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Learning Bayesian Networks: Overview

structure known, complete data (done)

structure unknown, complete data (today)

structure known, incomplete data (today)

structure unknown, incomplete data (beyond the scope)
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Structure Known, Complete Data

The loglikelihood function for a Bayesian Network is:

L =
k∑

i=1

∑
xi ,xpa(i)

n(xi , xpa(i)) log p(xi | xpa(i))

The maximum likelihood estimate of p(xi | xpa(i)) is:

p̂(xi | xpa(i)) =
n(xi , xpa(i))

n(xpa(i))
,

where where n(xpa(i)) is the number of observations (rows) with parent
configuration xpa(i), and n(xi , xpa(i)) is the number of observations with
parent configuration xpa(i) and value xi for variable Xi .
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Maximized Loglikelihood

The value of the loglikelihood function evaluated at its maximum therefore
is (fill in the maximum likelihood estimates in the loglikelihood function):

L =
k∑

i=1

∑
xi ,xpa(i)

n(xi , xpa(i)) log
n(xi , xpa(i))

n(xpa(i))

The higher this value, the better the model fits the data.

The saturated model (complete graph) always has the highest
loglikelihood score.

To avoid overfitting, we must penalize model complexity.
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Structure Unknown, Complete Data

Scoring functions:

AIC(M) = LM − dim(M).

BIC(M) = LM − log n
2 dim(M).

where LM is the maximized value of the loglikelihood function for model
M and dim(M) is the number of parameters in the model.

BIC gives a higher penalty for model complexity (n > 7), so tends to lead
to less complex models than AIC.

Note: earlier we defined AIC (M) = 2(Lsat −LM) + 2dim(M). Dividing by
−2 and ignoring the constant Lsat gives the current definition.
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Optimization Problem

Given

Training data.

Scoring function (BIC or AIC).

Space of possible models (all DAGs).

find the model that maximizes the score.

Most model search algorithms do not require an a priori ordering of
the variables!

The number of labeled acyclic directed graphs on k nodes is given by
the recurrence

ak =
k∑

j=1

(−1)j−1
(
k

j

)
2j(k−j)ak−j

For example, a6 = 3, 781, 503.
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Heuristic Search

Define which models are neighbors of a given model (typically:
addition, removal, or reversal of an arc).

Traverse search space looking for high-scoring models, e.g. by greedy
hill-climbing.
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Score Decomposes

The loglikelihood score

L =
k∑

i=1

∑
xi ,xpa(i)

n(xi , xpa(i)) log
n(xi , xpa(i))

n(xpa(i))

must be computed many times for different models in structure learning.

Luckily, it is a sum of terms, where each term contains the variables
{i} ∪ pa(i).

Hence, when making a change to the model, we only have to recompute
the score for those variables for which the parent set has changed!
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Example Data Set

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3
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Score this model

1 2

3

4
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Relevant Data For Scoring Node 1

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3

Score node 1 = 5 log 5
10 + 5 log 5

10
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Relevant Data For Scoring Node 2

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3

Score node 2 = 6 log 6
10 + 4 log 4

10
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Relevant Data For Scoring Node 3

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3

Score node 3 = 2 log 2
3 + log 1

3
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Relevant Data For Scoring Node 3

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
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8 2 1 2 3
9 2 2 2 3

10 2 2 1 3
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Relevant Data For Scoring Node 3

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3

Score node 3 = 2 log 2
3 + log 1

3 + 2 log 1 + log 1
3 + 2 log 2

3
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Relevant Data For Estimating Scoring Node 3

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3

Score node 3 = 2 log 2
3 + log 1

3 + 2 log 1 + log 1
3 + 2 log 2

3 + log 1
2 + log 1

2
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Relevant Data For Scoring Node 4

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3

Score node 4 = 2 log 2
4 + log 1

4 + log 1
4
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Relevant Data For Scoring Node 4

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3

Score node 4 = 2 log 2
4 + log 1

4 + log 1
4 + 2 log 2

6 + log 1
6 + 3 log 3

6
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Total Score

Summing the likelihood score over all nodes, we get:

