Comparing functional Embedded Domain-Specific
Languages for hardware description

Jo@o Paulo Pizani Flor
Department of Information and Computing Sciences,
Utrecht University - The Netherlands
e-mail: j.p.pizaniflor@students.uu.nl

December 12th, 2013

1 Introduction

Hardware design has become a very complex activity. The size of circuits has increased,
while low-level concerns (power consumption, error correction, parallelization, layout,
etc.) have to be incorporated earlier and earlier in the design process. This breaks modu-
larity and makes it harder to validate and verify the correctness of circuits.

In this context, researchers have been suggesting (since the 1980s) the usage of func-
tional programming languages to model circuits. One particular line of research is to create
Embedded Domain-Specific Languagess (EDSLs) for hardware description based on exist-
ing functional programming languages, such as Haskell.

There are a multitude of EDSLs for hardware description, but they vary wildly on a
number of aspects: host language, level of abstraction, capabilities of simulation, formal
verification, synthesis (generation of netlists) and integration with other tools, to name a
few. All this variety can make the task of choosing a hardware EDSL for the task at hand
daunting and time-consuming.

The main goal of this experimentation project is to establish some order in this land-
scape, and to perform a practical analysis of some popular functional hardware EDSLs. By
reading the materials produced in this project (circuit models, test cases, generated netlists,
report), a hardware designer wishing to use a functional hardware EDSL for his next design
should gain some insight about the strengths and weaknesses of each langnage and have an
easier time choosing one.

As an additional result of this research, we intend to identify recent, cutting-edge devel-
opments in the Haskell language and its implementations from which the analyzed EDSLs
could benefit. Also, we intend to discuss to which extent some shortcomings of the EDSLs
could be overcome by having them hosted in a dependently-typed language.



2 Methodology

In this project, we compared a number of functional hardware EDSLs that we considered
representative (more details on the choice of EDSLs further ahead). The comparison was
performed on a number of aspects for each EDSL, and the analysis was done by considering
a sample set of circuits used as case studies.

We tried to model all circuits in all EDSLs considered, and as similarly as possible in
each EDSL. To avoid using any of the analyzed EDSLs as “base™ for analysis, we provide
a neutral and behavioural description of the circuits.



2.1 The languages
The Embedded Hardware Description Languages we decided to analyze are:

Lava The Lava[3] language, developed initially at Chalmers University in Sweden. Lava
is deeply embedded in Haskell, and provides features such as netlist generation and
circuit verification using SAT-solvers. There are several “dialects” of Lava avail-
able, and the one used for this project is considered the “canonical” one, originally
developed at Chalmers.

ForSyDe The Haskell ForSyDe library is an EDSL based on the “Formal System De-
sign” approach[11], developed at the swedish Royal Institute of Technology (KTH).
It offers both shallow and deep embeddings, and provides a significantly different ap-
proach to circuit modeling, using Template Haskell to allow the designer to describe
combinational functions with Haskell’s own constructs.

Coquet The Coquet[4] EDSL differs from the other 2 mainly because it is embedded in
a dependently-typed programming language (the Coq theorem prover). Coquet aims
to allow the hardware designer to describe his circuits and then interactively prove
theorems about the behaviour of whole families of circuits (using proofs by induc-
tion).

2.2 The aspects evaluated

For each of the hardware description EDSLs we experimented with, a number of aspects
were evaluated. The evaluated aspects do not necessarily make sense for all EDSLs, there-
fore our presentation follows a language-centric approach, in which we expose the strengths
and weaknesses of each EDSL concerning the applicable aspects.

‘Without further ado, the following aspects are considered in the analysis:

Simulation The capability of simulating circuits modeled in the EDSL (and the ease with
which it can be performed). Simulation is understood in this context as functional
simulation, i.e, obtaining the outputs calculated by the circuit for certain input com-
binations.

Verification The capability of verifying formal properties concerning the behaviour of
circuits (and the ease with which verification can be performed). The properties we
are interested in are those which are universally quantified over the circuit’s inputs.
As an example of such a property, we might have:

Vavbsel (MUX(a, b, sel) = a) v (MUX(a, b, sel) = b)



Genericity Whether (and how well) the EDSL allows the modeling of generic or pa-
rameterized circuits. An example of a generic circuit is a multiplexer with 2 n-
bit inputs and 1 n-bit output, or a multiplexer with n 1-bit inputs and 1 1-bit out-
put. Besides parametrization in the size if inputs and outputs, we will also analyze
whether the EDSL provides chances for parametrization on other functional and/or
non-functional attributes.

Depth of embedding Whether the EDSL models circuits with a shallow embedding (us-
ing predicates or functions of the host language), a deep embedding (in which circuits
are members of a dedicated data type), or anything in between. The depth of embed-
ding of an EDSL might have consequences for other aspects being analyzed,

Integration with other tools How well does the EDSL allow for interaction with (getting
input from / generating output for) other tools in the hardware design process. For
example, synthesis tools for FPGAs or ASICs, timing analysis tools, model checkers,
etc.



Extensibility The extent to which the user can add new interpretations, data types, and
combinator forms to the language. For example, the user might want to model cir-
cuits that consume and produce custom datatypes, or might be interested in extracting
metrics from a circuit such as power consumption, number of elementary gates, etc.

3 Modeled circuits

‘When thinking of which circuits to model using the analyzed EDSLs, some principles
guided us. First of all, they shouldn’t be too simple but also not too complex. Some very
simple circuits (adders, counters, etc.) are often shown as examples in the papers that
define the EDSLs themselves, as well as in tutorials. On the other hand, we also did not
want to model too complex circuits; that would require too much effort on the hardware
design itself, and diverge from the focus of this project, which is to evaluate and analyze
the EDSLs.

Another principle that guided our choice is that the circuits should be immediately
familiar to anyone with basic experience in hardware design. We avoided, therefore, con-
sidering application-specific circuits such as those for Digital Signal Processing (DSP),
implementing communication protocols, etc. Having ruled out these classes of circuits, we
were left to choose from circuits that are parts of a general-purpose computing machine,
such as arithmetic units, memory blocks, control units and so forth.

Finally, we wanted to choose among circuits that already had a well-defined, behavioural
description, to avoid using any of the analyzed EDSLs as “basis” for comparison.

Taking these considerations into account we chose to implement, in each of the EDSLs
analyzed, three circuits originating from the book “The Elements of Computing Systems”[8].
This book aims to give the reader a deep understanding of how computer systems work by
taking a hands-on approach, in which the reader is given the most basic logic gates and
builds, step-by-step, all the hardware and software components necessary to implement a
complete computer system.

From the hardware design part of the book, we took our three circuits to be modeled:

+ A simple Arithmetic Logic Unit (ALU), from here onwards referred to as “circuit 1.
* A RAM block with 64 words, from here onwards referred to as “circuit 2",

+ A CPU with an extremely reduced instruction set (capable of executing the Hack
assembly language defined in the book) from here onwards referred to as “circuit 37.

3.1 Circuit 1: ALU
The Arithmetic Logic Unit built by us is a 2-input ALU, in which each of the inputs (as



well as the output) is a 16-bit long word (interpreted as two’s-complement signed integer).
It is capable of computing several functions, and the choice of which function to compute
is made by setting the ALU’s 6 control bits. To become more familiar with this cireuit, let’s
first take a look at its block diagram, shown in figure 1

Each of the 6 control bits to the ALU has, in isolation, a well-defined effect on the
inputs or outputs to the ALU core. The bits (zx, nx, zy, ny) control “pre-processing”
steps for the inputs x and y, with the following behaviour:

zx and zy Zeroes the x input (respectively y). The ALU core will receive 0 as input.

nx and ny Performs bitwise negation of input x (respectively y).

Therefore, the ALU *“core” itself (adder, and gate) has, as inputs, the results of perform-
ing these pre-processing steps controlled by (zx, nx, zy, ny). Furthermore, the output

Figure 1: Block diagram of circuit 1, showing its input and output ports.

of the ALU core can also be bifwise negated as a “post-processing” step, controlled by bit
no.

Finally, the control bit f can be used to select which operation is to be performed by the
ALU core: if we wish to add the two inputs, we need to set f = 1, and if we want bitwise
conjunction, then we need to set f = 0.

Besides the main (16-bit wide) output of the ALU, there are two other output flags, that
indicate predicates over the main output:

zr Is high whenever out = 0.



ng s high whenever out < 0.

When the ALU is used in the context of a microprocessor these flags can be used, for
example, to facilitate conditional jumps.

Even though there are 2% = 64 possible combinations for the values of the control bits,
only 18 of these combinations result in interesting functions — that happens because several
combinations of control bits can be used to calculate the same function. We show these 18
functions that the ALU can calculate on table 3.1.

ZX NX Zy ny no  out=

—

OO D OO D =D DD

£
1
1
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0

0
1
-1

CODOO = O QO QD -
_,_on—nocv—-ch—-c:undn—n—ncn—tcndc:—nn—-c



-z
-y
r+1
y+1
r—1
y—1
T+ Yy
r—y
Yy—
TAY
TV y

=W = e e e = = = =

—_— 0 = OO D = = OO

Table 1: Functions that the ALU can calculate, given different settings of the control bits



3.2 Circuit 2: RAM64

Circuit 2 is a block of RAM with 64 lines, in which each line is a 16-bit word. Actually,
using the term “RAM™ to refer to this component is an abuse of terminology, as this circuit
is nothing more than a register bank.

All the input and output ports of the circuit are pictured in its block diagram, shown in
figure 2.

Figure 2: Block diagram of circuit 2, a RAM of 64 lines

The circuit has one 16-bit output, named out, and three inputs (in, address and load).
The in portis 16-bit wide and holds a value to be written into the RAM. The address port
has a width of log, 64 = 6 bits and holds the address in which reading or writing is to be
performed. Finally, the Load bit controls whether the value currently at in should be written
to the selected address. There is also one implicit input for a clock signal in this component.
Implicit, in this case, means that the clock signal is not present in any of the models that
we developed for this circuit, but must be present in any physical implementation.

The temporal behaviour of this memory block is as follows: At any point in time, the
output out holds the value stored at the memory location specified by address. If the 1oad
bit is high, then the value at in is loaded into the memory word specified by address. The
loaded value will then be emitted on the output at the next clock cycle.

3.3 Circuit 3: The Hack CPU

Circuit 3, the largest and most complex circuit among the ones we have chosen to imple-
ment, is the Central Processing Unit for the Hack computer, the machine described in the
book “The Elements of Computing Systems”[8].

