
Abstract Syntax Graphs for Domain Specific Languages

Bruno C. d. S. Oliveira
National University of Singapore

oliveira@comp.nus.edu.sg

Andres Löh
Well-Typed LLP

andres@well-typed.com

Abstract
This paper presents a representation for embedded domain spe-
cific languages (EDSLs) using abstract syntax graphs (ASGs). The
purpose of this representation is to deal with the important prob-
lem of defining operations that require observing or preserving
sharing and recursion in EDSLs in an expressive, yet easy-to-use
way. In contrast to more conventional representations based on ab-
stract syntax trees, ASGs represent sharing and recursion explicitly
as binder constructs. We use a functional representation of ASGs
based on structured graphs, where binders are encoded with para-
metric higher-order abstract syntax. We show how adapt to this
representation to well-typed ASGs. This is especially useful for
EDSLs, which often reuse the type system of the host language.
We also show an alternative class-based encoding of (well-typed)
ASGs that enables extensible and modular well-typed EDSLs while
allowing the manipulation of sharing and recursion.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Functional Languages

General Terms Languages

Keywords Observable Sharing, DSLs, Graphs, Haskell.

1. Introduction
A domain-specific language (DSL) is a programming language
targeted at a particular problem domain. DSLs offer a vocabulary,
language constructs and a semantics crafted for that domain.

An embedded DSL (EDSL) [14] is a DSL that is implemented
by reusing various elements of a (general-purpose) host language
(such as the syntax, type-checker, or binding constructs). While
being somewhat less flexible than writing a dedicated compiler
or interpreter for a DSL, the embedded approach greatly reduces
the cost of the implementation. Furthermore, integration with the
host language comes for free, and mixing the DSL with the host
language or other DSLs is easy.

Representation of the syntax of an EDSL in the host language
are typically positioned between two extremes: a shallow embed-
ding provides a very thin layer over the host language, implement-
ing the DSL constructs directly by their semantics. As a result, there
is no support for inspecting the syntax and manipulations of the
DSL programs are difficult. Deep embeddings solve this problem
by making the syntax of the DSL explicit – usually as an abstract

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’13, January 21–22, 2013, Rome, Italy.
Copyright © 2013 ACM 978-1-4503-1842-6/13/01. . . $15.00

syntax tree (AST). One or several semantics of the DSL can be
given by defining interpretation functions over the AST, and trans-
formations of the AST prior to interpretation are possible. The AST
approach is well supported by functional languages such as Haskell
and has been used to implement several EDSLs [4, 19].

In many real-life EDSLs, preserving and observing sharing and
recursion are essential for implementing domain-specific transfor-
mations and optimizations. However, ASTs need to be comple-
mented with explicit environments to allow transformations that
rely on observing sharing or recursion. Furthermore, doing so, we
suddenly need to keep track of names and binding, forcing us to a
lower level of programming, where we have to worry about prob-
lems such as avoiding name capture in substitutions or preventing
dangling references.

Abstract Syntax Graphs This paper suggests using an abstract
syntax graph (ASG) representation for EDSLs. ASGs make it easy
to guarantee that terms are well-scoped. They allow the observation
and preservation of sharing and recursion. Furthermore, functions
on ASGs can be defined in a natural way, using pattern matching.

Technically speaking ASGs are realized using Oliveira and
Cook’s structured graphs [20]. Such structured graphs offer a
generic purely functional representation of cyclic structures in
pure functional languages such as Haskell. Structured graphs use
binders, represented using Chlipala’s parametric higher-order ab-
stract syntax (PHOAS) [7], to model cycles and sharing.

Related Work With ASTs, a possible approach to help with the
issues regarding the management of explicit environment and gen-
eration of fresh labels [4] is to use monads [26]. However, while
monads can make name management more bearable, they cannot
completely hide the fact that we have to work on a low level, and
monads alone cannot ensure the well-scopedness of a program.

Sometimes, one would like to ensure not only well-scoped,
but also well-typed expressions in an EDSL. Guaranteeing well-
typedness becomes even harder in the presence of explicit environ-
ments. Both the ASTs and the respective environments need to be
enriched with additional type and binding information. Examples
of such approaches include well-typed and well-scoped analysis
and transformation of grammars, which have been a hot topic re-
cently [2, 3, 9]. Baars et al. [2, 3] use well-typed ASTs in combina-
tion typed references and typed environments in their typed trans-
formations. The relationship between a reference and an environ-
ment is statically enforced in a similar way to well-scoped/typed
de Bruijn indices [1]. All this infrastructure relies on sophisticated
type-level machinery and several Haskell extensions.

Another option is to represent sharing and recursion implicitly,
by relying on the sharing of the host language. This is great from
the usability point of view because we can reuse the host language
syntax to create sharing. Unfortunately, this is usually too fragile
or precludes the possibility of observation. To overcome the need
for observing sharing and recursion in implicit representations, it
is possible to use pointer or reference equality. This approach has

87

been used in many DSL implementations [8, 11, 18]. However,
the use of references breaks referential transparency and signifi-
cantly complicates reasoning [25]. In a language such as Haskell,
we would then be forced to use monadic interfaces. Furthermore
defining operations by working with references is fragile and prone
to errors. In contrast, our ASGs are completely functional and avoid
the need for observing and comparing pointers.

More recently, both Devriese et al. [9, 10] and Kiselyov [16]
have proposed the use of recursive binders to implement explicit
sharing using a type-class based representation. However a problem
of such type-class based representations is that pattern matching is
not supported. All operations are essentially defined as folds, mak-
ing it difficult to define many transformations and optimizations
that rely on both observing sharing and use more complex recur-
sion patterns that would be most naturally expressed using nested
pattern matching.
Contributions The contributions of this paper1 are:
ASGs for EDSLs Neither Oliveira and Cook nor Chlipala consid-
ered the application of PHOAS and ASGs to EDSLs. Yet, we be-
lieve that the ASG representation is particularly valuable to EDSL
developers, providing the best solution to date to the problem of
observing sharing and recursion.

We make a case for the use of these techniques and we also fill
in some gaps that are not covered in the earlier works on PHOAS
and ASGs, that are of relevance in the context of EDSLs.
Well-typed ASGs We show how to represent deeply embedded
well-typed terms with ASGs. Well-typed terms allow DSL design-
ers to reuse (parts of) the type system of the host language for the
type system of the DSL.