L = 5 log
5

10
+ 5 log

5

10
+ 6 log

6

10
+ 4 log

4

10

+ 2 log
2

3
+ log

1

3
+ 2 log 1 + log

1

3
+ 2 log

2

3

+ log
1

2
+ log

1

2
+ 2 log

2

4
+ log

1

4
+ log

1

4

+ 2 log
2

6
+ log

1

6
+ 3 log

3

6
≈ −29.09
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Add an edge from X1 to X2

1 2

3

4
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Score is Decomposable

L = 5 log
5

10
+ 5 log

5

10
+ 6 log 6

10 + 4 log 4
10

+2 log
2

3
+ log

1

3

+2 log 1 + log
1

3
+ 2 log

2

3

+ log
1

2
+ log

1

2

+2 log
2

4
+ log

1

4
+ log

1

4

+2 log
2

6
+ log

1

6
+ 3 log

3

6
≈ −29.09

When we add an edge from X1 to X2, only the parent set of node 2 changes.
Therefore, only the score of node 2 (the boxed part) has to be recomputed.
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Relevant Data For Re-scoring Node 2

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3

New score node 2 = 3 log 3
5 + 2 log 2

5
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Relevant Data For Re-scoring Node 2

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
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5 1 2 2 2
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5 + 3 log 3
5 + 2 log 2
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Score Decomposes

L = 5 log
5

10
+ 5 log

5

10
+ 3 log 3

5 + 2 log 2
5 + 3 log 3

5 + 2 log 2
5

+ 2 log
2

3
+ log

1

3

+ 2 log 1 + log
1

3
+ 2 log

2

3

+ log
1

2
+ log

1

2

+ 2 log
2

4
+ log

1

4
+ log

1

4

+ 2 log
2

6
+ log

1

6
+ 3 log

3

6
≈ −29.09

The boxed part is the new contribution of node 2 to the score.
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Add an edge from X1 to X4

1 2

3

4
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Score Decomposes

L = 5 log
5

10
+ 5 log

5

10
+ 6 log

6

10
+ 4 log

4

10

+2 log
2

3
+ log

1

3

+2 log 1 + log
1

3
+ 2 log

2

3

+ log
1

2
+ log

1

2

+ 2 log 2
4 + log 1

4 + log 1
4

+ 2 log 2
6 + log 1

6 + 3 log 3
6 ≈ −29.09

When we add an edge from X1 to X4, only the parent set of node 4 changes.
Therefore, only the score of node 4 (the boxed part) has to be recomputed.
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Relevant Data For Re-scoring Node 4

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 1 2 2 1
5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3

New score node 4 = 2 log 1

Ad Feelders ( Universiteit Utrecht ) Data Mining October 22, 2013 27 / 60



Relevant Data For Re-scoring Node 4

obs X1 X2 X3 X4

1 1 1 1 1
2 1 1 1 1
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5 1 2 2 2
6 2 1 1 2
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10 2 2 1 3
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3 + log 1

3
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Relevant Data For Re-scoring Node 4
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Relevant Data For Re-scoring Node 4

obs X1 X2 X3 X4

1 1 1 1 1
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5 1 2 2 2
6 2 1 1 2
7 2 1 2 3
8 2 1 2 3
9 2 2 2 3

10 2 2 1 3
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Score Decomposes

L = 5 log
5

10
+ 5 log

5

10
+ 6 log

6

10
+ 4 log

4

10

+2 log
2

3
+ log

1

3

+2 log 1 + log
1

3
+ 2 log

2

3

+ log
1

2
+ log

1

2

+ 2 log 1 + 2 log 2
3 + log 1

3

+ log 1
2 + log 1

2 + 3 log 1 ≈ −22.16

The boxed part is the new contribution of node 4 to the score.

Ad Feelders ( Universiteit Utrecht ) Data Mining October 22, 2013 31 / 60



Counting Parameters

The number of parameters of a Bayesian network is:

k∑
i=1

(di − 1)
∏

j∈pa(i)

dj

where k is the number of variables in the network, and di is the number of
possible values of Xi .