The Hack computer is based on the Harvard architecture, that means that it has different
storage components and signal pathways for instructions and data. Therefore, the Hack
CPU expects to be connected to swe memory blocks, the instruction memory and the data



memory. Having this in mind facilitates the understanding of the CPU’s block diagram,
shown in figure 3

from
data
memory outhM

. to data
from writeM memory
instruction € instruction
memory addressM
to instruction
pc memory

reset

Figure 3: Block diagram of circuit 3, the Hack CPU

5

The Hack architecture has an extremely reduced instruction set, and consists in fact of
only two instructions (gach 16-bit wide): A (meaning “address™) and C (meaning "com-
pute”). The A instruction can be used as a means to load numerical literals into the data
memory, as well as setting a special “cache” register inside the CPU. The C instruction is
the one responsible for effectively performing computations nsing the ALL, testing ont-
puts and jumping. More details about programming in the Hack assembly language can be
found in [9].

The meaning of each of the CPU’s input and output ports becomes much clearer when
we look at the context in which the CPU is inserted, namely, the memory modules to which
it is connected. So, let’s analyze the CPU’s ports by taking a look at figure 4,



instructlon

resaet
Figure 4: The Hack CPU connected to the data and instruction memory blocks

Finally, the CPU is a circuit which is built mostly from the parts we already defined in
circuits 1 and 2. We use the ALU, some registers, multiplexers, an instruction decoder and
a counter (the program counter). Figure 5 shows the CPU organization.

Instruction

inM

reset




Figure 5: Parts used in building the CPU circuit and how they are connected.



4 Analysis of the EDSLs

4.1 Lava

Lava[3]is an EDSL for hardware description developed originally around 1998 at Chalmers
University of Technology, in Sweden. It uses Haskell as the host language, and circuits
described in Lava are deeply embedded.

The Lava EDSL has several “dialects”, among which are Xilinx-Lava, York-Lava,
Kansas-Lava and Chalmers-Lava. Xilinx-Lava[12] was developed by Satnam Singh and
puts a greater emphasis on the layour of the described circuits, focusing on their implemen-
tation in Xilinx’s FPGAs. York-Lava was developed as part of the Reduceron[7] project,
and is a variation of Chalmers-Lava, omitting some features and adding somne others, like a
“Prelude” of commonly used circuits ((de)multiplexers, (de)coders, RAM memory blocks,
etc.). Chalmers-Lava is considered the “standard™ dialect, also being the one which was
first developed, therefore it was chosen as the one to be studied in this project.

Before diving into the inner workings of the Chalmers Lava library, we first need to
make clear that there are two very distinct versions of this library. The original paper that
defines the Lava language[3] contains the first version, while the current version is the one
defined in a later thesis[6] by Koen Claessen This current version of Chalmers Lava is the
one in which our case study is based.

As already said, Lava uses a deep embedding, and the datatype used to represent a
circuit is Signal, defined in listing 1.

newtype Signal a = Signal Symbol
newtype Symbol = Symbol (Ref (5 Symbol))

data S s
= Bool Bool
| Inv s
| And [s]
| or [s]
| Xor [s]
| varBool  String
| DelayBool s s -- other constructors...

Listing 1: Lava's Signal datatype, used to represent circuits.

As can be noticed from the definition, the actual circuit type (S) is “wrapped” around
the Ref type constructor. This has to do with the approach that Lava takes to solving the



problem of observable sharing, which relies on comparing references to objects given by
the Haskell implementation, to detect cycles in syntax graphs representing circuits. This
approach is the cause of some of Lava’s advantages as well as disadvantages, which will
be discussed further ahead.

Having defined a circuit operating on values of a type a to have type Signal a, then
there are several circuit combinators provided by Lava, which take circuits as inputs and
provide circuits as outputs. For example, on listing 2 we show some boolean circuit com-
binators:

With Lava, one can also model circuits operating on Ints (and there are several in-
teresting integer circuit combinators already included in the Lava library). However, our
goal in this project was to model boelean circuits and, besides that, integer circuits offer a
reduced set of features.



bool :: Bool -> Signal Bool
bool b = 1ift0 (Bool b)

low, high :: Signal Bool
low = beel False
high = bool True

inv :: Signal Bool -> Signal Bool
inv = 1ift1 Inv

andl, orl, xorl :: [Signal Bool] -> Signal Bool
andl = liftl And
orl = liftl Or
xorl = 1liftl Xor

and2 (x, ¥) = andl [x, y]l
or2 (x, y) =orl [x, y]
xor?2 (x, y) = xorl [x, y]

nand2 = inv . and2
nor2 = inv . or2
xnor2 = inv . xor2

Listing 2: Some of Lava's boolean circuit combinators.

4.1.1 Circuits modeled

In order to be able to describe circuit 1, the ALU (more details on section 3.1), we first
needed to model the necessary parts. The “core™ of the ALU is composed of a 16-bit
ripple-carry adder and a 16-bit AND gate. To model the ripple-carry adder we used full
adders as parts, which in turn vsed half adders. To get used to the way in which circuits
are described in Lava, let us first take a look at the definition of the hierarchy of adders in
listing 3:

type SB = Signal Bool

halfadder :: (SB, SB) —> (SB, SB)
halfAdder inputs = (xor2 inputs, and2 inputs)

fullAdder :: (SB, (SB, SB)) —> (SB, SB)



fullAdder (cin, (a, b)) = (s, cout)
where
(ab, c1) = halfAdder (a, b}
(s, c2) halfadder (ab, cin)
cout = or2 (cl, c2)

rippleCarryAdder :: [(SB, SB)] -> [SB]
rippleCarryAdder ab = s
where (s, _) = row fullAdder (low, ab)

Listing 3: Hierarchy of adders used in circuit 1.

Based on this small model we can already make some observations concerning the
aspects that we are analyzing. These observations are:

8
+ Allcircuits in Lava must be modeled as uncurried functions, that is, if multiple inputs
are needed, they need to be packed into one tuple, the same “packing™ happens also
in the case of multiple outputs.

The basic type of inputfoutput for all circuits modeled is Signal Bool. This is not
coincidental: Lava's VHDL generation backend can only work with circuits whose
inputfoutput types are Signal Bool or any nested combination of tuples and lists
thereof. This limitation makes Lava have low extensibility, not allowing — for ex-
ample — user-defined types.

In Lava, (families of) circuits with variable-sized inputs/outputs are modeled as lists
(as can be seen in the definition of rippleCarryAdder). This approach has a good
genericity, but is not type-safe enough. For example, we could have a circuit as-
suming that its inputs are 32-bit wide. There is no way to enforce, at Haskell compi-
fation time, that inputs with correct size are provided. Possible problems could only
be detected during simulation or VHDL generation.

Now, after having defined all the necessary parts, lets take a look at the ALU circuit
itself in listing 4:

type ALUControlBits = (SB, SB, SB, SB, SB, SB)
alu :: ([SB], [SB1, ALUControlBits) -> ([SB], SB, SB)

alu (x, v, (zx, nx, zy, ny, f, no)) = (out’, zr, ng)
where x* = mux (zx, (x, replicate (length x) low)})



x'7 = mux (nx, (x’, map inv x'))

y' = mux {zy, (y, replicate (length x) low))

y'roo=mux (ny, (¥, map inv y'})

out = let xy’* = zip x'’" y*' in mux (f, (andl xy’’, adder xy’')})
out” = mux (no, (out, map inv out))

r = foldl (curry and2) low ocut’

ng = equalBool high (last out’)

adder = rippleCarryadder

Listing 4: Top-level model for circuit 1, the ALU.

In the definition of the ALU itself, we would like to have a user-defined datatype to
represent the kinds of functions that can be computed by the ALU, i.e, the functions listed
on table 3.1. However, due to the limitations of the VHDL backend already discussed, we
have to define ALUControlBits as simply a type synonym for a 6-tuple of bits.

Besides modeling the three circuits in Lava, we also simulated them. The definition of
the ALU circuit in the book "The Elements of Computing Systems"[8] has a pretty exten-
sive truth table to test the circuit model, which was used to simulate the ALU. However,
Iet’s take a look at a simpler simulation case, that of a half-adder, in listing 5:

testHalfAdder :: [(SB, SB)]
testHalfAadder = map (simulate halfadder) input
where input = [ (low, low)
, (low, high)
, (high, low)
. (high, high} 1

Listing 5: Simulation of a half adder in Lava.

9

Simulation of combinational circuits is performed by the Lava function simulate; it
takes as arguments the circuit to simulate and an input combination. In the example of
simulation for the halfAdder, we map the simulation over a list of input combinations,
covering all possible cases.

The attentive reader might be asking why is this simulation not an automated test, i.e,
why are we not comparing the results of the simulation with an expected output sequence.
This has to do with the way in which Lava handles the problem of observable sharing:
values of type Signal a encapsulate effectively a runtime reference to an object of type
a. Therefore, even though acfual and expected outputs might appear to be equal, they



‘are considered different by Lava. Here is the offending Eq instance from the Lava library.
(module Lava.Signal):

instance Eq (Signal a) where
Signal (Symbol r1) == Signal (Symbol r2) = r1 == r2

This Eq instance implements a sort of reference equality, instead of the more usval value
equality. This behaviour is, however, desirable when we consider how Lava represents
circuits: a more traditional (recursive) definition of equality could result in non-termination
when comparing circuits with loops.

Even with the drawback of not having aufomated testing, we can say that Lava does
provide good simulation capabilities, with an interface that is easy to understand for func-
tional programmers.

Now, before moving on to the next circuit studied, let's take a look at how Lava handles
Sformal verification with two examples: checking that a full adder is commutative and that
the output of an incrementer circuit is always different from its input:

prop_FullAdderCommutative :: (SB, (SB, SB)) -> Signal Bool
prop_FullAdderCommutative {c, (a, b)) =
fullAdder {c, (a, b)) <==> fullAdder (c, (b, a))

A property over a circuit in Lava is modeled as a circuit containing one boolean output,
which — for the property to be true — needs to be true for any combination of inputs (these
properties are called safety properties). Lava performs the verification by converting the
circuit model to a CNF logical formula and executing an external SAT solver on the nega-
tion of the formula: the property is valid if and only if the negated formula is unsatisfiable.
The verification for the incrementer introduces another detail of this kind of verification:

prop_IncrementIsAlwaysDifferentThanInput :: Int -> Property
prop_IncrementIsAlwaysDifferentThanInput n =
forAll (list n) (\x -> prop x)
where prop x = inv (x <==> increment x)

We can see by the type of the verification function that it is a property generator, i.e,
for each integer n, it gives a property. An incrementer is a circuit with genetic input/output
size, but the SAT-solving approach to verification can only prove properties for circuits
of fixed size. Therefore, we can only verify a finite number of particular instances of the
circuit.