Oliveira and Cook develop techniques only for representing
untyped abstract syntax using structured graphs. Chlipala’s orig-
inal work on PHOAS does cover a form of well-typed abstract
syntax using dependent types in the Coq theorem prover. How-
ever, conventional functional languages like Haskell do not have
full-blown dependent types (although recent extensions get us
very close to that [28]), so these techniques have to be adapted
to use GADTs [23] instead. Also, Chlipala does not cover recur-
sive binders and their mutually recursive generalization. While
well-typed encodings of simple recursive binders are relatively
straightforward to encode, encoding well-typed mutually recursive
binders elegantly requires more work. To solve this problem we
use typed lists: a generalization of both heterogeneous and homo-
geneous lists. With typed lists not only can we deal with well-typed
mutually recursive binders, but also enforce certain size invariants
that the untyped representation does not statically enforce.
Extensible and modular ASGs The issue of modularity is not con-
sidered neither by Oliveira and Cook nor by Chlipala. A popular
representation of EDSLs that deals with this problem uses a class-
based (typed) Church encoding representation [5, 12, 13, 22] (al-
though this representation makes the definition of operations that
use nested pattern matching more difficult). We show that ASG-
based techniques can be adapted to a class-based representation,
similar to the representations proposed by Devriese et al. [9, 10]
and Kiselyov [16]. However, differently from these approaches, we
use a PHOAS-based representation of binders and provide a simple
encoding of mutually recursive binders using typed lists.

2. Sharing in EDSLs
In this section, we use a small example language to demonstrate
the differences between shallow and deep embeddings as well as
the issues with representing sharing.

1 The code for this paper is available at http://ropas.snu.ac.kr/
~bruno/papers/ASGs.zip.

In order to keep the examples as small as possible, we use an
EDSL with just two constructs: the constant one, and a binary
addition operator. The Haskell interface of our DSL is:

data Expr -- abstract
one :: Expr
(⊕) :: Expr→ Expr→ Expr

The primary semantics we are interested in is evaluation:

eval :: Expr→ Int

We are now going to contrast a shallow embedding with a deep
embedding for this language.

Shallow embedding A shallow embedding for this language is:

type Expr = Int

one = 1
(⊕) = (+)

eval = id

We use the type Int as the representation of the expression type.
Building a term in the expression language evaluates it automati-
cally. The evaluation function eval is then just the identity function.

The shallow approach is appealing because it is so simple. Con-
structing terms in the DSL is as easy as constructing Haskell terms.
We even inherit many features from the host-language Haskell. For
example, we can use a Haskell function to generate a term in our
DSL, as shown on the left hand side of Figure 1.

The term treeI n (Figure 1) describes a binary tree of additions,
with occurrences of one in the leaves. The function treeI is recur-
sive, and it makes use of sharing via let. Both recursion and sharing
are properties we do not have available in the interface of our ex-
pression DSL, yet they are available to us via the embedding into
Haskell.

The use of sharing is essential here for efficient evaluation of the
term. Without sharing, treeI n would contain exponentially many
additions and constants in n. By using sharing, the term is internally
represented as a graph of just linear size. The identifier shared is
bound to an Expr represented as an Int, and even though shared is
being used twice, it is being evaluated only once. The evaluation
of eval (treeI 2) is sketched on the left hand side of Figure 2. Note
how 1 + 1 is evaluated only once, and its result (2) is shared.

However, shallow embeddings come at a price. We are commit-
ting to a specific semantics – in this case, evaluation. Often, that is
too limited in practice. We may want to do other things with ex-
pressions: for example, show the original term via a function

text :: Expr→ String

or transform the expression into a different (perhaps optimized)
form, or translate the expression into a different language with a
different set of constructs available. With a shallow embedding, we
are out of luck. Our implementation picks one semantics and once
we construct a term, we interpret the expression according to that
semantics, losing the original structure of the expression.

Deep embedding A deep embedding solves this problem:

data Expr = One | Add Expr Expr

one = One
(⊕) = Add

eval One = 1
eval (Add e1 e2) = eval e1 + eval e2

We now choose to represent the language constructs by their ab-
stract syntax. A value of type Expr corresponds to the abstract syn-
tax tree of a term in our DSL. We thus retain the structure of the
terms we construct and can interpret them in various ways. We can,

88

http://ropas.snu.ac.kr/~bruno/papers/ASGs.zip
http://ropas.snu.ac.kr/~bruno/papers/ASGs.zip

treeI :: Int→ Expr
treeI 0 = one
treeI n = let shared = treeI (n− 1) in shared⊕ shared

treeE :: Int→ Expr
treeE 0 = one
treeE n = let_ (treeE (n− 1)) (λshared→ shared⊕ shared)

Figure 1. Contrasting building a massively shared tree either using Haskell’s implicit sharing (left) or explicit sharing in our DSL (right)

eval (treeI 2)
= let shared = treeI (2− 1) in shared + shared
= let shared = let shared′ = treeI (1− 1) in shared′ + shared′

in shared + shared
= let shared = let shared′ = 1 in shared′ + shared′

in shared + shared
= let shared = 1 + 1 in shared + shared
= let shared = 2 in shared + shared
= 2 + 2
= 4

eval (treeI 2)
= eval (let shared = treeI (2− 1) in Add shared shared)
= let shared = treeI (2− 1) in eval shared + eval shared
= let shared = let shared′ = treeI (1− 1) in Add shared′ shared′

in eval shared + eval shared
= let shared′ = treeI (1− 1)

in (eval shared′ + eval shared′) + (eval shared′ + eval shared′)
= let shared′ = One

in (eval shared′ + eval shared′) + (eval shared′ + eval shared′)
= (1 + 1) + (1 + 1)
= 2 + 2
= 4

Figure 2. Contrasting evaluation of eval (treeI 2) using both the shallow (left) and deep (right) embedding

for example, evaluate it as shown in the definition of eval above,
but we can also show it in textual form:

text :: Expr→ String
text One = "1"
text (Add e1 e2) = "("++ text e1 ++" + "++ text e2 ++")"

In a similar way, we could define additional interpretation functions
such as an optimizer or a translator to a different language. Typi-
cally, the interpretation functions are folds (also known as catamor-
phisms), i.e., functions that traverse the structure of the underlying
input datatype (here Expr) closely and recurse exactly where we
encounter a recursive subterm in the datatype definition.