If Xi has no parents, the number of parent configurations should be taken
to be 1, so it contributes di − 1 parameters.
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A Simple Structure Learning Algorithm

Algorithm 1 BN Structure Learning

1: G ← initial graph
2: max ← score(G )
3: repeat
4: nb ← neighbours(G )
5: for all G ′ ∈ nb do
6: if score (G ′) > max then
7: max ← score(G ′)
8: G ← G ′

9: end if
10: end for
11: until no change to G
12: return G
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Interpretation: warning!

1 2 3

1 2 3

1 2 3

These models can not be distinguished from data alone.
They represent the same independencies!

AIC and BIC give equivalent networks the same score.
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Example Analysis

We analyze a data set concerning risk factors for coronary heart disease.
For a sample of 1841 car-workers, the following information was recorded

Variable Description

A Does the person smoke?
B Is the person’s work strenuous mentally?
C Is the person’s work strenuous physically?
D Systolic blood pressure < 140mm?
E Ratio of beta to alfa lipoproteins < 3?
F Is there a family history of coronary heart disease?
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Example Analysis

For learning Bayesian networks, we use the bnlearn package in R.
Hill-climbing with the BIC score function:

> coronary.hc <- hc(coronary)

> plot(coronary.hc)

A

B

C

D

E

F
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The Search Process

> coronary.hc <- hc(coronary, debug=T)

----------------------------------------------------------------

* starting from the following network:

model:

[A][B][C][D][E][F]

* current score: -7061.714

* caching score delta for arc A -> B (17.531166).

* caching score delta for arc A -> C (9.981480).

* caching score delta for arc A -> D (1.757126).

* caching score delta for arc A -> E (4.941129).

* caching score delta for arc A -> F (-3.224701).

* caching score delta for arc B -> C (264.272873).

* caching score delta for arc B -> D (2.313656).

* caching score delta for arc B -> E (21.030213).

* caching score delta for arc B -> F (2.303571).

* caching score delta for arc C -> D (-3.711314).

* caching score delta for arc C -> E (4.577177).

* caching score delta for arc C -> F (-3.673929).

* caching score delta for arc D -> E (2.645583).

* caching score delta for arc D -> F (-3.197133).

* caching score delta for arc E -> F (-2.257169).
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The Search Process

The initial model (the mutual independence model
[A][B][C][D][E][F]) has a BIC score of -7061.714.

The output gives the change in score between the current model and
its neighbors.

Why is the score of only 15 of the 30 neighbors computed?
(e.g. A -> B, but not B -> A)?

The neighbors A -> B and B -> A are equivalent, and therefore have
the same score.

Adding B -> C causes the largest positive change in score so we
move to that neighbor.
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The Search Process

* best operation was: adding B -> C .

* current network is :

model:

[A][B][D][E][F][C|B]

* current score: -6797.441

* caching score delta for arc A -> C (9.975823).

* caching score delta for arc B -> C (-264.272873).

* caching score delta for arc D -> C (-1.472731).

* caching score delta for arc E -> C (-6.587044).

* caching score delta for arc F -> C (-6.059896).
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The Search Process

We don’t have to recompute the change in score caused by, for
example, adding A -> B, because the parent set of B is the same as
in the previous iteration.

Therefore, adding A -> B now will cause the same score change as in
the previous iteration.

Only the parent set of C has changed, so we only have to recompute
the change in score caused by adding arcs X -> C.

Adding B -> E causes the largest positive change in score so we
move to that neighbor.

The current model becomes: [A][B][D][F][C|B][E|B].
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Learning Bayesian Networks: Overview

structure known, complete data (done)

structure unknown, complete data (done)

structure known, incomplete data (today)

structure unknown, incomplete data (beyond the scope)
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Structure Known, Incomplete Data

Suppose for observation j some variables are unobserved. We write

X (j) = (X
(j)
obs ,X

(j)
mis).

The marginal probability of the observed part of X (j) is obtained by
summing out the missing part, i.e.:

P(X
(j)
obs) =

∑
X

(j)
mis

P(X
(j)
obs ,X

(j)
mis)

Sum rule of probability: P(X ) =
∑

y P(X ,Y ).
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Example 1

If we have three binary variables X = (X1,X2,X3), and we have an

observation X (j) = (1, 0, ?), then X
(j)
obs = (X1,X2) and X

(j)
mis = (X3).