Moving on to circuit 2 (the RAM block), we will take a look at how Lava handles
sequential circuits. The “fundamental”’ sequential circuit in Lava is delay. It takes two
boolean signals as input and outputs a single boolean signal. Its semantics is that the
output signal will correspond tho the input signal delayed by one clock eycle, with the



other parameter being the first value of the output. Using this fundamental circuit, we
modeled the first building block of our hierarchy of memory elements: a 1-bit register with
input and load signals:

\fundamental means that all sequential circuits use — directly or indirectly — delay as a building block

10
reg :: (Signal Bool, Signal Bool) -> Signal Bool
reg (input, load) = out
where dff = mux (load, (out, input))
out = delay low dff

In this model, we use a mux to control whether the next state of the output will be simply
the previous state, or the input value will be “loaded” into the register. Now, a 1-bit register
can easily be “lifted” into a generic n-bit circuit:

regh :: Int -> ([Signal Booll, Signal Bool) -> [Signal Bool]
regh n (input, load) = map reg $ zip input (replicate n load)

The regN definition is generic, and parameterized by the size of the input and output
(n). This means that for each value of n, there is a circuir regN n. In Lava, however, we
can only simulate and generate VHDL for specific instances of this family of circuits. The
restriction with regards to VHDL generation is not a theoretical limitation, that because
VHDL has good support for generic compenents, and one could imagine Lava generating
generic VHDL from generic circuit models. But, leaving that discussion aside, let’s take a
look at the simulation case for regN:

testRegN4 :: [[Signal Boolll
testRegN4 = simulateSeq (regh 4) ins
where los = replicate 4 low
his = replicate 4 high
ins = [(los,high), Chis,low), C(his,low), (his,high), (los,low)]

The simulateSeq function is intended for the simulation of sequential circuits: the list
of inputs it is given is the sequence of values present at the input ports of the circuit under
test —one element of the list for each clock cycle. The list of outputs given by simulateSeq
has a similar interpretation.

Having the core sequential component for our memory bank (regh), we modeled some
other helper components (such as an address decoder and a 64-to-1 muitiplexer). With all
the components at our disposal, we then modeled the RAM block itself:



ramé4Rows :: Int -> ([SBI1, (SB,SB,SB,SB,SB,SB), $BY —> [$B]
ramg4Rows n (input, addr, load) = mux64WordN n (addr, registers)
where memLine sel = regN n (input, sel <&> load)
registers = map memLine (decode6To64 addr)

All the registers in the memory bank are connected to the “global™ input word for the
bank, but the load signal for any particular register is active iff the global load signal is
active and (<&>) that particular memory line is selected. Finally, to be precise, ram64Rows
actually defines a family of circuits, one for each value of n, The one we are interested in
is ram&4Rows 16, for a RAM block with 64 lines, in which each line is 16-bit wide.

Finally, the last circuit we studied under Lava (circuit 3) is the Hack CPU (described
in more detail on section 3.3). The CPU circuit is mostly combinational, as it contains ne
form of pipelining and executes exactly one instruction per clock cycle. However, there is
one sequential component of the CPU: the program counter, shown in listing 6:

The program counter counts cyclically between 0 and 2", and can have its value
reset to 0 or set to a particular value at any moment. Having defined the program counter,
there are still some helper parts to define before writing the model for the CPU itself:
most importantly, we need an instruction decoder, responsible for interpreting each Hack
instruction and outputting several control bits that are used to direct the data flow inside the
CPU during each instruction execution cycle. The Lava code for the decoder can be seen
on listing 7.

11



programCounter :: Int -> (SB, SB, [SB]) -> [SB]
programCounter n {reset, set, input) = out
where incr = increment out
out = delay (replicate n low) increset
incinput = mux (set, (incr, input))
increset = mux (reset, (incinput, replicate n low))

Listing &: Lava model for the program counter inside the Hack CPU.

type DestBits = (SB, SB, SB)
type JumpCondBits = (SB, SB, SB)
type CPUControlBits = (SB, SB, DestBits, JumpCondBits, ALUControlBits)

instructionDecoder :: HackInstruction -> CPUControlBits
instructionDecoder (i0,_,_,13,i4,i5,i6,i7,i8,19,110,i11,i12,113,114,115)
= (aFlag, cAM, cDest, cJump, cALU)

where
aFlag = i0
cAM = inv i3

chest = (i10, 111, 112)
clump = (i13, 114, i15)
cALU = (i4, i5, i6, i7, i8, i9)

Listing 7: The instruction decoder of the Hack CPU.

Here we notice again some limitations of Lava with regards to datatypes: we are lim-
ited to lists and tuples of Signal Bool (to keep the circuit synthesizable). We decided
to model the Hack instruction itself and the control flags as tuples, to prevent size-related
runtime errors. However, using tuples made the model more “cluttered”, as tuples are not
particularly prone to slicing and regrouping operations.

The values aFlag, cAM, cDest, etc., in the definition of instructionDecoder are all
contiguous regions of the input binary word, therefore the purpose of the intructionDecoder
block is just to *split” the input word into some subregions with a defined meaning, How-
ever, the way in which the block is modelled (by pattern matching and then selecting bits
individualiy for the output tuples) does not clearly transmit the intention of the designer to
someone reading the model.

Using fixed-length vectors, perhaps based on the recent “Type-level Naturals” GHC
2 extension [2] (introduced in GHC 7.6 and being improved for GHC 7.8) would make
modeling in Lava safer and more comfortable, We could simply say that cJump is the
“slice” located between bits 13 and 15 of the input word, and so forth.



4.2 ForSyDe

The Haskell ForSyDe library is an implementation of the “Formal System Design” ap-
proach to hardware modeling[11]. The ForSyDe approach per se has several significant
differences when compared to Lava, and even when the two EDSLs agree on what fo do,
sometimes they differ on how to achieve those goals.

To better understand what characterizes the ForSyDe methodology, we first have to
establish some vocabulary:

System In ForSyDe, a system or circuit is a set of processes interconnected by signals.

*The Glorious Glasgow Haskell Compilation System: http://www. haskell.org/ghc



Signal A signal is, intuitively, a stream of information that flows between processes. It
carries events of some type, and each event has an associated tag. The meaning of
the tag is defined by the mode! of conputation used.

Process A process is nothing more than a pure function on signals. A process is able to
hold internal state. But, given the same input (possibly infinite) signals, it produces
the same output signals.

Process constructor Every circuit in ForSyDe (even the simplest combinational ones) is
built using a process constructor. A process constructor can be seen as a skeleton
of behaviour, and it clearly separates computation from synchronization aspects. A
process constructor takes a combinational function (called process finction) as pa-
rameter — expressing the computation aspect of the process, and possibly some extra
values. There are combinational and sequential process constructors, and some rep-
resentative examples from each class will be described in more detail in a specific
subsection (4.2.2).

4.2.1 Models of Computation

The definition of signal given above is purposefully “vague™ mainly because the precise
definition of meaning for signals depends on the Model of Computation (MoC) being used.,
ForSyDe has (currently) process constructors for the following MoCs:

Synchrenous All processes in this MoC have a global, implicit clock input, and the tags
in the signals are increasing natural numbers. Therefore, a signal can be viewed
as a stream of values, one for each clock cycle. At each clock cycele, aff processes
consume exactly one value from each of its inputs and produce one value at each of
its outputs.

Untimed In the untimed MoC, the processes fire individually and there is no notion of
global clock. A process only evaluates when its inputs have a minimum number of
values ready to be read. The number of needed values can vary per input, but is
constant throughout execution,

Continuous The Continuous MoC interprets signals as continuous, one-variable piecewise
functions of time. It can be used to model some forms of analog circuits, for example.

Among all MoCs, perhaps the most “notable” one is the Synchronous MoC, because it
reflects the usual interpretation of signals as wires and the vast majority of digital designs
nowadays having a global clock, Also, all of our studied circuits were modeled in ForSyDe
using the Synchronous MoC. Therefore, it is interesting to take a deeper look at it.

First, lets take a look at the behaviour of a system which has an one integer input port



and one integer output, and in which the value of the output is equal to the input plus 4.
The interface and internal architecture of this system (addFour) is depicted in figure 6.

addFour

mapSY [t o] MapSY o i MapSY four i MapSY |ou
0 {(+1) 1] (+1) 2] (+1) 3] (+1) 4

5

Figure 6: The addFour circuit, example of usage of the Synchronous MoC

13



Please bear in mind that this implementation is not by far an efficient method of adding
4 to an integer. We use this architecture only as a simple example in which several charac-
teristics of the synchronous MoC can be spotted.

The addFour system is built with 4 constituent processes, and each of them is built
using the mapSY process constructor, a constructor of the synchronous MoC (its name ends
in “SY™). It takes a combinational function (in this case “+17) and evaluates it for each
event in the input signal, generating a corresponding event in the output signal.

Another characteristic of ForSyDe which makes the synchronous MoC even maore sig-
nificant is that only systems built exclusively with process constructors of the synchronous
model can be translated into VHDL by ForSyDe.

ForSyDe is a deeply embedded EDSL, but it takes a significantly different approach
than the one taken by Lava: instead of having some set of “atomic™ circuits (they corre-
spond to the constructors of the S type in Lava), ForSyDe uses Template Haskell to reify
Haskell source code into a syntax tree, and use this syntax tree in order to simulate and/or
translate the circuit model into VHDL.

On section 4.2.2 We take a closer look at synchronous process constructors, as well as
the mechanism by which ForSyDe translates (small fragments of) Haskell source code into
the “building blocks™ of synchronous systems in VHDL.

On section 4.2.3 we proceed to expose the circuits we modeled in ForSyDe, using the
models to make a comparative analysis of ForSyDe with the other EDSLs.

4.2.2 Synchronous Process Constructors

In the ForSyDe Haskell package, the module ForSyDe.Process. SynchProc provides the
list of process constructors that can be used to build systems in ForSyDe’s Synchronous
Model of Computation (4.2.1). The functions provided in that module can be divided in 2
big groups:

Combinational Combinational process constructors build processes in which the value
on a certain output at time ¢ depends oniy on the input values at time ¢. A simple
example of a combinational process constructor is:

mapSY :: (ProcType a, ProcType b) => Procld
-> ProcFun (a -> b) -> Signal a -> Signal b

Sequential On the other hand, sequential process constructors build processes which can
maintain state, i.e, the value on a certain output at a moment in time can depend
on the value of previous inputs and outputs of the circuit. A simple example of a
sequential process constructor is:

sourceSY :: (ProcType a, ProcType b) => Procld



-> ProcFun {a -> a) -> a -> Signal a

The mapSY constructor can be seen as the equivalent of the usual map function, but in
the context of Signals: For each element of the input signal (at each clock cycle), it applies
the function to it and then produces as its output the result of the function application.

