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-
Frequent Pattern Mining

© Frequent Item Set Mining
@ Sequence Mining

© Tree Mining

@ Graph Mining
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R —
Node Labeled Graph

Definition (Node Labeled Graph)

A node labeled graph is a quadruple G = (V, E, ¥, L) where:
@ V is the set of nodes,
@ E is the set of edges,
@ X is a set of labels, and

@ L:V — ¥ is a labeling function that assigns labels
from X to nodes in V. )
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]
Labeled Rooted Unordered Tree

Definition (Labeled Rooted Unordered Tree)

A labeled rooted unordered tree U = (V,E, X, L,v") is an acyclic
undirected connected graph G = (V, E, X, L) with a special node v" called
the root of the tree such that there exists exactly one path between the

root node and any other node in V.
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]
Labeled Rooted Ordered Tree

Definition (Labeled Rooted Ordered Tree)

A labeled rooted ordered tree T = (V,E, %, L,v", <) is an unordered tree
U= (V,E,X, L, v") where between all the siblings an order < is defined.
To every node in an ordered tree a preorder (pre(v)) number is assigned
according to the depth-first (or preorder) traversal of the tree.
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Node Numbering according to Preorder Traversal
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R —
Tree Inclusion Relations

© Bottom-up subtree.
@ Induced subtree.
© Embedded subtree.
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]
Induced Subtree

Let 7(v) denote the parent of node v.

Definition (Induced Subtree)
Given two ordered trees D and T, we call T an induced subtree of D if
there exists an injective matching function ¢ of V1 into Vp satisfying the
following conditions:

@ ¢ preserves the labels: L1(v) = Lp(¢(v)).

@ ¢ preserves the parent-child relation:

vi =mr(vj) < ¢(vi) = mp(¢(v)))-
© ¢ preserves the left to right order between the nodes: pre(v;) <

pre(vj) < pre(é(vi))) < pre(¢(v))).

An induced subtree T can be obtained from a tree D by repeatedly
removing leaf nodes, or possibly the root node if it has only one child.
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Induced Subtree
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]
Induced Subtree

Matching function

Q o(v1) =wy
Q o(v2) = wg
Q ¢(w3) = wio
Verify that
Q@ L7(vi) =Lp(wy) =A
Q L7(v2) =Lp(wg)=A

© L7(w3) =Lp(wio) =B

Likewise, we can verify that the other conditions are met, so T is an
induced subtree of D.
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]
Embedded Subtree

Let 7*(v) denote the set of ancestors of v.

Definition (Embedded Subtree)
Given two ordered trees D and T, we call T an embedded subtree of D if
there exists an injective matching function ¢ of V1 into Vp satisfying the
following conditions:
Q ¢ preserves the labels: L1(v) = Lp(¢(v)).
@ ¢ preserves the ancestor-descendant relation:
vi € {r7(vj)} & &(vi) € {mp(a(v)))}-
@ ¢ preserves the left to right order between the nodes: pre(v;) <
pre(vj) < pre(¢(v;))) < pre(é(v)))-
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Embedded Subtree
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Frequent Tree Mining

Given a database of trees D = {di,dy,...,d,} and a tree inclusion
relation <, we define the support of a tree T as

H{deD|T=<d}

Given a minimum support threshold o, compute

F(o,D, =) = {T | supp(T, D) > o}
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Anti-Monotonicity Property

Given a database of trees D, and two trees T1 and T», then

T1 = T = supp(T1, D) > supp(Tz, D),

becauseVd e D : T, <d = T1 < d.

Hence, in a level-wise search for frequent trees, there is no point in
expanding infrequent trees.
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|
Mining Frequent Induced Trees with FREQT

We must address two basic issues:

© Generate candidate frequent trees: add a single node with a frequent
label to a frequent tree. This is done by so-called right-most
extension.

@ Record the occurrences of the candidate trees in the data trees, and
determine whether they are frequent.

Ad Feelders ( Universiteit Utrecht ) Data Mining October 11, 2013 15 / 40



-
Right-most Extension

Let Ty denote a tree of size k (a tree with k nodes).

@ Consider the node numbering of Ty according to pre-order
(depth-first) traversal of the tree.

@ The right-most branch of the tree is the path from the root node to
the right-most leaf (i.e. the node with number k).

@ To expand the tree Ty, it is only allowed to add a node as the
right-most child of a node on the right-most branch of Tj. This node
gets number k 4 1, as it is the last node in the pre-order traversal of

Tyt
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Right-most Extension with label set ¥ = {a, b}
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Right-most Extension

The right-most extension technique generates each tree at most once.

Consider any tree Ti;1. This tree only has one predecessor (in the
generation sequence), namely the tree Ty that is obtained by removing the
right-most leaf of Ty (i.e. the node with number k + 1 in the pre-order
traversal).

Also, the right-most expansion technique generates every possible tree, so
each tree is generated exactly once.
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R —
Occurrence List

@ For counting the frequency of a pattern tree an occurrence list is
maintained that contains the list of nodes in the data tree to which
the nodes in the pattern tree can be mapped.

o FREQT only stores the nodes of the data tree to which the
right-most node in the pattern tree can be mapped.

o This is sufficient since only the nodes on the right-most branch are
needed for future extension.
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Right-most Occurrence List

(@) (1,3.4,8,9,11,14)

-®

@® (2,7.5.12,10)
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Example

Consider the following database of labeled ordered trees:

@ @
dy (@
@tm @ @
@ &

Find all frequent induced subtrees with support at least 3.
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Example: Level 1

At level 1 we have the following three candidates:
1 2 3
@ " "©

The right-most occurrence lists are:

nHn @ 6
ch (13) (2 -
d> (2,3) (1,4) -
ds (124) (3) -
dy (12)  (34) (5
ds (1,34) (2,5) -
Support 5 5 1
Frequent? Y Y N
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R —
Example: Level 2