However, the greater flexibility comes at a price. Consider treeI
again, defined exactly as before (that is, the treeI definition in the
left side of Figure 1). The identifier shared now is a term of the
datatype Expr, no longer of type Int. If we evaluate the term treeI n
using eval, we traverse the structure of the Expr, thereby destroying
the sharing. The term will take exponentially long to evaluate (or
to show, or to transform). The evaluation of eval (treeI 2) in the
deep setting is sketched on the right side of Figure 2. Note how the
pattern matching in eval destroys the sharing introduced by let, and
how 1 + 1 is evaluated twice.

Haskell’s let still allows us to construct implicitly shared terms
of type Expr, but this sharing is not observable and is also quite
fragile. Traversing such an implicitly shared term using any inter-
pretation function will destroy all sharing.
Explicit sharing A solution is to make sharing explicit in the
embedded language. This will enable us to observe and preserve
the sharing that we wish to have in a term in a robust way.

It is quite clear that we need to add a let-like construct, but there
is quite some design flexibility in the detail. We would like to avoid
having to deal with names, binding and substitution ourselves, as
this is tedious and error-prone, and would make the DSL much
more tricky to use or at least to implement.

One promising approach to model binding in the embedded
language is higher-order abstract syntax (HOAS) [24]. With HOAS
the function space of the implementation language Haskell is used
in order to express a shared term in the embedded language:

data Expr = One | Add Expr Expr | Let Expr (Expr→ Expr)

We no longer have to use Haskell’s let in order to express sharing in
the embedded language. Next to one and (⊕) (that can be defined

as before) we have to augment the interface of our language with
an explicit sharing construct:

let_ :: Expr→ (Expr→ Expr)→ Expr
let_ = Let

We have to adapt the construction of shared terms to use this
explicit sharing construct. The resulting modification of function
treeI, called treeE, is shown on the right side of Figure 1.

However there is a problem: How do we extend the evaluator to
cover the case for Let? Here is an attempt:

eval (Let e1 e2) = let shared = eval e1 in eval (e2 (. . . shared))

We would like to feed the evaluated shared shared expression to
e2, but it has the wrong type! The body of the Let expects an Expr,
but we have an Int. At the position of . . ., we need a function that
can quote the interpreted term back into the original language [17].
Alternatively, we have to add another constructor to Expr, because
the existing constructors are not really expressive enough (we have
One, but not arbitrary integer literals). Note that other interpretation
functions such as text would need other quotation functions.

But before we delve too deep into this issue, we should point
out another problem with higher-order abstract syntax: the space
of type Expr→ Expr is too large. In order to express binding faith-
fully, we want the syntactic shape of the resulting expression to
be independent of the expression being shared. However, a Haskell
function of Expr→ Expr allows us to plug in functions that case-
analyze the incoming value and return different expressions de-
pending on the outcome of that analysis.

Abstract syntax graphs Making sharing explicit means that the
abstract syntax representation becomes a graph rather than a tree.
Although our effort to use HOAS to model ASGs has some prob-
lems, Oliveira and Cook [20] have shown a functional representa-
tion of graphs that solves these problems. The idea is to use para-
metric higher-order abstract syntax (PHOAS) [7] instead of HOAS
to model binders.

data Expr a = One | Add (Expr a) (Expr a)
| Var a | Let (Expr a) (a→ Expr a)

With PHOAS the whole expression datatype is now parameterized
by the type of shared expressions a. We have two new constructors
compared to our original type, one for variables that embeds a value

89

of type a in Expr, and one for Let. The body of the Let now receives
a variable of type a rather than a value of type Expr.

If we now require expressions in our language to make no as-
sumption about the variables, i.e., to be polymorphic in a, then (un-
like HOAS) we cannot analyze the shared expression. Furthermore,
Var serves as a generic way to quote intermediate results of inter-
pretation functions. We can thus make the following definition for
closed expressions, i.e., expressions with no free variables:

type ClosedExpr = ∀a.Expr a

We use ClosedExpr to explicitly refer to closed terms in our DSL
and Expr a to construct terms or write interpreter functions.

We define one and (⊕) as before:

one = One
(⊕) = Add

In addition, we define a function let_ that wraps Let:

let_ :: Expr a→ (Expr a→ Expr a)→ Expr a
let_ e1 e2 = Let e1 (λx→ e2 (Var x))

The PHOAS underpinning guarantees that we cannot do anything
with the argument we obtain in the body of the Let but to use it as
a variable. But having to invoke Var explicitly at every use site is
somewhat tedious – the wrapper performs this work for us.

With these definitions in place, we can define our explicitly
shared treeE function again. It looks just like the definition on the
right side of Figure 1, but its type becomes Int→ ClosedExpr. We
now have the choice whether to use Haskell’s host-language let
construct while doing meta-programming by writing a term like on
the left side of Figure 1, or if we explicitly want to express sharing
in the embedded language using let_ like on the right side.

Preserving sharing The evaluator can now be defined as follows:

eval :: Expr Int→ Int
eval One = 1
eval (Add e1 e2) = eval e1 + eval e2
eval (Var n) = n
eval (Let e1 e2) = eval (e2 (eval e1))

The interpreter expects an Expr Int – it thus assumes that variables
are of type integer for the purpose of evaluating an expression.
However, a ClosedExpr is polymorphic in the variable type, so it
will naturally be accepted by eval. In the Var case, we find an
integer and can return it. In the Let case, we have to provide an
integer for the value of the bound variable: we pass eval e1. Note
that this achieves sharing, because lambda-bound terms in Haskell
are automatically shared. Therefore calling eval (treeE 30) now will
return the result 1073741824 almost immediately.