Instead of being passed a “normal” Haskell function (with type @ — &), mapSY is
passed a ProcFun (Process Function). ForSyDe has instances of ProcFun which allow for
it to be processed with different inrerprerarions, such as simulation, generation of VHDL or
generation of graph diagrams. Let’s take a look at how one could use the mapSY constructor
to model a simple incrementer process:

inerFunc :: ProcFun (Int16 -> Int16)
incrFunc = \${newProcFun [d| f :: Intl16 -» Int16
fx=x+1|1)

14



incrementer :: Signal Intl16 -> Signal Int16
incrementer = mapSY "incrementerProc” incrFunc

As already mentioned, ForSyDe makes heavy use of Template Haskell, and this ex-
ample already clarifies how. First of all, the “innermost” expression (f x = x + 1) is
reified by the "[d|” quasi-quoter into a list of declarations. This list of declarations is then
transformed by newProcFun into an object of type ExpQ (Template Haskell's reified expres-
sion). Finally, this reified expression is then spiiced into place and results in an object of
type ProcFun.

A ProcFun represents, intuitively, the syntax tree of the function, and by traversing this
ProcFun ForSyDe can perform simulation and VHDL generation. There is, however, one
big restriction on ProcFuns: As already seen in the type signature of mapSY above, the input
and output types for the ProcFun have to be members of the ProcType class. Instances of
ProcType are provided only for:

Primitive types Int, Int8, Int16, Int32, Bool, ForSyDe.Bit.
Enumerated types User-defined enumerations, with derived instances for Data and Lift.

Containers Tuples and fixed-length vectors (Data.Param.FSVec), holding a type of the
above two categories and unrestrictedly nested.

For VHDL to be generated from the system definition, ForSyDe imposes a series of
extra restrictions on the form that all ProcFuns can take. Upon calling the writeVHDL
function, the ProcFun objects are traversed, and a runtime error occurs if any of them does
not comply with the restrictions. These restrictions are:

Pointed notation Declarations with point-free notation are not accepted as synthesizable

Single-clause To be synthesizable, a ProcFun cannot have multiple clauses, and it can-
not have let or where blocks. This essentially forbids recursion inside ProcFuns.
Pattern matching is possible by using the case construct.

Further details on these restrictions and how they constrain circuit design are shown
further ahead, when analyzing the studied circuits.

Now that the concept of a process function is clear, let’s take a look at how to use a
sequential process constructor. In this example, we are using the sourceSY constructor to
build a counter that counts in ascending order starting from O

counter :: Signal Intl16
counter = sourceSY “counterProc” incrFunc 0

Notice that we reuse the incrFunc process function, as it does exactly what we need.



.The sourceSY constructor takes as parameters a process function f and an initial value x, .
and has as output signal the sequence [z, f{z), f(f(z)), F(F(f(z))),...]. This behaviour
is isomorphic to the behaviour of the function i terate from the Haskell Prelude.

4.2.3 Circuits modeled

Qur comparative analysis of ForSyDe’s strengths and weaknesses was done, as usual, by
modeling the 3 circuits used as case-studies. ForSyDe has a peculiar “dual™ nature, as it
supports both shallow and deep embedded models, and models written with netlist genera-
tion in mind can look very different than models which do not comply with the restrictions
that allow synthesis.

Because of this dual nature of ForSyDe, when modeling the case-study circuits we
considered 2 kinds of models:

15
High-level A model that uses Haskell constructs inside the process functions (ProcFun) as
close as possible to what a functional programmer would normally use. These mod-
els do not comply with ForSyDe’s constraints on the syntax tree of process functions
for synthesis, and therefore can not be translated to VHDL.

Synthesizable These models are more fine-grained, and use exclusively constructs that
allow them to be synthesized by ForSyDe's VHDL backend. They “look”™ much
less like functional programs and more like traditional pen-and-paper diagrams of
circuits.

Let’s start our analysis by looking at the Aigh-fevel model for circuit 1, the ALU, on
listing 8:

type WordType = Int16

data ALUDp = ALUSum | ALUAnd
deriving (Typeable, Data, Show)

$(deriveLift1 *’*ALUDp)

type AlLUControl = (Bit, Bit, Bit, Bit, ALUOp, Bit)
type ALUFlags = (Bit, Bit)

bo, bb :: Bit —> Bool

bo = bitToBool

bb = boolToBit

aluFunc :: ProcFun (ALUControl -> WordType -> WordType -> (WordType, ALUFlags))



aluFunc =
$(newProcFun
[d]
aluFunc’ :: ALUControl -> WordType -> WordType —»> (WordType, ALUFlags)
aluFunc’ (zx,nx,zy,ny,f,no) x y = (out, (bb (out == 0}, bb {out < 0}))
where zf z w if bo z then 0 else w
nfnw if bo n then complement w else w
(xn, yn} = (nf nx $ 2f 2x $ x, nfny $ 2f zy $ y)
out =nf no $ case f of
ALUSUm -> xn + yn
ALUANd -> xn & yn |1 )

won

aluProc :: Signal ALUControl -> Signal WordType -> Signal WordType
-» Signal (WordType, ALUFlags)
aluProc = zipWith3SY "aluProc” aluFunc

Listing 8: High-level ForSyDe model for the ALU.

The first thing to notice is that the system is working over 16-bit integers, as by the
definition of WordType. This is not exclusive of the high-level model, however, as ForSyDe
can also produce VHDL models working with integers.

We defined an enumeration type (ALUOp) that encodes possible ALU operations, and de-
rived instances of the Data and Lift classes for it, as is required for ALUOp to be ProcType.
In the body of the aluFunc process function, we perform pattern matching on the f value to
discover which operation to perform. Also, the body of aluFunc has a where block where
all the “parts” that constitute the logic of the ALU are defined. Contrast this definition with
the synthesizable model of the ALU at listing 9:

16
type WordType = Int16
type ALUOp = Bit
type ALUContrel = (Bit, Bit, Bit, Bit, ALUOp, Bit)
type ALUFlags = (Bit, Bit)

zProc :: Procld -> Signal Bit -> Signal WordType -> Signal WordType
zProc name = zipWithSY name $(newProcFun [d| f :: Bit -> WordType -> WordType
fzw=if z ==H then 0 else w |])

nProe :: Procld -> Signal Bit -> Signal WordType -> Signal WordType
nProc name = zipWithSY name $(newProcFun [d| f :: Bit -> WordType -> WordType
fnw=if n == H then 42 else w |1)

compProc :: Signal ALUDp -> Signal WordType -> Signal WordType -> Signal WordType



'compProc = zipWith3SY "compProc”
$(newProcFun [d| f :: ALUOp -> WordType -> WordType -> WordType
foxy=if o ==H then x + y else x .&. y |1}

tzProc :: Signal WordType -> Signal Bit
tnProc :: Signal WordType -> Signal Bit

aluProc :: Signal ALUControl -> Signal WordType -> Signal WordType
-> Signal (WordType, ALUFlags}
aluProc € x ¥ = zipSY "aluProc” out (zipSY "flagsProc" (tzProc out) (tnProc out))
where
(zx,nx,zy,ny,f,no) = unzip6SY¥ "ctrlProc” c
gut = nProc "no" ne comp
comp = compProc f {nProc “nx" nx $ zProc "zx" zx $ x)
{nProc "ny" ny $ zFroc "zyv" zy $ ¥)

Listing 9: Synthesizable ForSyDe model of the ALU.

This model suffers from two consequences of the restrictions imposed by ForSyDe to
enable synthesis:

* Itis too fine grained. As synthesizable ProcFuns cannot have local definitions, every
single step in the datapath inside the ALU has to be a process of its own,

¢ The parallel and serial combination of processes require several steps of “zipping”
and “unzipping™ of signals, which have nothing to do with actual computation. They
only adapt the interfaces of the processes to fit together, and transform between tu-
ples of signals and signals of tuples. We will see the same problem when handling
vectors of signals.

An extra weakness of ForSyDe that becomes more problematic in fine-grained models
is the need for manual name management. Each process in ForSyDe must have a user-
provided unique identifier: on the one hand it results in readable and modular VHDL
netlists, but on the other hand it forces the hardware designer to work at a lower level
than desired, making the design more error-prone. In Lava, name management is avoided
entirely, as the circuit models are flattened during netlist generation,

The issue of name management in ForSyDe, along with the usage of fixed-length vec-
tors, will become clearer as we analyze our second circuit: a RAM block of 64 lines.

First of all, we model a n-bit register, which is not so different from the n-bit register
we modeled in Lava:

type WordType = Int16



reg :: Signal WordType -> Signal Bit -» Signal WordType
reg input load = out
where out = delaySY “delay” (0 :: WordType) dff
dff = (instantiate “"mux2" mux2SysDef) load out input

The next needed part for the RAM is a 64-to-1 multiplexer, to choose which of the
RAM lines to select as output, depending on the address. We modeled a whole hierarchy
of multiplexers up to the one we needed (64-to-1): starting with a 2-to-1 multiplexer, than
building a 4-to-1 using 2-to-1 as components, 16-to-1 using 4-to-1 and finally 64-to-1 using
16-to-1 and 4-to-1. We only show the first two degrees of the hierarchy in listing 10.

mux2 :: Signal Bit -> Signal WordType -> Signal WordType
->» Signal WordType
mux2 = zipWith3sy “zipwith3sy”
$(newProcFun [d| f :: Bit -> WordType -> WordType -> WordType
fsxys=if s ==L then x else y |])

mux2SysDef :: SysDef ( Signal Bit -> Signal WordType -> Signal WordType
-> Signal WordType)
mux2SysDef = newSysDef mux2 "mux2Sys" ["sel”, "in1", "in2"] ["out"]

mux4 :: Signal (FSvec D2 Bit) -> Signal (FSVec D4 WordType) -> Signal WordType
mux4 ss is = (mux2' "m1") (sv ! d1) m00 mO1
where mux2’ 1 = instantiate 1 mux2SysDef

sV = unzipxSY "unzipSel" ss
iv = unzipxSY "unzipInp” is
moo = (mux2’ "m00") {sv ! d0) (iv ! do) (iv ! d1)
mi = (mux2' "m01") (sv ! d0) (iv ! d2} {iv ! d3)

mux4SysDef :: SysDef ( Signal (FS¥ec D2 Bit) -> Signal (FSVec D4 WordType)
-> Signal WordType)
mux4SysDef = newSysDef mux4 "mux4Sys” ["sel™, "inputs”] ["out”]

Listing 10: Excerpt from the hierarchy of multiplexers modeled in ForSyDe.

The hierarchy of multiplexers is a perfect example to illustrate the aforementioned is-
sue of zippingfunzipping: as an input to mux4 we get a signal of binary vectors (each with
length 2). But we want to use mux2 as a component, therefore we need to unzip the signal
of vectors into a vector of signals, and then index the vector to get each individual signal.
In the case of mux16 (not shown here), this situation becomes even worse as, besides un-
zipping, we need to re-zip the constituent signals into “groups” of the right size to be used
with the subcomponents.