The marginal probability of the observed part is obtained by summing over
all possible values of the missing data:

P(1, 0, ?) = P(1, 0, 0) + P(1, 0, 1)
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Example 2

If we have three binary variables X = (X1,X2,X3), and we have an

observation X (j) = (?, 1, ?), then X
(j)
obs = (X2) and X

(j)
mis = (X1,X3).

The marginal probability of the observed part is obtained by summing over
all possible values of the missing data:

P(?, 1, ?) = P(0, 1, 0) + P(0, 1, 1) + P(1, 1, 0) + P(1, 1, 1)
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A Simple Bayesian Network

1 2

3

This network corresponds to the factorisation:

P(X1,X2,X3) = p1(X1)p2(X2)p3|12(X3|X1,X2)
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Example 1 (easy)

According to this network, the probability of (1, 0, ?) is

P(1, 0, ?) = P(1, 0, 0) + P(1, 0, 1)

= p1(1)p2(0)p3|12(0|1, 0) +

p1(1)p2(0)p3|12(1|1, 0)

= p1(1)p2(0)

since p3|12(0|1, 0) + p3|12(1|1, 0) = 1.
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Example 1 (continued)

Suppose we observe the following data:

X1 X2 X3 n(X1,X2,X3)

0 0 0 10
0 0 1 40
1 0 0 20
1 0 1 20
0 1 0 20
0 1 1 30
1 1 0 10
1 1 1 90
0 0 ? 10
0 1 ? 10
1 0 ? 40
1 1 ? 0
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Log-likelihood function

The corresponding log-likelihood function is:

L = 120 log p1(0) + 180 log(1− p1(0))

+ 140 log p2(0) + 160 log(1− p2(0))

+ 10 log p3|12(0|0, 0) + 40 log(1− p3|12(0|0, 0))

+ 20 log p3|12(0|1, 0) + 20 log(1− p3|12(0|1, 0))

+ 20 log p3|12(0|0, 1) + 30 log(1− p3|12(0|0, 1))

+ 10 log p3|12(0|1, 1) + 90 log(1− p3|12(0|1, 1)).
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Estimation of p3|12(0|0, 0)

∂L
∂p3|12(0|0, 0)

=
10

p3|12(0|0, 0)
− 40

1− p3|12(0|0, 0)

Equate to zero
10

p3|12(0|0, 0)
=

40

1− p3|12(0|0, 0)

Solve for p3|12(0|0, 0):

p̂3|12(0|0, 0) =
10

50
= 0.2

The observations with X3 missing are irrelevant to the estimation of this
parameter.
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Example 2 (hard)

Suppose however that we have an observation (1, ?, 0). Its probability
according to the network is:

P(1, ?, 0) = P(1, 0, 0) + P(1, 1, 0)

= p1(1)p2(0)p3|12(0|1, 0)

+ p1(1)p2(1)p3|12(0|1, 1)

This expression can’t be simplified.

We get a sum of parameters inside the log, making analytical
maximization impossible!
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ML Estimation with Incomplete Data

Direct maximization of the observed data likelihood is complicated: in
most cases there is no closed form solution of the ML estimates as in the
complete data case.

There is however an ingenious iterative scheme to compute the ML
estimates, called Expectation Maximization (EM).
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EM for Bayesian Networks

Algorithm sketch:

1 Pick starting values p̂(0) for parameters.

Repeat until convergence:

2 E-step: Compute expected value of sufficient statistics using p̂(t) and
observed data (inference in network required).

3 M-step: Compute p̂(t+1) using the expected values of the sufficient
statistics from the last E-step (closed form!).

p̂(0), p̂(1), . . . converges to a maximum likelihood estimate for the observed
data likelihood.

The sufficient statistics are the counts from the data that are required to
estimate the network parameters.
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EM for Bayesian Networks: Example

Simple BN for EM example.

1 2

Corresponding factorisation:

P(X1,X2) = p(X1)p(X2|X1)
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EM for Bayesian Networks: Example

Initial values for the network parameters: p̂(0)(X1 = 1) = 0.8,
p̂(0)(X2 = 1|X1 = 1) = 0.6, p̂(0)(X2 = 1|X1 = 0) = 0.2.

