We combine these extracted path expressions with the 
paths in the set resultPattern to generate the query pattern 
tree. Figure 2(a) shows the query pattern tree obtained for 
Q1. A query pattern tree may not only consist of element 
tag names, but also wildcard “*” and relative path “//”. 
Wildcards indicate the ANY label in DTD, while relative 
paths indicate zero or more labels (descendant-or-self). 
Formally, a query pattern tree can be defined as follows. 

Definition 1 (Query Pattern Tree): A query pattern 
tree is a rooted tree QPT = <V, E>, where V is the vertex 
set, and E is the edge set. The root is denoted as 
Root(QPT). We denote each edge e by (v1, v2) where node 
v1 is the parent of node v2. Each vertex v has a label with 
its value in {“*”, “//”, tagSet}, where tagSet is the set of 
all element and attribute names in the underlying DTD. 
We denote the label of a vertex v as v.label. 

 
 
 
 
 

Figure 2. Query Pattern Tree for Q1. 

Definition 2 (Rooted Subtree): Given a query pattern 
tree QPT = <V, E>, a rooted subtree RST = <V’, E’> of 
QPT is a subtree of QPT if it satisfies the conditions: (1) 
Root (RST) = Root (QPT), and (2) V’⊆ V, E’ ⊆ E. 

Figure 2(b) shows a rooted subtree of the query pattern 
tree in Figure 2(a). 
 
2.2 Frequent Query Pattern Trees 

Having transformed a set of queries into query pattern 
trees, we obtain a database of query pattern trees D = 
{QPT1,….,QPTN}. The query pattern mining problem is to 
find all the frequent rooted subtrees that occur in D with 

some minimum support level. The total occurrence of a 
rooted subtree RST in D is denoted as freq(RST), and its 
support is given by supp(RST) = freq(RST)/|D|. For some 
positive number σ, we say that an RST is σ-frequent in D 
if supp(RST) ≥ σ. Figure 3 shows a database of three 
query pattern trees and a frequent root subtree. RST 
occurs in QPT1 and QPT2. Hence, its frequency is 
freq(RST) = 2, with a support of supp(RST) = 2/3. 
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2.3 Tree Pattern Matching 

In general, a tree T = <V, E> matches another tree T’ 
= <V’, E’> if there exists a mapping ϕ such that 
1. Root(T’) = ϕ (Root(T)) and ∀v ∈ V, ∃v’∈ V’s.t. v’ = 

ϕ (v) where v.label = v’.label 
2. ϕ preserves the parent-child relation: if (v1,v2) ∈ E, 

then (ϕ(v1), ϕ(v2)) ∈ E’  
then we say that T is a subtree of T’ or T is contained in T’. 

This naïve definition is not applicable to our tree 
matching problem due to the presence of wildcards and 
relative paths in the query pattern trees. Figure 4 shows 
two query trees T1 and T2. Intuitively, the path 
“book/section/figure/title” in T2 matches the path 
“book//title” in T1 since “//” in “book//title” indicates zero 
or more labels between the nodes book and title. Since the 
wildcard “*” can be substituted by ANY single node, then 
“book/section/figure/image” matches “book/section/*/ 
image”. We say that T2 matches T1. In other words, T2 is 
contained in T1, written as T2 ⊆ T1.  
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Figure 4. Example of Pattern Tree Containment. 

While one could try to expand the non-deterministic 
paths such as “book//title” to become a deterministic path 
“book/section/figure/title”, this is only feasible when the 
XML DTD (or schema) is a directed acyclic graph. The 
expansion method will fail if the DTD contains cycles. 
Nonetheless, expanding “//” remains crucial. This is 
because without the context information, one cannot tell 
whether a path is contained in “//” or not.  

Figure 5 shows a query pattern containing two relative 
path expressions and three rooted subtrees. RST1 and 

(a) Query Pattern Tree for Q1 (b) A Rooted Subtree 
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Example frequent rooted subtree

Q1 {resultPattern = {/book/author, /book/title, /book/price}, 
predicates = {/book/author/lastname/data() = ”Buneman”}, 
documents = {book.xml}} 

where resultPattern is the schema pattern of the result, 
predicates are the filtering conditions used in the query, 
and documents are the XML data files involved.  
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Next, we extract the paths from the set predicates by 
ignoring the selection conditions. For example, we can 
extract the path “/book/author/lastname/” from the 
predicate /book/author/lastname/data() = “Buneman” in 
Q1. We combine these extracted path expressions with the 
paths in the set resultPattern to generate the query pattern 
tree. Figure 2(a) shows the query pattern tree obtained for 
Q1. A query pattern tree may not only consist of element 
tag names, but also wildcard “*” and relative path “//”. 
Wildcards indicate the ANY label in DTD, while relative 
paths indicate zero or more labels (descendant-or-self). 
Formally, a query pattern tree can be defined as follows. 