As we already mentioned, the requirement of user-given unique names for processes
in ForSyDe results in a much more readable VHDL output for the models. Another factor
that helps in this direction is the ForSyDe concept of component instantiation.

‘When finished modeling a circuit in ForSyDe, we “wrap it up” in a system definition
{a value of type SysDef) by calling the function newSysDef. When we call writeVHDL on
this system definition, a VHDL top-level entity is generated. If we then want to use this
“finished” model as a subcomponent in another circuit, we can use the instantiate function
to create a named process out of the component’s SysDef. When the VHDL code for the
bigger circuit is generated, the ForSyDe instantiation is mapped to a VHDL component
declaration (with accompanying port map statements), which makes for pretty modular

8
VHDL code.
Let’s now finally look at the top-level ForSyDe model for circuit 2, the RAM block.
The code is presented at listing 11.

ramb4 :: Signal WordType —> Signal (FSVec Db Bit) -> Signal Bit
-> Signal WordType
ramé4 input addr load = mux’ addr (zipxSY "zipRows" rs)

where
-- parts declarations
mux’ = instantiate "mux" mux&4SysDef
decoder’ = instantiate “decoder” decode6To64SysDef
reg’ 1 = instantiate 1 regSysDef
and’ 1 = instantiate 1 andSysDef

-- using the parts

r (s, 1) = {reg’ 1} input ((and’ (1 ++ ":and")) load s)

rs = unzipxSY "unzipAddr” $ decoder’ addr

rs =V¥.map r $ V.zip rs’ (V.map (\n -> "r" ++ show n}
(V.unsafeVector d64 [0..63]1))

ramb4SysDef :: SysDef ( Signal WordType -> Signal (FSVec D& Bit) -> Signal Bit
-> Signal WordType)
ram64SysDef = newSysDef ram64 "ram64” ["input","addr","load"] [“outWord"]

Listing 11: Top-level ForSyDe model of circuit 2, the RAM block.

This model is also similar to the one written in Lava, and that is the reason for why we
don’t have separate high-level and synthesizable models for circuit 2. The “natural™ model,
i.e, the one that came to mind immediately reading the description of the circuit, happens to
also be synthesizable. In this model, we use the parts already defined before (register, 64-to-
1 multiplexer), as well as some simple gates (and, or) and an address decoder (decoder’).
‘We omit here the code for the address decoder, as it consists simply of an enumeration of



all minterms (all possible boolean products involving the 6 input bits and their negation).

Lastly, let’s analyze and discuss the ForSyDe model for circuit 3, the Hack CPU.
We built the CPU using mostly already defined circuits (ALU, registers, multiplexers)
as building blocks, which made the model also look very similar to the one written in
Lava. This modular approach is not coincidental: in the book “The Elements of Comput-
ing Systems™([8], great care is taken to make each circuit in the hierarchy add only a small
step in complexity when compared to its already defined subcomponents.

In the case of the CPU, we necded to model three main additional components: a
program counter, an instruction decoder, and a component that decides when to perform a
jump. Let's first start by looking at the program counter:

type AddrType = Int16

pc :: Signal Bit -> $ignal Bit -> Signal AddrType -> Signal AddrType
pc = scanld3S8Y "programCounter"” nextStateFun 0
where
nextStateFun =
$(newProcFun [d| f :: AddrType -> Bit -> Bit -> AddrType -> AddrType
f cur reset set new = if reset == H then 0

else if set == H then new
else cur + 1 |1)

The address type AddrType is defined as Int16 because the specification of circuit 3
requires 50. The program counter is a simple counter with reset and set inputs. Presenting

19

a high value at the reset input will cause the program counter to output 0 at the next clock
cycle, which will make the CPU fetch the instruction from memory address 0, effectively
rebooting the computer. Presenting a high value at the set input will cause the program
counter to have as its next output the value currently present at input addr. This is the way
in which jumps are performed in the Hack architecture.

Having defined the model for the program counter, we proceeded to test its behaviour,
according to the table of test cases in [10].

testPC3 :: Bool
testPC3 = (simulate pcSysDef) resets sets vals == expected
where
(r, s) = (H, HY -- nicknames for reset and set
X =0 -- nickname for "don't care"
expected = [0, 1, 2, 3,1, 2, 3,0, 1, 2, 3, 4]
(resets, sets, vals) = unzip3 inputs
inputs = [ (L,L,%), (LLx), LL,x), (L,s,1), (LLx), (LLx)
, (r.Lxdy, (L.Lx), (L,L,x», (L,L,x), (L,L,x), (L,L,x) 1



An important aspect of simulation with ForSyDe is that we can actually compare the
outputs of simulation for equality with an expected sequence of inputs, which could not be
done in Lava,

With the program counter defined and tested, we proceeded to model the instruction
decoder, whose code is presented on listing 12,

type HackInstruction = FSVec D16 Bit
type DestType = (Bit, Bit, Bit)
type JumpType = (Bit, Bit, Bit)

instructionDecoder :: Signal HackInstruction
-» Signal (Bit, Bit, DestType, JumpType, ALUControl}
instructionDecoder = mapSY "mapSYdecoder" decoderFun
where
decoderfun =
${newProcFun [d| f :: HackInstruction
-» {Bit, Bit, DestType, JumpType, ALUControl)
fi=(ildo
, not {i!d3)
, (itdio, itdnn, ild12)
, (i!d13, i!d14, i!d15)
, (i'd4, it'ds, ilds, i'd7, i!d8, i!'d9)
YD

Listing 12: ForSyDe model for the Hack CPU instruction decoder.

The job of the instruction decoder is very simple: it takes an instruction as input and
outputs several signals to control different parts of the CPU. It performs nto computation and
merely rearranges the wires. But even though it is such a simple circuit, the ForSyDe model
is still “ugly” (full of indexing operators and tuple constructors). Because of ForSyDe’s
single-clause restriction on synthesizable ProcFuns, we cannot introduce a where block
and give meaningful names to the several “slices™ of the instruction that we are selecting.

Now we go over the last needed subcomponent of the CPU we needed to model: a
logical block which decides when to set the program counter and cause a jump to oceur.
The output of this circuit is connected to the set input of the program counter, as can be
seen in figure 5. The code for the ForSyDe version of the decideJump block is shown
below:

20



decideJump :: Signal JumpType -> Sighal ALUFlags -> Signal Bit
decideJump = zipWithSY "zipWithDecide" decideFun
where
decideFun =
$(newProcFun [d]| f :: (Bit, Bit, Bit) -> ALUFlags -> Bit
f (j1,je,jg) (stZ,stN) = if stN == H then jl

else if stZ == H then je
else jg 1)

The decision on whether or not to perform a jump is taken based on two parameters:
the first is a set of jump selection bits (named in the model as JumpType, and comes
from the instruction). These bits indicate in which conditions a jump is to be performed.
If they are all low, then no jump is performed, and if they are all high, an unconditional
Jump will happen. The second input for the decideJump circuit is the set of flags coming
from the ALU, When some conditional jump is described in the JumpType bits, it will only
actually happen if the correspondent ALU flags are active. The decideJump model was
also tested for the input combinations described in the book[8], but we omit the test code
here for brevity.

Having all the necessary parts we could then model the Hack CPU itself, whose code
is presented on listing 13.

This model also looks similar to the CPU model written in Lava, but the generated
VHDL is very different, and that is a big advantage of ForSyDe. While Lava flattens all the
definitions and generates one big VHDL entity for the whole model, ForSyDe is able to
use the component instantiations to produce a hierarchical VHDL design, where program
counter, register, ALU, decoder, etc., all have their own entity declarations in separate files.

As a closing remark on ForSyDe we can emphasize a general weakness of the library,
which is not seen particularly in any circuit model, but contributes to some of the problems
discussed: ForSyDe is relatively old and not actively maintained. The last version available
on Hackage[1] dates from 2010, and on the library’s Hackage page there are still promises
of a “next version”,

This is a problem specially because ForSyDe uses some technologies which are heavily
dependent on GHC, and some aspects of the library could benefit from recent GHC devel-
opments. The parameterized-data package (containing the module Data.Param.FSYec
of fixed-length vectors) could benefit from additions to the GHC type system (in particular
the TypeNats[2] extension) which facilitate the kind of dependent types emulated in that
package.

4.3 Coquet

The third analyzed EDSL for hardware description, Coquet[4], is strikingly different from
both others. Most of these differences can be explained in one way or another by its choice



of host “language™ - Coqg’.

Coq is an interactive theorem prover based on intuitionistic type theory. In the context
of Coq, the concepts of “term” and “type”™ are far more intertwined than, say, in Haskell.
Types in Coq can contain references to terms and vice-versa. A very typical example of
these so-called dependent types is the type(-family) of vectors with a certain length:

Inductive vec A : nat -> Type :=
| nil : vec A O
| cons : forall (h : A) (n : nat), vec An -> vec A (5 n).

*Coq” is not the name of a language, but a theorem-proving system that uses different languages for defining
terms, interactive commands, and user-defined tactics

21



hackCPU :: signal WordType -- * inM: M value input (M = contents of RAM[A]

-> HackInstruction -- * instruction of Hack assembly

-> Signal Bit -— * reset

-> Signal ( WordType -- * outM: M value output
, Bit == * writeM: whether to write to M
, AddrType -- * addressM: address of M in data memory
, AddrType =-- * pc: address of the next instruction
)

hackCPU inM instr reset = zip4SY "zipOuts" aluOut writeM aReg nextInst
where

-- parts declaration

mux2' 1 = instantiate (1 ++ ":mux") mux2SysDef

aReg'’ = instantiate "aReg" regSysDef

dReg’ = instantiate "dReg" regSysDef

alu’ = instantiate “alu" aluSysDef

decideJump’ = instantiate “decideJump” decideJumpSysDef

pe’ = instantiate "pc” peSysDef

orSetA’ = instantiate “setA:or" orSysDef
invSetA’ = instantiate “setA:inv” invSysDef
and’ 1 = instantiate (1 ++ ":and") andSysDef
decoder”’ = instantiate "decoder"” decoderSysDef

-- using the parts

aReg = aReg’ aMux sethA

dReg = dReg’ aluQut setD

aMux = (mux2’ “aMux") aFlag instr aluQut
am = (mux2’ "am") cAM inM aReg
nextInst = pc’ reset setPC aReg

(aFlag, cAM, cDest, cJump, cALU) = unzipSSY "unzipDec" (decoder’ instr)
(writeA, writeD, writeM) = unzip3SY "unzipDest” cDest

(aluQut, aluFlags) = unzipSY "unzipALU" (alu’ cALU dReg am)
setPC = decideJump® cJump aluFlags
setD = (and’ "setD") aFlag writeD
seth = orSetA’ (invSetA’ aFlag) ({and’ "setA") aFlag writeA)

Listing 13: Top-level ForSyDe model for circuit 3, the Hack CPUL

By having the length of the vector being part of the type, we can enforce several useful
properties of functions operating on vectors. In fact, the type-system of Coq is so expressive
that it can encode any proposition of intuitionistic propositional logic.

