Data Mining 2013
Frequent Pattern Mining (2)

Ad Feelders

Universiteit Utrecht

October 11, 2013

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 1/ 40

-
Frequent Pattern Mining

© Frequent Item Set Mining
@ Sequence Mining

© Tree Mining

@ Graph Mining

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 2 /40

R —
Node Labeled Graph

Definition (Node Labeled Graph)

A node labeled graph is a quadruple G = (V, E, ¥, L) where:
@ V is the set of nodes,
@ E is the set of edges,
@ X is a set of labels, and

@ L:V — ¥ is a labeling function that assigns labels
from X to nodes in V.)

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 3 /40

]
Labeled Rooted Unordered Tree

Definition (Labeled Rooted Unordered Tree)

A labeled rooted unordered tree U = (V,E, X, L,v") is an acyclic
undirected connected graph G = (V, E, X, L) with a special node v" called
the root of the tree such that there exists exactly one path between the

root node and any other node in V.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 4 /40

]
Labeled Rooted Ordered Tree

Definition (Labeled Rooted Ordered Tree)

A labeled rooted ordered tree T = (V,E, %, L,v", <) is an unordered tree
U= (V,E,X, L, v") where between all the siblings an order < is defined.
To every node in an ordered tree a preorder (pre(v)) number is assigned
according to the depth-first (or preorder) traversal of the tree.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 5/ 40

Node Numbering according to Preorder Traversal

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 6 / 40

R —
Tree Inclusion Relations

© Bottom-up subtree.
@ Induced subtree.
© Embedded subtree.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 7 /40

]
Induced Subtree

Let 7(v) denote the parent of node v.

Definition (Induced Subtree)
Given two ordered trees D and T, we call T an induced subtree of D if
there exists an injective matching function ¢ of V1 into Vp satisfying the
following conditions:

@ ¢ preserves the labels: L1(v) = Lp(¢(v)).

@ ¢ preserves the parent-child relation:

vi =mr(vj) < ¢(vi) = mp(¢(v)))-
© ¢ preserves the left to right order between the nodes: pre(v;) <

pre(vj) < pre(é(vi))) < pre(¢(v))).

An induced subtree T can be obtained from a tree D by repeatedly
removing leaf nodes, or possibly the root node if it has only one child.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 8 /40

Induced Subtree

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 9 /40

]
Induced Subtree

Matching function

Q o(v1) =wy
Q o(v2) = wg
Q ¢(w3) = wio
Verify that
Q@ L7(vi) =Lp(wy) =A
Q L7(v2) =Lp(wg)=A

© L7(w3) =Lp(wio) =B

Likewise, we can verify that the other conditions are met, so T is an
induced subtree of D.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 10 / 40

]
Embedded Subtree

Let 7*(v) denote the set of ancestors of v.

Definition (Embedded Subtree)
Given two ordered trees D and T, we call T an embedded subtree of D if
there exists an injective matching function ¢ of V1 into Vp satisfying the
following conditions:
Q ¢ preserves the labels: L1(v) = Lp(¢(v)).
@ ¢ preserves the ancestor-descendant relation:
vi € {r7(vj)} & &(vi) € {mp(a(v)))}-
@ ¢ preserves the left to right order between the nodes: pre(v;) <
pre(vj) < pre(¢(v;))) < pre(é(v)))-

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 11 / 40

Embedded Subtree

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 12 / 40

Frequent Tree Mining

Given a database of trees D = {di,dy,...,d,} and a tree inclusion
relation <, we define the support of a tree T as

H{deD|T=<d}

Given a minimum support threshold o, compute

F(o,D, =) = {T | supp(T, D) > o}

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 13 / 40

Anti-Monotonicity Property

Given a database of trees D, and two trees T1 and T», then

T1 = T = supp(T1, D) > supp(Tz, D),

becauseVd e D : T, <d = T1 < d.

Hence, in a level-wise search for frequent trees, there is no point in
expanding infrequent trees.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 14 / 40

|
Mining Frequent Induced Trees with FREQT

We must address two basic issues:

© Generate candidate frequent trees: add a single node with a frequent
label to a frequent tree. This is done by so-called right-most
extension.