Observing sharing Furthermore, it is easy to write other interpre-
tation functions for expressions. Here is a function that computes a
textual representation of the given term. Here, rather than preserv-
ing the sharing, we are interested in observing it:

text :: ClosedExpr→ String
text e = go e 0

where
go :: Expr String→ Int→ String
go One = "1"
go (Add e1 e2) c =

"("++go e1 c++" + "++go e2 c++")"
go (Var x) = x
go (Let e1 e2) c =

"(let "++ v++" = "++go e1 (c + 1)++
" in "++go (e2 v) (c + 1)++")"
where v = "v"++ show c

In text, we internally use an interpretation of type Int → String,
maintaining a counter. In the case for Let, we actually print
a let-construct rather than unfolding the expression. Evaluating
text (treeE 2) yields

"(let v0 = (let v1 = 1 in (v1 + v1)) in (v0 + v0))"

Inlining As a final example, let us look at a transformation that
removes explicit sharing again, effectively inlining all let-bound
variables:

inline :: Expr (Expr a)→ Expr a
inline One = One
inline (Add e1 e2) = Add (inline e1) (inline e2)
inline (Var x) = x
inline (Let e1 e2) = inline (e2 (inline e1))

This operation produces the original expression, but unfolds Let
constructs. For the purposes of inline, variables are themselves
expressions. For text (inline (treeE 2)), we obtain

"((1 + 1) + (1 + 1))"

again, and eval (inline (treeE 30)) takes forever to compute.

Summary We have shown that there are situations where we need
to observe or preserve sharing in an embedded DSL. Preserving
sharing may be needed for performance reasons (as in the treeE
example), or it may be needed for operations that inspect shared
terms and treat them in a particular way (as in the text example).

PHOAS offers a safe yet convenient way to make sharing ex-
plicit and encode ASGs. The user can reuse Haskell’s own scoping
rules and does not have to worry about managing names. Differ-
ently from classic HOAS encoding, terms that perform case analy-
sis on bound variables is forbidden.

3. (Mutual) recursion
In this section, following Oliveira and Cook [20], we will extend
the solution to sharing presented in Section 2 to recursive and
mutually recursive bindings.

To this end, we extend our example language with a few new
constructs. For now, let us move from the constant “one” to allow-
ing arbitrary integer literals, add a construct for checking if a term
is equal to “zero”, and add lambdas and application:

type ClosedExpr = ∀a.Expr a

data Expr a = Lit Int | Add (Expr a) (Expr a)
| IfZero (Expr a) (Expr a) (Expr a)
| Var a | Let (Expr a) (a→ Expr a)
| Lam (a→ Expr a) | App (Expr a) (Expr a)

The constructor Lit takes an arbitrary integer literal. Addition is
exactly as before. In IfZero, we take a condition, a then-part and an
else-part. Variables (Var) and Let are unchanged. A lambda (Lam) is
a binding construct. It therefore takes a function of type a→ Expr a
in the same way as the body of Let. Application (App) takes a
function and an argument.

We define a few “smart constructors” to facilitate constructing
terms again:

(⊕) = Add
(�) = App
let_ e1 e2 = Let e1 (λx→ e2 (Var x))
lam_ e = Lam (λx→ e (Var x))

Evaluation Let us look at how to extend the evaluator. We no
longer have the luxury that all terms of our embedded language
evaluate to integers. Instead, terms of our language now have a type
τ where the type language is as follows:

90

τ ::= Int | τ → τ

We have some flexibility encoding the type system when we embed
the language: we can encode the types of the terms dynamically,
and allow the language to represent ill-typed terms that will fail at
run-time; or we can use Haskell’s type system to enforce that terms
in the language must be well-typed. Both settings have some merit.
We will therefore look at the dynamic approach here and deal with
the static encoding of the types later, in Section 5.

The result of evaluation is now a tagged value:

data Value = N Int | F (Value→ Value)

Functions are represented as Haskell functions in this simple setting
– we might move to a representation using an explicit closure using
an environment in a larger setting. The evaluator changes slightly
as a consequence, and now looks as follows:

eval :: Expr Value→ Value
eval (Lit i) = N i
eval (Add e1 e2) = add (eval e1) (eval e2)
eval (IfZero e1 e2 e3) = ifZero (eval e1) (eval e2) (eval e3)
eval (Var x) = x
eval (Let e1 e2) = eval (e2 (eval e1))
eval (Lam e) = F (λv→ eval (e v))
eval (App e1 e2) = app (eval e1) (eval e2)

We now have to tag values whenever we produce them, such as in
the cases for Lit and Lam. For constructors such as Add, IfZero and
App we write wrapper functions that check (at run time) whether
the arguments have the correct types and throw an error if not:

add (N m) (N n) = N (m + n)
ifZero (N n) v1 v2 = if n = = 0 then v1 else v2
app (F f) v = f v

Of course, we could also define a monadic evaluator that would be
a total function and return Maybe Value instead of Value.

Here is a small example:

example =
let_ (lam_ (λx→ x⊕Lit (− 1))) (λdec→
let_ (lam_ (λ f→ lam_ (λx→

f� (f� x)))) (λ twice→
(twice� twice� dec� Lit 10)))

This expression encodes the term

let dec x = x− 1
twice f x = f (f x)

in twice twice dec 10

Note that the two uses of twice are at different types. Evaluating the
expression eval example yields N 6 as expected.
Recursion Recursion is simple to add, by introducing an addi-
tional constructor that represents fixed points:

data Expr a = . . . -- as before
| Mu (a→ Expr a)

This binding construct is very similar to Lam. Both constructs
introduce a bound variable that scopes over the entire body of the
expression.

The idea is that using Mu, we can encode a recursive function
such as multiplication (in terms of addition) as follows:

mu_ e = Mu (λx→ e (Var x))

mul :: ClosedExpr
mul = lam_ (λm→mu_ (λ rec→ lam_ (λn→

IfZero n (Lit 0) (m⊕ (rec� (n⊕Lit (− 1)))))))

The evaluator must of course be adapted as well:

eval :: ClosedExpr→ Value
eval . . . = . . . -- as before
eval (Mu e) = fix (λv→ eval (e v))

The new case maps Mu to Haskell recursion using the fix function:

fix :: (a→ a)→ a
fix f = let r = f r in r

Using the let here for the result introduces additional sharing.
As we did in Section 2, we can also write other semantic func-

tions on our DSL such as a function text to display the expres-
sion. Semantic functions can now observe and preserve recursion
as needed.