Given such expressive power, one can imagine that it might be useful to express circuits



in Coq, and use it to prove interesting properties about these circuits. This is exactly the
goal of Cogquet. How this goal is achieved and the modelling of our studied circuits in
Coquet is discussed in the following subsections.

431 Modelling circuits

Coquet is a deep-embedded DSL, thus it represents circnits as a datatype. By using de-
pendent types, it is able to prevent certain classes of mistakes much earlier in the design
process, because the well-formedness is guaranteed by construction, i.e, every circuit built
using the constructors provided by Coquet are well-formed by definition. Let’s take a look
at the Circuit data type declaration, presented in listing 14.

22
Context {tech : Techno}
Inductive Circuit : Type -> Type —> Type :=
| Atom : forall {n m : Type} {Hfn : Fin n} {Hfm : Fin m},
techno nm -> Circuit nm

| Plug : forall {nm : Type} {Hfn : Fin n} {Hfm : Fin m} (f : m -> n),
Circuit nm

| Ser : forall {nmp : Type},
Circuit nm -> Circuit m p -> Circuit n p

| Par : forall {nmp q : Type},
Circuit n p -> Circuit m q -> Circuit (n + m) (p + q)

| Loop : forall {nmp : Type},
Circuit (n + p) (n + p) => Circuit nm

Listing 14: The Circuit datatype in Coquet

The Circuit type is parameterized by two types. These types are the input and ouiput
types of the circuit, respectively. They do not represent what is “carried” on the wires, but
the structure of the circuit’s input and output ports: How many of them there are, how are
they grouped and how are they named.

There are 2 atomic constructors from which an element of Circuit can be built and 3
combinators, which build a circuit based on other circuit(s). These constructors are funda-
mentally different from the constructors of the circuit datatype in Lava: in Lava, the con-



structors represented several different logic gates, while in Coquet they denote the struectire
of the circuit. We can say that in Lava (and ForSyDe) the structure of the circuit is expressed
in the fiost language (Haskell), while in Coquet the structure-defining constructs are part of
the DSL.

The 2 atomic constructors constrain the types n and m by requiring them to have in-
stances of the “Fin” type class, i.e, they have to be finite types (types from which a finite
list of unique elements can be obtained). This constraint is important given the interpreta-
tion that these types (n and m) have: each element of n (respectively m) stands for an input
(respectively output) “wire” in the circuit interface. Furthermore, By observing the serial
and parallel composition combinators (Ser and Par, respectively), we notice that the input
and output types are matched exactly as expected.

The case of the “Atom” constructor is particularly revealing of how Coquet works: this
constructor is parameterized by an instance of the type class Techno for the types n and m.
‘What this instance provides (in the code fragment that reads “techno n m”) is the type of
the fundamental gate in the technology being used. We could choose our modeled circuits
to have, for example, NAND, NOR, or other (more exotic) gates as fundamental.

As an “usage example” of Coquet, we show two simple circuits (NOT and HALFADD),
along with proofs that they implement the expected functions over booleans. Let’s start
with NOT:

Definition NOT x nx : Circuit [:x] [:nx] := Fork2 _ |> (NOR x x nx).
Instance NOT_Implement {x nx} : Implement (NOT x nx) _ _ negb.
Proof.

intros ins outs H.
unfold NOT in H.
tac.

23
Qed.

The input type of NOT is a fagged unit with tag x, similarly, the output type has tag
nx. There is some notation introduced by Coquet to make the creation of tagged units more
convenient. The NOT circuit is a serial composition (denoted as | > of a Fork2 circuit (which
simply splits the input into two identical copies) and a NOR circuit, which is the underlying
fundamental gate in this case.

Below the definition of the circuit itself we state and prove the fact that our circuit
implements the desired function (boolean negation, neghb). The proof object is an instance
of the Implement type class. The parameters of Implement are the circuit of which we



want to prove correctness, the function which the circuit should implement, along with
isomorphisms for the input and output types. More details on how exactly the Implement
class is defined are exposed further ahead. A walk through of proofs in Coquet, where we
explain the “tac™ tactic, is given in section 4.3.3. Now let’s take a look at a half-adder
described in Coquet:

Definition HADD a b s ¢ : Circuit ([:a] + [:bl) ([:s] + [:c]) :=
Fork2 ([:al + [:b]) |> (XOR a b s & AND a b ¢).

Instance HADD_Implement {a b 5 c} :
Implement (HADD a b s ¢) _ _
(fun (x:bool*bool) == match x with (a,b) => (xorb a b, andb a b) end).
Proof.
unfold HADD; intros ins outs H; tac.
Qed.

First of, the sum types that are given as parameters to Circuit indicate that we have
two input ports and two output ports. By using Fork2 on a binary sum ([:al + [:bl),
we create as output a sum type in which each of the components is in itself a sum: that
matches exactly the interface of the component after the | > operator. On the right side of
the serial composition, we have a parallel composition of XOR and AND, giving two outputs:
respectively the sum ([ :s]) and carry-out ([:¢1)

Together with the definition, we prove that the HADD circuit implements the boolean
function we would expect, and the proof is similar to the case of NOT. It makes use of a Co-
quet custom tactic (tac), but a more throughout example of proof of functional correctness
will be given futher ahead. Also, in the case of the adder used in our case study (ripple-
carry adder), we prove that the circuit implements the actial addition function on binary
integers, and not some boolean equivalent.

As a last detail on the *‘user interface” of Coquet, there is the definition of what exactly
are the input and output types (a circuit of type Circuit n m has input type n and output
type m). Usually, in the Coquet paper[4] and in the examples provided with the library,
input and output types are sum fypes in which the terms of the sum are tagged units. Using
tags works as a form of “documentation™, giving someone reading the circuit model an
idea of what role does each input/foutput port play. The type family of tagged unit types is
defined as follows:

Inductive tag (t : string) : Type := _tag : tag t
Notation "[: x 1" := (tag x).
Notation "[! x 1" := (_tag x).
Notation "[!1!1]" := (_tag _).

For each string t, there is & type tag t, and this type has exactly one inhabitant. There



are also, as part of Coquet, some definitions to make working with sum types less tiresome.
For example, there is the function sumn which, given a type t and a natural n, returns a sum
type with n elements and in which each element has type t. This might be useful if we are
defining a n-bit adder:

24



Definitien RIPPLE cin a b cout s n :

Circuit ([:cin] + sumn [:al n + sumn [:b] n)} (sumn [:8] n + [:cout]) := ...

‘While the provided examples use sums of tagged units as the inputfoutput types, they
can be more general: as seen in the definition of the circuit type (Fig. 14}, the only require-
ment is that they belong to the Fin type class, which is defined as follows:

Class Fin A := {
eq_fin : eql A;
enum : list A;
axiom : forall (x : A), count (equal x) enum = 1

4.3.2 Circuit semantics in Coquet

In Coquet, the structure and semantics of a circuit are strictly separated. The structure of a
circuit is modeled by a value of type Circuit, and it describes solely which are the parts
that the circuit is made of and how they are interconnected®.

On the other hand, circuit semantics (what operation does the circuit perform) is de-
seribed in Coguet by a ing relati The 1 ing relation for a circuit relates its
inputs to outputs, and is defined by induction on circuit structure.

For a circuit type Circuit n mand considering T as the type of what is carried in the
wires, we can define the type ins (stands for “inputs™) as n — T and owts as m — T.
These are functions that, for each input/output port, provide the value present at that port
— they are in this way isomorphic to cartesian products, and this isomorphism is indeed
used to facilitate proofs of correctness in Coquet, as will be seen later. The definition of the
meaning relation in Coquet is presented on listing 15.

We can notice that the definition of Semantics has constructors that correspond to
the constructors of Circuit, So, for example, given the semantics of two circuits % and
¥, we can obtain the semantics of their serial compesition (Ser x y) by using the KSer
constructor. This inductive definition of semantics can also be used in proofs. If we need
to prove a statement of the form:

Semantics (Ser x y) ins outs
, Then we can apply the KSer constructor to split the goal into the following subgoals:

Semantics x ins middles
Semantics y middles outs

While the meaning relation defines exactly the behaviour of a circuit, it has some prob-
lems. First of all, it is not an executable specification, i.e, we cannot vse it directly to
simulate the circuit on a set of inputs. Furthermore, the meaning relation is too low-level:
we want to be able to express our specification in a higher level of abstraction - after all,
the whele point of proving correctness is making sure that the circuit we are modeling is
equivalent (in a sense) to a specification that we assume as correct.

Coquet offers some tools to overcome these weaknesses of the meaning relation. First



.cf all, it offers the designer two kinds of abstraction to facilitate writing higher-level speci-
fications:

Data abstraction The meaning relation (Semantics) for a circuit is a relation between
two functions (ins and outs), which is cumbersome to reason about. Therefore, Co-
quet allows the user to express the specification for a circuit in terms of higher-level
types, provided that isomorphisms between these higher-level types and the func-
tion types are provided. Several isomorphisms for common cases of inputfoutput

#The Circuit datatype is also parameterized by the type of fundamental gate used in the design.

25
Inductive Semantics : forall {n} {m},
cirecuit n m -> (n -> Data) -> (m -> Data) -> Prop :=

| KAtom : forall nm {Hfn : Fin n} {Hfm : Fin m}
(t : techno n m) ins outs,
spec t ins outs -> Semantics (Atom t) ins outs

| KSer : forall nmp (x : circuit n m) (y : circuit m p) ins middles outs,
Semantics x ins middles
-> Semantics y middles outs
-> Semantics (Ser x y) ins outs

| KPar : forall nmp g (x : circuit n p) (v : circuit m g) ins outs,
Semantics x (select_left ins) (select_left outs)
-> Semantics y (select_right ins) (select_right cuts)
-> Semantics (Par x y) ins outs

| KPlug : forall n m {Hfn : Fin n} {Hfm : Fin m} (f : m -> n) ins,
Semantics (Plug f) ins (Data.lift f ins)

| Kloop : forall nm 1 (x : circuit (n + 1) (m + 1)) ins outs retro,
Semantics x (Data.app ins retro) (Data.app outs retro)
-> Semantics (Loop x) ins outs

Listing 15: Coquet definition of circuit semantics.

types are already provided in the Coquet library, such as the isomorphism between
(sumn 1 n — B) and ([B"), where 1 stands for the unit type and [§ for boolean).