This gives joint distribution:

x1, x2 P̂(0)(x1, x2)

(0,0) 0.2× 0.8 = 0.16
(0,1) 0.2× 0.2 = 0.04
(1,0) 0.8× 0.4 = 0.32
(1,1) 0.8× 0.6 = 0.48
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EM for Bayesian Networks: Example

x1, x2 count

(0,0) 12
(0,1) 8
(1,0) 20
(1,1) 40

(0,?) 2 P̂(0)(X2 = 0|X1 = 0) = 0.8 P̂(0)(X2 = 1|X1 = 0) = 0.2

(1,?) 8 P̂(0)(X2 = 0|X1 = 1) = 0.4 P̂(0)(X2 = 1|X1 = 1) = 0.6

(?,0) 6 P̂(0)(X1 = 0|X2 = 0) = 0.33 P̂(0)(X1 = 1|X2 = 0) = 0.67

(?,1) 4 P̂(0)(X1 = 0|X2 = 1) = 0.077 P̂(0)(X1 = 1|X2 = 1) = 0.923

For example:

P̂(0)(X1 = 1|X2 = 0) =
P̂(0)(X1 = 1,X2 = 0)

P̂(0)(X2 = 0)
=

0.32

0.32 + 0.16
= 0.67.
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Expected Values of Sufficient Statistics

Sufficient statistics are the counts needed from the data to compute the
parameter estimates. For example

n̂1(1) = n(1, 0) + n(1, 1) + n(1, ?) +

+ n(?, 0)× P̂(X1 = 1|X2 = 0) + n(?, 1)× P̂(X1 = 1|X2 = 1)

The expected values of the sufficient statistics are:

n̂1(1) = 20 + 40 + 8 + 6× 0.67 + 4× 0.923 = 75.7

n̂1(0) = 100− 75.7 = 24.3

n̂12(0, 0) = 12 + 2× 0.8 + 6× 0.33 = 15.6

n̂12(0, 1) = 24.3− 15.6 = 8.7

n̂12(1, 0) = 20 + 8× 0.4 + 6× 0.67 = 27.2

n̂12(1, 1) = 75.7− 27.2 = 48.5

Ad Feelders ( Universiteit Utrecht ) Data Mining October 22, 2013 56 / 60



New Parameter Estimates

Using the expected values of the required counts, we have closed form
estimates for the network parameters:

p̂(1)(X1 = 1) =
n̂1(1)

n
=

75.7

100
≈ 0.76

p̂(1)(X2 = 1|X1 = 1) =
n̂12(1, 1)

n̂1(1)
=

48.5

75.7
≈ 0.64

p̂(1)(X2 = 1|X1 = 0) =
n̂12(0, 1)

n̂1(0)
=

8.7

24.3
≈ 0.36
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New Joint Distribution

Based on these new parameter estimates, the new joint distribution
becomes:

x1, x2 P̂(1)(x1, x2)

(0,0) 0.24× 0.64 = 0.1536
(0,1) 0.24× 0.36 = 0.0864
(1,0) 0.76× 0.36 = 0.2736
(1,1) 0.76× 0.64 = 0.4864
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EM iterations for p̂(X1 = 1)

iteration

p(
X

1=
1)

2 4 6 8 10
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EM Pseudocode

EM(Data, Network Structure , ε = 10−5)

p̂(0) = initial estimates of parameters
t = 0
Repeat

For all xi , xpa(i) do

n̂(t+1)(xi , xpa(i)) =
∑n

j=1

Requires Inference in Network︷ ︸︸ ︷
P(Xi = xi ,Xpa(i) = xpa(i)|X

(j)
obs , p̂

(t))

n̂(t+1)(xpa(i)) =
∑

xi
n̂(t+1)(xi , xpa(i))

p̂(t+1)(xi |xpa(i)) = n̂(t+1)(xi , xpa(i))/n̂
(t+1)(xpa(i))

od
t = t + 1

Until
∑
|p̂(t) − p̂(t−1)| < ε

Return p̂
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