It is also possible to define a recursive let-construct in terms of
Let and Mu:

letrec :: (Expr a→ Expr a)→ (Expr a→ Expr a)→ Expr a
letrec e1 e2 = Let (Mu (λx→ e1 (Var x))) (λx→ e2 (Var x))

Mutually recursive definitions The Mu construct is sufficient for
expressing simple recursion, but we cannot easily express the def-
inition of several mutually recursive bindings. For languages with
an expressive internal structure we might be able to encode mu-
tual recursion in terms of simple recursion within the DSL, but we
want our techniques to be widely applicable and not impose strong
requirements on the DSLs.

When defining mutually recursive definitions we need to bind
several variables at once (one for each mutually recursive defini-
tion). As an example, consider the following Haskell term:

let dec x = x− 1
even x t e = if x = = 0 then t else odd (dec x) t e
odd x t e = if x = = 0 then e else even (dec x) t e

in even 4 1 0

The function even takes a number and two continuations. If the
number is even, the first continuation is returned, if it is odd,
then the second continuation is returned instead. The given call
returns 1, because 4 is even.

The functions even and odd are mutually recursive, and both
depend on dec. This kind of mutually recursive binding is com-
monplace in a language like Haskell.

To deal with mutually recursive bindings, we add a new con-
structor called LetRec:

data Expr a = . . . -- as before
| LetRec ([a]→ [Expr a]) ([a]→ Expr a)

We have a list of declarations now. Each of the declarations can
refer to each of the others. So all declarations are parameterized by
a list of inputs. The body also can refer to each of the bindings,
therefore it is parameterized over the same list. The type system
cannot express the intuition that all three lists that occur in the type
above are supposed to have the same length. We will be able to
make this precise in Section 5.

We also define a wrapper that applies Var to all the variables:

letrec_ :: ([Expr a]→ [Expr a])→
([Expr a]→ Expr a)→ Expr a

letrec_ es e = LetRec (λxs→ es (map Var xs))
(λxs→ e (map Var xs))

Now we can define our example term as follows:

evenOdd = letrec_ (λ∼[dec,even,odd]→
[lam_ (λx→ x⊕Lit (− 1))
, lam_ (λx→ lam_ (λ t→ lam_ (λe→

IfZero x t (odd � (dec� x)� t� e))))
, lam_ (λx→ lam_ (λ t→ lam_ (λe→

91

IfZero x e (even� (dec� x)� t� e))))
])
(λ [dec,even,odd]→ even� Lit 4� Lit 1� Lit 0)

The only slightly tricky point is that we need to delay the pattern
match on the list of variables in the first argument to letrec_ (using
∼), because in an interpretation function, Haskell will not be able
to determine the number of elements in this list before looking at
the body of the lambda.

We can extend an interpretation function such as the evaluator
to cope with the presence of LetRec as follows:

eval :: ClosedExpr→ Value
eval . . . = . . . -- as before
eval (LetRec es e) = eval (e (fix (map eval◦es)))

Reusing native let syntax It can be argued that despite the advan-
tages of using explicit sharing, it is still less convenient to use let_
or letrec_ than to use Haskell’s native let construct.

Many EDSLs therefore use Haskell’s let, but recover the shar-
ing information by inspecting the internal representation of the
term, using an impure function. The function reifyGraph, from the
data-reify package [11], provides such functionality. This func-
tion returns a graph representing subterms using numbers – a rep-
resentation that is neither particularly safe nor directly suitable for
further computations.

We can combine reification with our ASG approach. We start
with arithmetic expressions with just literals and addition:

data ExprD = LitD Int | AddD ExprD ExprD

The goal is to convert an implicitly shared term such as treeI 3
(using treeI from Figure 1 with type Int → ExprD, with obvious
definitions of one and ⊕) into an explicitly shared term of type
Expr. In order to be able to use data-reify on terms of type ExprD,
we have to define a pattern functor [15] for expressions

data ExprF r = LitF Int | AddF r r

that has the same structure as ExprD, but abstracts from recursive
calls. We furthermore have to instantiate a class MuRef to make the
relationship between Expr and ExprF precise.

Using the function reifyGraph we can convert a value of type
ExprD into a conventional graph representation based on a list of
type [(Int,ExprF Int)] associating integer labels with partial terms.
For example, reifyGraph (treeI 1) returns the graph

Graph [(1,AddF 2 2),(2,LitF 1)] 1

where the final 1 points to the root node.
We now define a function build that transforms such a list of

nodes into an explicitly shared ClosedExpr:

build :: [(Int,ExprF Int)]→ Int→ ClosedExpr
build env root =

letrec_ (λvs→ let go (LitF x) = Lit x
go (AddF v1 v2) =

Add (var vs v1) (var vs v2)
in map (go◦ snd) env)

(λvs→ var vs root)
where

var vs n =
fromJust (lookup n (zipWith (λ (i,) x→ (i,x)) env vs))

In this definition, var associates the integer labels with a variable
from the list vs, and then looks up the label n. We convert between
values of type ExprF a and ExprD a using the function go.

Using build, we can now write programs like

test = do (Graph env r)← reifyGraph (treeI 3)
print (text (build env r))

where we create an implicitly shared term of type ExprD with treeI
and then convert it to a value of type ClosedExpr using reifyGraph
and build. We can then process the resulting ASG with functions
that observe sharing (such as text).

Summary Our ASG representation is suitable for representing
various binding constructs in Haskell DSLs. However, there are at
least two situations in which the type safety we are able to obtain is
not satisfactory yet. Firstly, if the language itself has a type system,
then we might want to have a datatype explicitly encoding well-
typed terms, which has consequences on how we have to define the
binding constructs. Secondly, for mutually recursive bindings we
can either add on a constructor for each number of bindings and go
via tuples, or we can add one constructor working with lists as we
have done. However, this requires maintaining an implicit invariant
that we match on no more bindings than we are defining, and we
have to perform a lazy pattern match.

In the following, we will show how to fix these issues by assign-
ing more precise types to our language constructs.

4. Typed Lists
This section presents typed lists. Typed lists are a generalization
of both homogeneous and heterogeneous lists of statically known
length. We will make use of typed lists for encoding well-typed
mutually recursive bindings in Sections 5 and 6.