Definition 1 (Query Pattern Tree): A query pattern 
tree is a rooted tree QPT = <V, E>, where V is the vertex 
set, and E is the edge set. The root is denoted as 
Root(QPT). We denote each edge e by (v1, v2) where node 
v1 is the parent of node v2. Each vertex v has a label with 
its value in {“*”, “//”, tagSet}, where tagSet is the set of 
all element and attribute names in the underlying DTD. 
We denote the label of a vertex v as v.label. 
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Definition 2 (Rooted Subtree): Given a query pattern 
tree QPT = <V, E>, a rooted subtree RST = <V’, E’> of 
QPT is a subtree of QPT if it satisfies the conditions: (1) 
Root (RST) = Root (QPT), and (2) V’⊆ V, E’ ⊆ E. 

Figure 2(b) shows a rooted subtree of the query pattern 
tree in Figure 2(a). 
 
2.2 Frequent Query Pattern Trees 

Having transformed a set of queries into query pattern 
trees, we obtain a database of query pattern trees D = 
{QPT1,….,QPTN}. The query pattern mining problem is to 
find all the frequent rooted subtrees that occur in D with 

some minimum support level. The total occurrence of a 
rooted subtree RST in D is denoted as freq(RST), and its 
support is given by supp(RST) = freq(RST)/|D|. For some 
positive number σ, we say that an RST is σ-frequent in D 
if supp(RST) ≥ σ. Figure 3 shows a database of three 
query pattern trees and a frequent root subtree. RST 
occurs in QPT1 and QPT2. Hence, its frequency is 
freq(RST) = 2, with a support of supp(RST) = 2/3. 
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2.3 Tree Pattern Matching 

In general, a tree T = <V, E> matches another tree T’ 
= <V’, E’> if there exists a mapping ϕ such that 
1. Root(T’) = ϕ (Root(T)) and ∀v ∈ V, ∃v’∈ V’s.t. v’ = 

ϕ (v) where v.label = v’.label 
2. ϕ preserves the parent-child relation: if (v1,v2) ∈ E, 

then (ϕ(v1), ϕ(v2)) ∈ E’  
then we say that T is a subtree of T’ or T is contained in T’. 

This naïve definition is not applicable to our tree 
matching problem due to the presence of wildcards and 
relative paths in the query pattern trees. Figure 4 shows 
two query trees T1 and T2. Intuitively, the path 
“book/section/figure/title” in T2 matches the path 
“book//title” in T1 since “//” in “book//title” indicates zero 
or more labels between the nodes book and title. Since the 
wildcard “*” can be substituted by ANY single node, then 
“book/section/figure/image” matches “book/section/*/ 
image”. We say that T2 matches T1. In other words, T2 is 
contained in T1, written as T2 ⊆ T1.  
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While one could try to expand the non-deterministic 
paths such as “book//title” to become a deterministic path 
“book/section/figure/title”, this is only feasible when the 
XML DTD (or schema) is a directed acyclic graph. The 
expansion method will fail if the DTD contains cycles. 
Nonetheless, expanding “//” remains crucial. This is 
because without the context information, one cannot tell 
whether a path is contained in “//” or not.  

Figure 5 shows a query pattern containing two relative 
path expressions and three rooted subtrees. RST1 and 
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Special Labels

Q1 {resultPattern = {/book/author, /book/title, /book/price}, 
predicates = {/book/author/lastname/data() = ”Buneman”}, 
documents = {book.xml}} 

where resultPattern is the schema pattern of the result, 
predicates are the filtering conditions used in the query, 
and documents are the XML data files involved.  
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Figure 1. Book DTD Tree. 

Next, we extract the paths from the set predicates by 
ignoring the selection conditions. For example, we can 
extract the path “/book/author/lastname/” from the 
predicate /book/author/lastname/data() = “Buneman” in 
Q1. We combine these extracted path expressions with the 
paths in the set resultPattern to generate the query pattern 
tree. Figure 2(a) shows the query pattern tree obtained for 
Q1. A query pattern tree may not only consist of element 
tag names, but also wildcard “*” and relative path “//”. 
Wildcards indicate the ANY label in DTD, while relative 
paths indicate zero or more labels (descendant-or-self). 
Formally, a query pattern tree can be defined as follows. 

Definition 1 (Query Pattern Tree): A query pattern 
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set, and E is the edge set. The root is denoted as 
Root(QPT). We denote each edge e by (v1, v2) where node 
v1 is the parent of node v2. Each vertex v has a label with 
its value in {“*”, “//”, tagSet}, where tagSet is the set of 
all element and attribute names in the underlying DTD. 
We denote the label of a vertex v as v.label. 
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Definition 2 (Rooted Subtree): Given a query pattern 
tree QPT = <V, E>, a rooted subtree RST = <V’, E’> of 
QPT is a subtree of QPT if it satisfies the conditions: (1) 
Root (RST) = Root (QPT), and (2) V’⊆ V, E’ ⊆ E. 