At level 2 we have the following candidates:
4 @ 5@ 6@ 7@
@ & @ o

The RMO-lists are:

4 6 (6 O
dy ® @ - -
d> - (4 (@3 -
ds 2 3 (4 -
da (2) G4 - -
ds (3.4) (2,5) -
Support 4 5 2 0
Frequent? Y Y N N
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R —
Example: Level 3

The level 3 candidates are:

0300 Tadntnte

@ @ ®

The RMO-lists are:

(8) (9 (10) (11) (12) (13) (14) (15)
. - - - - - - ® -
d> - = — — — — — —
di S I © N O
dy - = — — - (34) - —
ds 4 - 06 - = 6 6B =
Support 1 1 1 0 0 3 2 1
Frequent? | N N N N N Y N N
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Example: Level 4

The level 4 candidates are:
16

S S
@® @©® @b@® @ b
®

@

The RMO-lists are:

(16) (17) (18) (19)
di - — — -

d> — — — —

ds 4) -
dy — — — (4)
ds — — — —
Support 1 0
Frequent? N N N

o
—
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R —
Applications of frequent tree mining

Mining usage patterns in Web logs.
Mining frequent query patterns from XML queries.

Classification of XML documents according to subtree structures.
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-
Mining usage patterns in web logs

Mining data from web server log files to:
@ Study customer behavior.

o Better organize web pages.
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LOGML

o LOGML is a publicly available XML application to describe log
reports of web servers.

@ LOGML provides an XML vocabulary to structurally express the
contents of the log file in a compact manner.
o LOGML documents have three parts

© A web graph induced by the source-target pairs in the raw logs.

@ A summary of statistics.

© A list of user sessions (subgraphs of the web graph) extracted from the
logs.
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R —
Example user session

Each user session has a session id (IP or host name), a list of edges
(uedges) giving source and target node pairs, and the time (utime) when
a link is traversed. Example user session:

Ad Feelders

<userSession name="ppp0-69.ank2.isbank.net.tr" .
source="5938" target="16470" utime="7:53:46"/>

<uedge
<uedge
<uedge
<uedge
<uedge
<uedge

source="16470"
source="16470"
source="24755"
source="24755"
source="16470"

( Universiteit Utrecht )

target="24754"
target="24755"
target="47387"
target="47397"
target="24756"

Data Mining

utime="7:
utime="7:
utime="7:
utime="7:
utime="7:

>

56:13"/>
56:36"/>
57:14"/>
57:28"/>
58:30"/>
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Tree representation of example user session
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Example of frequent subtree found

One day’s logs from CS web site (Rensselaer Polytechnic Institute). The

pattern refers to a popular Turkish poetry site maintained by one of the
department members.

Let Path=http://www.cs.rpi.edu/ name/poetry
Let Akova = Path/poems/akgun_akova
FREQUENCY=59, NODES = 5938 16395 38699 -1 38698 -1 38700
Path/sair_listesi.html
|
Path/poems/akgun_akova/index.html
|
Akova/picture.html Akova/contents.html Akova/biyografi.html
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R —
Mining frequent query patterns

@ As XML prevails over the internet, the efficient retrieval of XML data
becomes more important.

@ Research to improve query response times has largely concentrated on
indexing XML documents and processing regular path expressions.

@ Another approach is to discover frequent query patterns since the
answers to those queries can be stored and indexed.
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Mining frequent query patterns

Given an XML data source and the history of XML queries {q1,...,qn}

issued against it, transform them into a corresponding history of query
pattern trees D = {QPT1,..., QPTy}.

Mining frequent query patterns is equivalent to finding the rooted subtrees
that occur frequently over the set of pattern trees D.
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-
Document Type Definition

firstnam address para*

lastname

source

Figure 1. Book DTD Tree.

The purpose of a DTD (Document Type Definition) is to define the legal
building blocks of an XML document.
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A query and its corresponding query pattern tree

Qq: for $b in document(book.xml) /book
where some $a in $b/author
satisfies $a/lastname/data()="Buneman”
return <result>

<book>{$b/title, $b/author, $b/price}<book>
</result>

We extract the following information from Qs:
o resultpattern={/book/author, /book/title, book/price}
e predicates={/book/author/lastname/data()="Buneman" }
e documents={book.html}
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R —
A query and its corresponding query pattern tree

To construct a query pattern tree we:

@ Extract the paths from the set predicates by ignoring the selection
conditions.

@ Combine these extracted path expressions with the paths in the set
resultpattern to generate the query pattern tree.

@ Exactly how they are combined is unfortunately not clear from the

source article!
% bo?io

title author price title author
(a) Query Pattern Tree for Q, (b) A Rooted Subtree

Figure 2. Query Pattern Tree for Q.
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R —
Example frequent rooted subtree

bo ) book book book
title rice _
title | “price ’ titleTprice
author o 5/%“@

author author

ﬁrstname1 »
astname title
QPTq QPT» QPT3 RST

Figure 3. Database of Query Pattern Trees and a
Frequent Rooted Subtree.
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R —
Special Labels

book book
uthor sectio author
-
figure
title IMage address

title image
T1 T g

Figure 4. Example of Pattern Tree Containment.
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-
Frequent Pattern Mining and Classification

Frequent pattern mining can also be used to extract features for
classification tasks:

© Find frequent patterns per class.

@ Define discriminating patterns, for example, as patterns that are
frequent in one class but not in the other.

© Use the presence/absence of such a discriminating pattern as a
(binary) feature for constructing a classifier (e.g. classification tree!).
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-
Frequent Pattern Mining and Classification

Fig. 4. A decision tree as produced by the TREE? algorithm
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