@ Record the occurrences of the candidate trees in the data trees, and
determine whether they are frequent.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 15 / 40

-
Right-most Extension

Let Ty denote a tree of size k (a tree with k nodes).

@ Consider the node numbering of Ty according to pre-order
(depth-first) traversal of the tree.

@ The right-most branch of the tree is the path from the root node to
the right-most leaf (i.e. the node with number k).

@ To expand the tree Ty, it is only allowed to add a node as the
right-most child of a node on the right-most branch of Tj. This node
gets number k 4 1, as it is the last node in the pre-order traversal of

Tyt

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 16 / 40

o
Right-most Extension with label set ¥ = {a, b}

®@-®

®-—©

%*‘@
*@ “@

'

®

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 17 / 40

Right-most Extension

The right-most extension technique generates each tree at most once.

Consider any tree Ti;1. This tree only has one predecessor (in the
generation sequence), namely the tree Ty that is obtained by removing the
right-most leaf of Ty (i.e. the node with number k + 1 in the pre-order
traversal).

Also, the right-most expansion technique generates every possible tree, so
each tree is generated exactly once.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 18 / 40

R —
Occurrence List

@ For counting the frequency of a pattern tree an occurrence list is
maintained that contains the list of nodes in the data tree to which
the nodes in the pattern tree can be mapped.

o FREQT only stores the nodes of the data tree to which the
right-most node in the pattern tree can be mapped.

o This is sufficient since only the nodes on the right-most branch are
needed for future extension.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 19 / 40

Right-most Occurrence List

(@) (1,3.4,8,9,11,14)

-®

@® (2,7.5.12,10)

Ad Feelders (Universiteit Utrecht)

¢

@ (38)

Data Mining

@ (14)

® (6.13)

October 11, 2013

20 / 40

Example

Consider the following database of labeled ordered trees:

@ @
dy (@
@tm @ @
@ &

Find all frequent induced subtrees with support at least 3.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 21 / 40

Example: Level 1

At level 1 we have the following three candidates:
1 2 3
@ " "©

The right-most occurrence lists are:

nHn @ 6
ch (13) (2 -
d> (2,3) (1,4) -
ds (124) (3) -
dy (12) (34) (5
ds (1,34) (2,5) -
Support 5 5 1
Frequent? Y Y N

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 22 / 40

R —
Example: Level 2

At level 2 we have the following candidates:
4 @ 5@ 6@ 7@
@ & @ o

The RMO-lists are:

4 6 (6 O
dy ® @ - -
d> - (4 (@3 -
ds 2 3 (4 -
da (2) G4 - -
ds (3.4) (2,5) -
Support 4 5 2 0
Frequent? Y Y N N

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 23 / 40

R —
Example: Level 3

The level 3 candidates are:

0300 Tadntnte

@ @ ®

The RMO-lists are:

(8) (9 (10) (11) (12) (13) (14) (15)
. - - - - - - ® -
d> - = — — — — — —
di S I © N O
dy - = — — - (34) - —
ds 4 - 06 - = 6 6B =
Support 1 1 1 0 0 3 2 1
Frequent? | N N N N N Y N N

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 24 / 40

Example: Level 4

The level 4 candidates are:
16

S S
@® @©® @b@® @ b
®

@

The RMO-lists are:

(16) (17) (18) (19)
di - — — -

d> — — — —

ds 4) -
dy — — — (4)
ds — — — —
Support 1 0
Frequent? N N N

o
—

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 25 / 40

R —
Applications of frequent tree mining

Mining usage patterns in Web logs.
Mining frequent query patterns from XML queries.

Classification of XML documents according to subtree structures.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 26 / 40

-
Mining usage patterns in web logs

Mining data from web server log files to:
@ Study customer behavior.

o Better organize web pages.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 27 / 40

LOGML

o LOGML is a publicly available XML application to describe log
reports of web servers.

@ LOGML provides an XML vocabulary to structurally express the
contents of the log file in a compact manner.
o LOGML documents have three parts

© A web graph induced by the source-target pairs in the raw logs.

@ A summary of statistics.