Typed lists are defined using the following datatype:

data TList :: (∗→ ∗)→∗→ ∗ where
TNil :: TList f ()
(:::) :: f t→ TList f ts→ TList f (t, ts)

A typed list TList f ts is parameterized by a type constructor f of
kind ∗ → ∗ and indexed by a signature of types ts. The signature
encodes a type-level list, with () representing the empty list and
(t, ts) representing the list with t as the head and ts as the tail.2
The signature determines both the length of the typed list and the
types of its elements. Where the signature contains a type t, the
corresponding element has type f t.

Heterogeneous and homogeneous lists Typed lists can be viewed
as a generalization of heterogeneous lists of statically known
length. Heterogeneous lists correspond to the case where f = I,
and I is the identity type constructor:

newtype I a = I {unI :: a}

Using I we can encode the following heterogeneous list:

hlist :: TList I (Int,(Int→ Int,(Bool,())))
hlist = I 3 ::: I (λx→ x) ::: I False ::: TNil

In this case hlist is an heterogeneous list that contains values of type
Int, Int→ Int and Bool as elements, and the types of the elements are
reflected in the signature.

Typed lists are also a generalization of homogeneous lists. Ho-
mogeneous lists correspond to the case where a = K b, and K b is
the constant type constructor:

newtype K b a = K {unK :: b}

For example, we can encode the list [1,2,3] as follows:

2 Alternatively, we could use recent GHC extensions that allow kind poly-
morphism and datatype promotion [28] to provide a more direct definition
of typed lists:

data TList :: (k→∗)→ [k]→∗ where
TNil :: TList f ′[]
(:::) :: f t→ TList f ts→ TList f (t ′: ts)

92

list :: TList (K Int) (t,(t1,(t2,())))
list = K 1 ::: K 2 ::: K 3 ::: TNil

The use of the constant functor means that all elements are of
type Int. The concrete types that occur in the signature become
irrelevant; the signature merely encodes the length of the list.
Basic operations We can access the head and the tail of non-
empty typed lists:

thead :: TList f (t, ts)→ f t
thead (x ::: xs) = x

ttail :: TList f (t, ts)→ TList f ts
ttail (x ::: xs) = xs

Unlike for regular head and tail, no pattern matching errors can
occur in thead and ttail, because the type signature specifies that
the input list must have at least one element.

Another useful operation is tlength, which returns the number
of elements in a typed list:

tlength :: TList v t→ Int
tlength TNil = 0
tlength (x ::: xs) = 1 + tlength xs

Mapping and zipping Operations like map or zipWith have coun-
terparts in the world of typed lists. Where map lifts a function of
type a→ b to a function on lists, the corresponding tmap operates
on a natural transformation of type ∀t.f t→ g t:

tmap :: (∀t.f t→ g t)→ TList f t→ TList g t
tmap h TNil = TNil
tmap h (x ::: xs) = h x ::: tmap h xs

Apart from the more general type, the code of tmap is the same
as that for map. We can easily obtain a specialized version for
homogeneous lists:

tmapK :: (a→ b)→ TList (K a) ts→ TList (K b) ts
tmapK f = tmap (K◦ f◦unK)

A generalization of zipWith for typed lists can be obtained in a
similar fashion:

tzipWith :: (∀t.f t→ g t→ h t)→
TList f ts→ TList g ts→ TList h ts

tzipWith f TNil TNil = TNil
tzipWith f (x ::: xs) (y ::: ys) = f x y ::: tzipWith f xs ys

Note that the type signature of tzipWith dictates that both input lists
as well as the output list share a common signature and therefore
must in particular be of the same length. As a result, we have to
provide only two cases, where either both input lists are empty, or
both input lists are non-empty.
Producers of typed lists We will also need a version of iterate
that operates on typed lists. This operation is interesting because
it produces a typed list, whereas all the functions we have defined
above are consumers of typed lists.

While the conventional iterate function produces an infinite list,
we now have to produce a list of a statically given signature, and
in particular length. We therefore have to define our typed version
of iterate by induction over the signature ts. As a consequence, the
function cannot simply be of type

(a→ a)→ a→ TList (K a) ts

because we have to produce a result that is polymorphic in ts,
and we have no way in Haskell to analyze ts. We can, however,
use a well-known type-level programming technique [6] to reflect
the structure of the signature to the value level and then perform
induction over the reflected signature:

data RList ::∗→ ∗ where
RNil :: RList ()
RCons :: RList ts→ RList (t, ts)

Using RList, it is now straight-forward to define a version of iterate
for typed lists:

titerate′ :: RList ts→ (a→ a)→ a→ TList (K a) ts
titerate′ RNil f n = TNil
titerate′ (RCons xs) f n = K n ::: titerate′ xs f (f n)

Using type classes for producers Using titerate′ is inconvenient,
because in order to invoke it, we have to pass a term of type RList ts,
and constructing such a term is tedious. We can, however, use a
type class to build a value of the appropriate type automatically and
pass it implicitly, so that we can define a more convenient function
titerate as follows:

titerate :: CList ts⇒ (a→ a)→ a→ TList (K a) ts
titerate = titerate′ cList

The type class CList and its instances are:

class CList t where
cList :: RList t

instance CList () where
cList = RNil

instance CList ts⇒ CList (t, ts) where
cList = RCons cList

The resulting function titerate can be used almost in the same way
as iterate:

tenumFrom :: CList ts⇒ Int→ TList (K Int) ts
tenumFrom n = titerate (+ 1) n

test :: TList (K Int) (t1,(t2,()))
test = tenumFrom 0

The main difference is that the type is important to determine how
many elements will be generated. For example, test generates a list
with the elements K 0 and K 1, because the signature of test is a
type-level list with two elements t1 and t2.

5. Typed ASGs and DSLs
This section shows how to define well-typed abstract syntax graphs.
We will illustrate this by adapting the interpreter presented through-
out Section 3 to ensure that all terms are well-typed by construc-
tion. As for the untyped interpreter, observing sharing and recursion
is possible. Because mutually recursive LetRec subsumes normal
Let and Mu, we drop the latter two from the language.

Well-typed Abstract Syntax Graphs If we want to model well-
typed ASGs, we have to first introduce an additional type argument
that serves as the index for the type of the value being represented,
and then adapt the types of the constructors in order to establish the
typing rules of the embedded language.