Figure 2(b) shows a rooted subtree of the query pattern 
tree in Figure 2(a). 
 
2.2 Frequent Query Pattern Trees 

Having transformed a set of queries into query pattern 
trees, we obtain a database of query pattern trees D = 
{QPT1,….,QPTN}. The query pattern mining problem is to 
find all the frequent rooted subtrees that occur in D with 

some minimum support level. The total occurrence of a 
rooted subtree RST in D is denoted as freq(RST), and its 
support is given by supp(RST) = freq(RST)/|D|. For some 
positive number σ, we say that an RST is σ-frequent in D 
if supp(RST) ≥ σ. Figure 3 shows a database of three 
query pattern trees and a frequent root subtree. RST 
occurs in QPT1 and QPT2. Hence, its frequency is 
freq(RST) = 2, with a support of supp(RST) = 2/3. 
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2.3 Tree Pattern Matching 

In general, a tree T = <V, E> matches another tree T’ 
= <V’, E’> if there exists a mapping ϕ such that 
1. Root(T’) = ϕ (Root(T)) and ∀v ∈ V, ∃v’∈ V’s.t. v’ = 

ϕ (v) where v.label = v’.label 
2. ϕ preserves the parent-child relation: if (v1,v2) ∈ E, 

then (ϕ(v1), ϕ(v2)) ∈ E’  
then we say that T is a subtree of T’ or T is contained in T’. 

This naïve definition is not applicable to our tree 
matching problem due to the presence of wildcards and 
relative paths in the query pattern trees. Figure 4 shows 
two query trees T1 and T2. Intuitively, the path 
“book/section/figure/title” in T2 matches the path 
“book//title” in T1 since “//” in “book//title” indicates zero 
or more labels between the nodes book and title. Since the 
wildcard “*” can be substituted by ANY single node, then 
“book/section/figure/image” matches “book/section/*/ 
image”. We say that T2 matches T1. In other words, T2 is 
contained in T1, written as T2 ⊆ T1.  

section

title image

figure
⊇  

T2

book
author

book

title image

author

T1

address

//

 
Figure 4. Example of Pattern Tree Containment. 

While one could try to expand the non-deterministic 
paths such as “book//title” to become a deterministic path 
“book/section/figure/title”, this is only feasible when the 
XML DTD (or schema) is a directed acyclic graph. The 
expansion method will fail if the DTD contains cycles. 
Nonetheless, expanding “//” remains crucial. This is 
because without the context information, one cannot tell 
whether a path is contained in “//” or not.  

Figure 5 shows a query pattern containing two relative 
path expressions and three rooted subtrees. RST1 and 
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Frequent Pattern Mining and Classification

Frequent pattern mining can also be used to extract features for
classification tasks:

1 Find frequent patterns per class.

2 Define discriminating patterns, for example, as patterns that are
frequent in one class but not in the other.

3 Use the presence/absence of such a discriminating pattern as a
(binary) feature for constructing a classifier (e.g. classification tree!).
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Fig. 4. A decision tree as produced by the Tree2 algorithm

make is the one w.r.t. a stopping criterion for further growth of the tree. To
this effect, a minimum value for the score of the correlation measure has to be
specified, which can be based on statistical theory, thus giving the user a better
guidance for making this decision.

Algorithm 1 The Tree2 algorithm

Tree2(D, σ, τuser , DT)

1: psplit = EnumerateBestSubtree(�, 0, σ, τuser, ∅)
2: if psplit �= ∅ then
3: Add node including psplit to the DT

4: Tree2( {T ∈ D|psplit embedded in T} , σ, τuser, DT)

5: Tree2( {T ∈ D|psplit not embedded in T} , σ, τuser, DT)
6: return DT

EnumerateBestSubtree(t, τ, σ, τuser, p)

1: for all canonical expansions t′ of t do
2: if σ(t′) > τ ∧ σ(t′) ≥ τuser then
3: p = t′, τ = σ(t′)
4: if ubσ(t′) ≥ τ then
5: p = EnumerateBestSubtree(t′, τ, σ, τuser, p)
6: return p

Tree2 has several desirable properties. Firstly, the resulting classifier is in-
tegrated in the sense that it uses patterns directly, thus circumventing the need
for the user to restrict the amount of features and making the resulting classifier
more understandable. Secondly, by using correlation measures for quantifying
the quality of patterns, we give the user a sounder theoretical foundation on
which to base the decision about which learned tests to consider significant and
include in the model. Thirdly, we avoid using heuristics that force the user to de-
cide on the values of parameters that could have a severe impact on the resulting
model’s accuracy. Using principled search guarantees that Tree2 finds the best
discriminating pattern for each node in the decision tree w.r.t. the correlation
measure used. Finally, as the experiments show, the resulting decision tree is
far smaller than the rule sets produced by XRules classifier [4], while achieving
comparable accuracy, and is therefore more easily interpretable by human users.
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