Behavioural abstraction A circuit can be said to satisfy a weak specification R if we can



prove the logical entailment of R by the meaning relation. The specification R already
benefits from data abstraction, and ranges over the high-level types.

There are two ways to express compliance with a specification: we can say either that
a circuit Realises a certain relation (up to isomorphisms) or that it Implements a certain
function (up to isomorphisms). The difference between the relational and the functional
models is that the functional model can only account for deterministic specifications (an
input combination maps to only one output), while with the relational model we can also
write non-deterministic specifications. The definitions for the Coguet classes Realise and
Implement are shown in listing 16,

Context {nm NM: Type} (Rn : Iso (n -> T) N) (Rm : Iso (m -> T} M).
Class Realise (¢ : Circuit nm) (R : N => M -» Prop) :=
realise :
forall ins outs, Semantics ¢ ins cuts -> R (iso ins) (iso outs)
Class Implement (c : Circuit nm) (f : N > M) :=
implement :
forall ins outs, Semantics ¢ ins outs —-> iso outs = f (iso ins)

Listing 16: Definition of the Realise and Implement type classes.

If we want to prove that a certain circuit ¢ implements a certain function f (the high-
level specification), then our goal in Coq will be:

26



Implement c f

To prove this kind of statement, one can “break down” the meaning relation hypothesis,
resulting in one Semantics hypothesis per circuit subcomponent. Then the already-proven
specifications of the subcompenents could be used to rewrite the Semantics hypotheses
into equations. This makes for very modular proofs, and this will become clearer with the
example proofs in section 4.3.3.

4.3.3 Example circuits and proofs

Until now we explained several aspects of the “inner workings” of Coquet: How circuits
are modeled, how the Circuit dependent type guarantees well-formed models by con-
struction, what Coquet considers as the semantics of a circuit, and what does it mean to say
in Coquet that a circuit satisfies a specification. What was not covered, however, is how to
actually write proofs of correctness in Cogquet.

In this section we will walk over some examples of circuit models in Coquet, in in-
creasing order of complexity, and also comment on their proofs of correctness. This review
should give the reader an idea of the general structure of circuits and proofs in Coquet. It
should also serve as base for our comparative analysis of Coguet with the other EDSLs.

Let’s start by analyzing a hierarchy of adders. The most basic of these adders is a half
adder:

Definition HADD a b s ¢: circuit ([:a] + [:b1) ([:s] + [:c]) :=
Forkz ([:al + [:bD)
|>(XOR abs & AND abc).

This is pretty straightforward circuit model: we just combine XOR and AND in parallel,
and each of them provides one of the outputs of the circuit (sum and carry-out). The Fork2
plug just “copies” its input into two identical outputs. While there is very little to comment
on the circuit model, the proof of correctness will give us a bit more insight into Coquet:

Instance HADD_Implement {a b s c} :
Implement (HADD a b s c) _ _
(fun (x : bool * bool) =>
match x with (a,b) => (xorb a b, andb a b} end).
Prcof.
unfold HADD; intreos ins outs H; tac.

Qed.

The proof is considerably short, but all the “work™ is being done behind the scenes by
the custom tactic tac, introduced by Coquet. This tactic is geared towards proving simple



circuits concisely, and its definition reads as follows:

Ltac tac :=
rinvert; (* destruct the circuit =)
realise_all; (* use the hint data-base *)
unreify_all bool; (* unreify =)
destruct_all; (* destruct the booleans #*)

intros_all; clear; boolean_eq.

The definition of tac is itself just a (sequential) combination of other custom tactics also
defined by Coquet. We don’t need to go deeper, however, as we can explain the general
mechanism of each line in tac.

First of all, rinvert performs inversion using the constructors of Semantics, and will
transform the meaning relation hypothesis into a series of hypotheses, one for each com-
ponent of the circuit. Then realise_all is called, which uses the correctness proofs of

27
the components (stored in a hint database) in order to rewrite each Semantics hypothesis
into an equality involving high-level types. Finally, the tactic unreify_all uses the iso-
morphisms to transform the equality in the goal into one involving only booleans. From
them on we just destruct all booleans, which results in a proof by case analysis.
Going one step up in the hierarchy of adders, we have the Coquet model of a full adder:

Program Definition FADD a b cin sum cout :
circuit (L:cin] + ([:al + [:b1)) ([:suml + [:coutl) :=

(OME [: cin]l & HADD a b "s" "col™)
|> Rewire (% (a, (b,c)) => ((a,b), c) =)
|> (HADD cin "s" sum "co2” & ONE [: "col1"1)
|> Rewire (* ((a,b), c) => (a, (b,C)) *)
|> (ONE [:sum] & OR "co2" "col" cout).

Next Obligation. revert H; plug_def. Defined.
Next Obligation, plug_auto. Defined.
Next Obligation. revert H; plug_def. Defined.
Next Obligation. plug_auto.Defined.

In the definition of a full adder, we use a half adder as component, along with an OR gate.
The interesting point of this definition, though, is the usage of the Rewire components.
Earlier, when presenting the Circuit datatype in Coquet, we mentioned that one of the
circuit constructors (Plug) is meant to be used to “adapt™ the interface of two circuits



which we need to combine.

In the example of FADD, all the necessary plugs involved only regropuing of ports (they
are all associativity plugs) and, in these cases, the plug functions are fully defined by their
type, which allows us to avoid writing the functions ourselves and let Coq find the terms
using proof search. That's why we use Coq’s Program command to define the circuit: in
the definition, there are some holes where the plug functions should be (we omit the full
Rewire lines for brevity), and we need to “fill” each of these holes after defining FADD ~
that is being done in each of the Next Obligation blocks.

There are two Obligations generated for each Rewire block: one is the definition of
the plug itself and the other is an auxiliary proof. Proof search is used to find the plug
satisfying the type (a function from outputs to inputs, thus avoiding short-circuits), and we
also provide an (auxiliary) proof that the plug is equivalent to a cettain function from inputs
to outpuis (as functions from inputs to outputs are easier for humans to understand).

The correctness proof for FADD uses the exact same tactics as the one for HADD, we only
include it here for completeness:

Instance FADD_Implement {a b cin sum cout} :
Implement (FADD a b cin sum cout) _ _

(fun x =>
match x with
| (e, (a,b)) =>
(xorb a (xorb b c), (a & b) || c && (xorb a b))%bool
end).
Proof.
unfold FADD; intros ins outs H; tac.
Qed.

This proof can be used as an example to understand how Coquet provides for highly
modular verification. The proof FADD_Implement also uses the tac tactic that we already
explained. When the realise_all step of tac is performed, we already have the cor-
rectness proof of HADD in the hint database, and therefore the hypothesis involving the
Semantics of HADD is readily rewritten as an equality involving its high-level specification.

28
In the last step of the adder hierarchy we are presenting, there is a classic ripple-carry
binary adder. With this example, we demonstrate how a parametric circuit can be defined
using recursion in Coquet:

Program Fixpoint RIPPLE cin a b cout s n :
circuit ([:ein] + sumn [:a] n + sumn [:b] n) (sumn [:s] n + [:cout]) :=
match n with



| O
| sp=>

RewireE (*
|> RewireE (*
|> (FADD a b cin s "mid”

|> RewireE (*
|> (ONE (sumn [:s] 1)

|> RewireE (=

=> RewireE (*

(e, %, ¥) => (x, ©)

|> combine’ s 1 p & ONME [:cout]

end.
Next Obligation.

*)

(a, b, € => (a, (b, €))
|> (ONE [:cin] & high_lows a b 1 p)

*)

(s, ¢, (a,b)) => (s, (c,a,b))
& RIPPLE ("mid")%string a b cout s p)

(s1, (s2,c)) => (s1, s2, ¢)

(c, ((al,b1), Cap,bp))) => (e, al, bl, (ap,bp))
& ONE (sumn [:al p + sumn [:b] p))

*)

revert H; intros [[]| H]; repeat left; constructor.

Defined.

Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.

Next Obligation.

Next Obligation.
Next Obligation.

abstract plug_auto.
abstract plug_auto.
revert X; plug def.
abstract plug_auto.
revert X; plug_def.
abstract plug_auto.
abstract plug_auto.

Defined.
Defined.
Defined.
Defined.
Defined.
Defined.
Defined.

*)

The definition is recursive on the size n of inputs and outputs. The full adder previously
defined (FADD) is used to calculate the least significant bit of the output, and we use RIPPLE
recursively to calculate the remaining bits. The component high_lows is used to “split”
the inputs and then they are combined into the desired output shape by combine'. Notable
in the structure of RIPPLE is the heavy usage of RewireE plugs to adapt the several parts of
the circuit connected serially. Similarly to when defining FADD, we also used proof search
to “fill the gaps™ left by the associativity plugs.

The proof of correctness for RIPPLE is not as straightforward anymore as the ones we
have seen until now. In fact, we are only going to show some excerpts of the proof. This

difference in proof complexity is due to 2 main reasons:

+ It is a true proof by induction, whereas in the previous proofs only case analysis was

performed.

* We prove the compliance of RIPPLE to a high-level specification: instead of proving
that the circuit implements some boolean function (as previously), we prove that
RIPPLE implements integer addition on n-bit integers,



The function used as specification for RIPPLE can be seen in the following excerpt:

Lemma Implement_adder n cin a b cout s :
Implement (RIPPLE cin a b cout s n)
([b:_] & Iso_Phi _ n & Iso_Phi _ n)%reif

29
(Iso_Phi _ n & [b:_ 1)%reif
(fun x => match x with (c,a,b) => add n a b ¢ end).

Besides the higher level of the specification, we can also notice that here we are explic-
itly providing the isomorphisms between high (specification) and low (implementation)
types. To get an idea of how the proof for RIPPLE would process, we show here the base
case (n = 0):

Proof.
revert cin cout.
induction n.
intros cin cout ins ecuts H. unfold RIPPLE in H.
realise_all.
rewrite H. clear. unreify_all bool.
destruct_all.
apply eqT_true.
rewrite (Word.eq_zero w (Word.repr 0 1)).
rewrite (Word.eq_zero wl (Word.repr 0 0)).
destruct b0; reflexivity.

There are some similarities with the previous proofs — we also use realise_all and
unreify_all — but tactics related to integer arithmetics are now also needed, because of
the way in which the specification is expressed.

Now, to finish our walk-through of Coquet’s circuit models and proofs, we will look at
a sequential circuit: A 1-bit register. The specification of behaviour for sequential circuits
in Coquet is significantly more involved and, in fact, the original Coquet paper[4] leaves a
“more thorough investigation of state-holding devices” as future work. But before delving
into the specification, let’s first look at the circuit model] itself:

Context a load out : string

Program Definition REGISTER : Circuit ([:lead] + [:a]) [:out] :=
@Loop _ ([:load] + [:al) [:out] [:out]
(



RewireE (* (load, a, out) => (a, out, load) =)
|> MUX2 & out load "in_dff"#string
|> DFF "in_dff" out
|> Fork2 [:out]

Next Obligation. revert H. plug_def. Defined.
Next Obligation. plug_auto. Qed.