But how do we represent variables? As the embedded language
is now indexed by a type argument, variables can be of different
(Haskell) types. Therefore, we change the type parameter for vari-
ables from kind ∗ to kind ∗ → ∗: we pass in a type function that,
given a type of the embedded language, returns the associated type
of variables. If we apply this strategy to our example expression
language, we end up with the following datatype:

type ClosedExpr t = ∀f.Expr f t

data Expr (f ::∗→ ∗) ::∗→ ∗ where
Lit :: Int→ Expr f Int
Add :: Expr f Int→ Expr f Int→ Expr f Int

93

IfZero :: Expr f Int→ Expr f t→ Expr f t→ Expr f t
Var :: f t→ Expr f t
Lam :: (f t1→ Expr f t2)→ Expr f (t1→ t2)
App :: Expr f (t1→ t2)→ Expr f t1→ Expr f t2
LetRec :: CList ts⇒ (TList f ts→ TList (Expr f) ts)→

(TList f ts→ Expr f t)→ Expr f t

In the Var case, we pass the type t to the parameter function f
to obtain a suitable variable type, as was our plan. The case for
Lam shows that apart from adding type arguments everywhere, the
structure of representing binders remains the same.

The case for mutually recursive bindings LetRec is more inter-
esting. We now use typed lists (as introduced in Section 4) rather
than ordinary lists. They keep track of the types of all the elements
in the list, and at the same time determine the length of the list.
Therefore, by using the same signature ts three times for the three
occurrences of TList, we now establish statically that all three oc-
currences have exactly the same shape. This is a big improvement
over the untyped encoding which does not provide such guarantees.

Furthermore, the CList ts constraint in LetRec guarantees that
expressions built with this constructor support reifying the type-
level list into a value of type RList ts. This is useful when we want
to use producer functions like titerate to define functions over Expr.

As in the untyped setting, parametricity still ensures that we
cannot inspect variables as long as an expression is polymorphic in
the variable type function f. We define ClosedExpr as an abbrevia-
tion for such closed terms again.

Well-typed evaluator The code for the well-typed evaluator is:

eval :: Expr I t→ t
eval (Lit i) = i
eval (Add e1 e2) = eval e1 + eval e2
eval (IfZero e1 e2 e3) = if eval e1 = = 0 then eval e2 else eval e3
eval (Var x) = unI x
eval (Lam e) = eval◦e◦ I
eval (App e1 e2) = (eval e1) (eval e2)
eval (LetRec es e) = eval (e (fix (tmap (I◦eval)◦es)))

Unlike the interpreter we defined in Section 3, there is no need for
a separate Value datatype for values. Since we used the Haskell
type constructors Int and (→) to model the type language of the
embedded language, we can simply use t as value type of a term
that has type Expr f t. For the purposes of evaluation, we have to
instantiate f with a type function that makes this relation explicit:
the identity type constructor I.

The resulting interpreter is untagged. There are no constructors
wrapping the values, and we do not need to perform any type-
checking at run-time. We statically know that in each construct,
the arguments we obtain are of the correct types.

While the code for the “normal” language constructs becomes
simpler, the code for the binding constructs remains nearly un-
changed: we only have to sprinkle coercion functions unI and I to
help the type checker along.

As before, we can define wrappers for certain constructors to
make the use of the language a bit more convenient. For example:

(⊕) = Add
one = Lit 1

lam_ :: (Expr f t1→ Expr f t2)→ Expr f (t1→ t2)
lam_ e = Lam (λx→ e (Var x))

letrec_ :: CList ts⇒ (TList (Expr f) ts→ TList (Expr f) ts)→
(TList (Expr f) ts→ Expr f t)→ Expr f t

letrec_ es e = LetRec (λxs→ es (tmap Var xs))
(λxs→ e (tmap Var xs))

If we want non-recursive let-bindings or a simple fixed-point con-
struct back, we can easily define these in terms of letrec_:

let_ :: Expr f t1→ (Expr f t1→ Expr f t2)→ Expr f t2
let_ e1 e2 = letrec_ (λ → e1 ::: TNil) (λ (x ::: TNil)→ e2 x)

Using the definitions above, we can still distinguish between im-
plicitly shared and explicitly shared terms as before. The two ver-
sions treeI and treeE defined in Figure 1 are valid in the typed set-
ting without any change of the code – only the type becomes

Int→ ClosedExpr Int

in both cases. The implicitly shared version will still lose sharing,
whereas the explicitly shared version still evaluates quickly.

In summary, the same properties regarding observable sharing
and recursion apply to well-typed terms: the addition of typing in-
formation does not affect the preservation of sharing and recursion.

On the other hand, we now can no longer define terms that are
ill-typed according to the type system of our DSL. For instance,
example from Section 3 fails to type check, because it uses twice at
two different types, but our DSL has only monomorphic types.

Printing terms Let us also look at how we have to adapt the func-
tion text that we have introduced in Section 2. Here, the relation
between DSL types and result types is different compared to eval-
uation: regardless of the DSL type that a variable has, they are all
printed as strings. We need the K type constructor instead of I:

text :: ClosedExpr t→ String
text e = go e 0

where
go :: Expr (K String) t→ Int→ String
. . . -- cases for Lit, Add, IfZero, App as before
go (Var x) = unK x
go (Lam e) c =

"(\\ "++ v++" -> "++go (e (K v)) (c + 1)
where v = "v"++ show c

go (LetRec es e) c =
"(let { "++ intercalate "; " ds++
" } in "++go (e vs) c′++")"
where

vs = tmapK (λ i→ "v"++ show i) (tenumFrom c)
c′ = c + tlength vs
ds = ttoList $

tzipWith (λ (K v) e→ K (v++" = "++go e c′))
vs (es vs)

Similarly to the evaluator code, we must add a few coercion func-
tions (K and unK) throughout the pretty printer code.

The LetRec case is interesting again, because we have to deal
with typed lists. In vs, we define the strings representing each
of the bound variables. First, we generate numbers starting from
the current counter c using tenumFrom. Then we map over the
list, moving from type K Int to K String. How many variables are
generated is determined by the type context! In the declaration of
ds, we pass our typed list of strings to the declaration function es,
and the type of LetRec dictates that the input lists of variables must
have the same shape as the output list of bindings.