© A list of user sessions (subgraphs of the web graph) extracted from the
logs.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 28 / 40

R —
Example user session

Each user session has a session id (IP or host name), a list of edges
(uedges) giving source and target node pairs, and the time (utime) when
a link is traversed. Example user session:

Ad Feelders

<userSession name="ppp0-69.ank2.isbank.net.tr" .
source="5938" target="16470" utime="7:53:46"/>

<uedge
<uedge
<uedge
<uedge
<uedge
<uedge

source="16470"
source="16470"
source="24755"
source="24755"
source="16470"

(Universiteit Utrecht)

target="24754"
target="24755"
target="47387"
target="47397"
target="24756"

Data Mining

utime="7:
utime="7:
utime="7:
utime="7:
utime="7:

>

56:13"/>
56:36"/>
57:14"/>
57:28"/>
58:30"/>

October 11, 2013

29 / 40

Tree representation of example user session

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 30 / 40

Example of frequent subtree found

One day’s logs from CS web site (Rensselaer Polytechnic Institute). The

pattern refers to a popular Turkish poetry site maintained by one of the
department members.

Let Path=http://www.cs.rpi.edu/ name/poetry
Let Akova = Path/poems/akgun_akova
FREQUENCY=59, NODES = 5938 16395 38699 -1 38698 -1 38700
Path/sair_listesi.html
|
Path/poems/akgun_akova/index.html
|
Akova/picture.html Akova/contents.html Akova/biyografi.html

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 31/ 40

R —
Mining frequent query patterns

@ As XML prevails over the internet, the efficient retrieval of XML data
becomes more important.

@ Research to improve query response times has largely concentrated on
indexing XML documents and processing regular path expressions.

@ Another approach is to discover frequent query patterns since the
answers to those queries can be stored and indexed.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 32 /40

Mining frequent query patterns

Given an XML data source and the history of XML queries {q1,...,qn}

issued against it, transform them into a corresponding history of query
pattern trees D = {QPT1,..., QPTy}.

Mining frequent query patterns is equivalent to finding the rooted subtrees
that occur frequently over the set of pattern trees D.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 33 /40

-
Document Type Definition

firstnam address para*

lastname

source

Figure 1. Book DTD Tree.

The purpose of a DTD (Document Type Definition) is to define the legal
building blocks of an XML document.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 34 / 40

A query and its corresponding query pattern tree

Qq: for $b in document(book.xml) /book
where some $a in $b/author
satisfies $a/lastname/data()="Buneman”
return <result>

<book>{$b/title, $b/author, $b/price}<book>
</result>

We extract the following information from Qs:
o resultpattern={/book/author, /book/title, book/price}
e predicates={/book/author/lastname/data()="Buneman" }
e documents={book.html}

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 35/ 40

R —
A query and its corresponding query pattern tree

To construct a query pattern tree we:

@ Extract the paths from the set predicates by ignoring the selection
conditions.

@ Combine these extracted path expressions with the paths in the set
resultpattern to generate the query pattern tree.

@ Exactly how they are combined is unfortunately not clear from the

source article!
% bo?io

title author price title author
(a) Query Pattern Tree for Q, (b) A Rooted Subtree

Figure 2. Query Pattern Tree for Q.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 36 / 40

R —
Example frequent rooted subtree

bo) book book book
title rice _
title | “price ’ titleTprice
author o 5/%“@

author author

ﬁrstname1 »
astname title
QPTq QPT» QPT3 RST

Figure 3. Database of Query Pattern Trees and a
Frequent Rooted Subtree.

Data Mining October 11, 2013 37 / 40

R —
Special Labels

book book
uthor sectio author
-
figure
title IMage address

title image
T1 T g

Figure 4. Example of Pattern Tree Containment.

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 38 / 40

-
Frequent Pattern Mining and Classification

Frequent pattern mining can also be used to extract features for
classification tasks:

© Find frequent patterns per class.

@ Define discriminating patterns, for example, as patterns that are
frequent in one class but not in the other.

© Use the presence/absence of such a discriminating pattern as a
(binary) feature for constructing a classifier (e.g. classification tree!).

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 39 / 40

-
Frequent Pattern Mining and Classification

Fig. 4. A decision tree as produced by the TREE? algorithm

Ad Feelders (Universiteit Utrecht) Data Mining October 11, 2013 40 / 40