The basic building block for the register is the DFF flip-flop. Also, we duplicate (Fork2)
the output of the flip-flop and use the Loop constructor to direct one of these wires back into
the MUX. The specification for the behaviour of a register is based on srreams: in the meaning
relation, the type T of what is carried in the wires is not simply B, but N — B (where B
stands for boolean). Also, we don’t use the finctionaf (Implement) model anymore, but
the relational one.

Instance Register_Spec : Realise
(Rn : Iso ([:load] + [:a] -> stream bool) (stream (bool * bool)))
(* ... isomorphism on outputs ... #*)
(fun (ins : stream (bool * bool)) (outs : stream bool) =>
outs = pre false
(fun t => if fst (ins t) then snd (ins t) else outs t))

30



The specification dictates that the output stream must have a one-element prefix (pre)
equal to false and, from then on, be either equal to the previous value at port a (when-
ever load is high) or to the previous value at port out (whenever load is low). From
this example it is already clear that sequential specification does not fit nicely into the
Realise/Implement model, and a more comfortable way to specify and prove the be-
haviour of sequential circuits would be a welcome addition to Coquet.

4.3.4 Closing remarks and possible improvements

Coquet employs very well several features of dependently-typed programming in general,
and of the Coq system in particular, in order to facilitate circuit modeling and verification.
The following advantages of Coquet make it particularly distinct from the other studied
EDSLs:

* The use of dependent types makes certain classes of design mistakes (such as short-
circuits or “floating” wires) impossible by design.

By using type classes as a way to structure its definitions, Coquet facilitates the
automatization of proofs. For example, when trying to prove the correctness of a
circuit, we can use the correctness proofs of all its subcomponents, and they are
automatically located by Coq's instance resolution mechanism.

Coquet avoids the problem of observable sharing by not using bound variables, and
building circuits only with combinators. The usage of combinators is facilitated by
some particular Coq features, like notations and proof search.

Coquet is able to prove properties over parametric circunits for all values of the
parameters (by induction), while Lava, for example, can only verify those properties
for specific instances,

The parametrization of the Circuit type by the rype of the fundamental gate and
the parametrization of the Semantics relation by the ics of the fund )
gare make Coquet’s approach extremely generic. All of Coquet’s defined tactics,
classes and instances could be used in radically different contexts such as three-
valued logics, analog domains or probabilistic domains.

Although Coquet is superior to the other studied EDSLs in the aforementioned aspects,
some other aspects of circvit modeling and verification with Coquet could benefit from
concepts present in ForSyDe or Lava

First of all, sinudation of combinational circuits in Coquet is easy, but currently it is
impossible to simulate any form of sequential circuit. More precisely, any circuit contain-
ing the Loop constructor cannot be simulated — this restriction also bans the simulation



of combinational loops, but simulating combinational loops does not make much sense
anyways.

Coquet’s definition of the meaning relation for circuits depends on the type T of what
is carried in the wires. The Coquet library already provides instances for booleans and
streams of booleans (M — T), but it could also be interesting to add cases for dealing with
some three-valued logics, or a case for IEEE1164’s std_logic type, used often in VHDL.

Another interesting point is that Coquet defines a stream type family, and then proceeds
to define several interesting functions over stream, as well as an instance for the meaning
relation. The type family is defined as follows:

Definition stream A := nat -> A,
If instead of using nat in the above definition, we generalized it a bit more (abstracting

anew type parameter), we arrive at the concept of an “event stream™:

31



Definition events tag A : tag -> A.

This is exactly how ForSyDe defines its “signals”, so we could model circuits in models
of computation other than the synchronous model (which is the one allowed by the current
stream definition).

5 Conclusions

The models and test cases that we developed, along with the verification we performed,
gave us a better understanding of how the hardware EDSLs Lava, ForSyDe and Coquet
compare to each other from the point of view of a hardware designer. This practical ex-
perience, combined with knowledge of the “inner workings™ of each EDSL and their host
language, allowed for an informed discussion of each langnage’s strong points and weak-
nesses. The most significant findings of this practical evaluation, categorized by evaluated
aspect, are summarized here.

Depth of embedding None of the three evaluated EDSLs lie at the extremes of embed-
ding depth. Lava can be said to be deeply embedded, however, its Signal datatype collab-
orates with the host language runtime so that cyclic structures in circuits can be modeled
as recursion in the host language. ForSyDe has both deep and shallow modeling capabil-
ities, even though we only studied the deep model. In fact, ForSyDe's hackage page[1]
promises a future version in which deep and shallow modeling constructs will be in dif-
ferent packages. Coquet has the “deepest™ modeling of all studied EDSLs, and avoids the
issue of observable sharing by not allowing variable binding constructs, and having circuits
connect to each other only through combinators.

Simulation Simulation can be performed in all studied EDSLs. In Lava, autormated test
cases (in which the simulation output is compared with an expected combination) are not
possible due to the way in which the observable sharing issue is handled. Coquet has
simulation built into the library as one of several example interpretations for circuits, and
it works just as well as in the other EDSLs, with the only shortcoming that simulation of
sequential circuits is currently not possible.

Verification ForSyDe offers no capabilities for formal verification whatsoever, while
Lava and Coquet each do, but in different ways. Lava can perform the verification of
so-called safety properties for circuits of a fixed size — it does this by transforming the
circuit model into a CNF (conjunctive normal form) logical formula which is fed into a
satisfiability solver. Coquet takes a different approach and offers some tools to help the



user perform interactive theorem proving for circuit correctness. One can say that Coquet
does more than verification, as with Coquet we can prove the correctness of whole families
of parameterized circuits by induction.

Genericity In Lava the modeling of generic circuits is made very easy, and any parameter
to a circuit definition which is not of type Signal T is considered a parameter instead of
a circuit input, and specific instances of these generic circuits can then be simulated or
synthesized. In Coquet a similar approach is taken, allowing the user to prove by induction
on the parameter the correctness of the whole family of circuits. ForSyDe is the EDSL with
the least opportunity for generalization: the only thing we can do is to have fixed-length bit
vectors or fixed-size integers as inputs, and these are fixed at Haskell compilation time.

32



Tool integration Lava can generate VHDL netlists of circuit models that satisfy some
requirernents and can also generate CNF formulas for a SAT solver. ForSyDe can output its
circuits in VHDL and also generate graph files, which can be formatted and used for circuit
visualization. Coquet is disadvantaged when it comes to tool integration: it currently has
no support for exporting circuits in some industry-standard format, even though one of the
examples in the distribution is a gate-count, so netlist generation should be possible in the
same framework.

Extensibility ForSyDe and Coquet offer both good capabilities for extensibility: in both
EDSLs the designer can make circuits operate over user-defined types. The big advantage
of ForSyDe is its usage of Template Haskell and GHC’s deriving mechanism to generate
VHDL corresponding to the user-defined types. Lava offers little to no extensibility, and
only circuits operating on booleans or integers can be modeled in the current version of
Chalmers Lava.

6 Future work

In this project we established some criteria for analysis of Embedded Domain-Specific
Languages (EDSLs) for hardware description, and performed a practical analysis of some
popular EDSLs by building and verifying simple circuits chosen as case studies. Future
work in this same research track could emcompass, for example, the study of different
EDSLs (on higher or lower levels of abstraction and using different host languages), the
definition of different metrics and the modelling of larger circuits.

One particularly interesting line of work to be pursued would be the investigation of
hardware EDSLs hosted on dependently-typed programming languages. From the same
author of Coquet, for instance, there is recent work on verifiable synthesis of a lightweight
EDSL hosted in Coq [5]. Also, it would be interesting to investigate hardware EDSLs
hosted in the dependently-typed programming language Agda, and which benefits they
provide.

Even in Haskell, there are already some recent developments (specially in GHC) which
could be investigated in order to discover to which extent they might help solve the short-
comings of Lava and ForSyDe mentioned throughout this report. The applicability to hard-
ware description of extensions such as multi-parameter type classes, data and type families,
datatype promotion and kind polymorphism could all be studied in future work.



33
References

[1] Hackage page for the ForSyDe library, http://hackage.haskell.org/package/
ForSyDe, November 2013.

[2] Type-level naturals in GHC. https://ghc.haskell.org/trac/ghc/wiki/
TypeNats, November 2013.

[3] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: hardware design
in Haskell. SIGPLAN Not., 34(1):174-184, September 1998,

[4] Thomas Braibant. Coquet: a Coq library for verifying hardware. In Cerrified Pro-
grams and Proofs, pages 330-345. Springer, 2011.

[5] Thomas Braibant and Adam Chlipala. Formal verification of hardware synthesis.
arXiv preprint arXiv: 1301.4779, 2013,

[6] Koen Claessen. An embedded language approach to hardware description and veri-
fication. Licentiate thesis, Chalmers University of Technology, Gothenburg, Sweden,



2000.

[7] Matthew Naylor and Colin Runciman. The Reduceron reconfigured and re-evaluated,
Jouwrnal of Functional Programming, 22:574-013, 9 2012.

[8] Noam Nisan and Shimon Shocken. The Elements of Computing Systems: Building a
modern computer from first principles. MIT Press, 3rd edition, 2012,

[9] Noam Nisan and Shimon Shocken. The Elements of Computing Systems: Building a
maodern computer from first principles, chapter Machine Language. In [8], 3rd edition,
2012.

[10] Noam Nisan and Shimon Shocken. The Elements of Computing Systems: Building
a madern computer from first principles, chapter Computer Architecture. In [8], 3rd
edition, 2012.

[11] Ingo Sander and Axel Janisch. Formal system design based on the synchrony hypoth-
esis, functional models, and skeletons. In VLS Design, 1999, Proceedings. Twelfth
International Conference On, pages 318-323. IEEE, 1999.

[12] S. Singh. Designing reconfigurable systems in Lava. In VLSI Design, 2004. Proceed-
ings. I7th International Conference on, pages 299-3006, 2004.

34



	Introduction
	Methodology
	The languages
	The aspects evaluated

	Modeled circuits
	Circuit 1: ALU
	Circuit 2: RAM64
	Circuit 3: The Hack CPU

	Analysis of the EDSLs
	Lava
	Circuits modeled

	ForSyDe
	Models of Computation
	Synchronous Process Constructors
	Circuits modeled

	Coquet
	Modelling circuits
	Circuit semantics in Coquet
	Example circuits and proofs
	Closing remarks and possible improvements


	Conclusions
	Future work