Note that tenumFrom works only for result types that actually
are list types, as witnessed by the CList constraint – this is an
example for why we need to put a CList constraint in the type of
the LetRec constructor.

In ds, we then take the list of variables vs and the list of
expressions es vs and generate strings representing each of the
bindings using tzipWith. We end up with a typed list containing
elements of type K String, but we would actually like to have a list
of strings at this point. The function ttoList achieves this:

94

ttoList :: TList (K a) ts→ [a]
ttoList TNil = []
ttoList (K x ::: xs) = x : ttoList xs

Finally, we separate each of the bindings by "; " by using the
standard list function intercalate and append everything together
in a single string.

6. Encodings of ASGs
In this section, we discuss an encoding of ASGs using type classes.
This approach is interesting because it stands somewhere in-
between a shallow and a deep embedding. Like for deep embed-
dings, it is possible to have multiple interpretations and perform a
form of syntactic analysis. Like for shallow embeddings, it is pos-
sible to to create (but not observe) sharing using Haskell’s built-in
let. Moreover, it is easy to extend the language and add new con-
structs without touching existing code. For the deep embeddings
we have been using in Sections 2, 3 and 5, adding a new construc-
tor requires modifying all the interpretation functions.

Uses of sharing in the embedded language can still be explicit
and therefore can be observed and as needed and we can maintain
the level of type safety established in Section 5.

An additional advantage of the class-based encoding is that
it is possible to provide reusable code for the binding constructs
we have presented. As binding constructs are useful and similar
throughout many DSLs, being able to reuse code reduces the im-
plementation burden on DSL designers.
Encoding datatypes as type classes Hinze [12] showed that type
classes provide a convenient way to define Church encodings of
datatypes. Moving from a (generalized) algebraic datatype to a
class is an entirely mechanical process [21]. As an example, let us
consider how to encode simple well-typed arithmetic expressions
like the ones presented in Section 5, i.e., we base this construction
on the type Expr from Section 5, but we consider only the Lit and
Add constructors for now:

class ArithAlg expr (f ::∗→ ∗) where
lit :: Int→ expr f Int
(⊕) :: expr f Int→ expr f Int→ expr f Int

Looking at the transformation from a syntactic perspective, all
we did was: change the datatype declaration to a class, transform
the data constructors into methods of the class, and use a class
parameter expr wherever the original datatype Expr was being used.

Semantically, ArithAlg encodes the signature of algebras of the
original datatype. Instances of ArithAlg correspond to fold-like
functions over that datatype. For the reader interested in knowing
more about this technique we suggest several resources available
elsewhere [5, 12, 21].
Encoding Binders We can follow the same recipe to encode
binders. Let us again consider the datatype Expr from Section 5, ig-
noring all but the two binding-related constructors Var and LetRec.
We obtain the following type class:

class BindAlg expr f where
var :: f t→ expr f t
letrec :: CList ts⇒ (TList f ts→ TList (expr f) ts)→

(TList f ts→ expr f t)→ expr f t

As before, it is possible to define wrappers that allow more con-
venient use of binding constructs, or that define simpler binding
constructs in terms of letrec. As an example, here is the code for
non-recursive let-bindings:

let_ :: BindAlg expr f⇒ expr f t1→
(expr f t1→ expr f t2)→ expr f t2

let_ e1 e2 = letrec (λ → e1 ::: TNil) (λ (x ::: TNil)→ e2 (var x))

Generic behavior for binders As observed by Oliveira and
Cook [20], there are many operations that share a common defini-
tion for the binding constructs. We use this observation to capture
this generic behavior by providing a “default” instance for BindAlg.
This instance can be reused when defining suitable operations:

newtype Default f t = D {unD :: f t}
instance BindAlg Default f where

var x = D x
letrec es e = e (fix (tmap unD◦es))

This definition turns out to be useful for operations such as evalua-
tion or inlining – whenever we do not need to observe sharing. For
functions such as text, we want to observe the binding structure and
will require a different instance.

Extensibility and Modularity As Oliveira et al. [22] shows, an
advantage of using the class-based approach is that in contrast to
datatypes, which are closed to extension, we can add new cases to
a language simply by defining another class. In other words this
technique can be used to solve the expression problem [27].

Several DSLs share a number of common components. For ex-
ample, many DSLs will have the arithmetic expressions and recur-
sive binders that we already discussed. Adding a new set of DSL
constructs is as simple as defining a new type class. For example,
we can create a third class LamAlg for lambda and application:

class LamAlg expr f where
lam :: (f t1→ expr f t2)→ expr f (t1→ t2)
app :: expr f (t1→ t2)→ expr f t1→ expr f t2

If we want to state that expressions are given by the combination of
the three classes we have defined above, we can denote that with

class (BindAlg expr f,ArithAlg expr f,LamAlg expr f)⇒
ExprAlg expr f

We can build terms in this language by applying and combining
class methods from each of the three classes. Closed expressions
are overloaded in the instantiation of ExprAlg:

type ClosedExpr t = ∀expr f.ExprAlg expr f⇒ expr f t

Evaluation In order to define evaluation, we define instances for
each of the classes separately. If desired, we could define these
instances at different times, when we decide to extend the language
with new constructs, and without touching existing code.

No instance for BindAlg is needed – we can reuse the default
instance defined above. We have to provide instances for ArithAlg
and LamAlg, however. A ClosedExpr t evaluates to a t, so we could
choose I as the instantiation of the f arguments of the classes.
However, while several functions on expressions might share the
same type signature, there can be only a single instance each for
ArithAlg Default I and LamAlg Default I. Therefore, we define a new
type isomorphic to I specifically for the evaluation function:

newtype Eval t = E {unE :: t}
eval :: Default Eval t→ t
eval = unE◦unD

toE :: t→ Default Eval t
toE = D◦E

The instances are then straightforward:

instance ArithAlg Default Eval where
lit i = toE i
e1⊕e2 = toE (eval e1 + eval e2)

95

instance LamAlg Default Eval where
lam f = toE (eval◦ f◦E)
app e1 e2 = toE ((eval e1) (eval e2))

instance ExprAlg Default Eval

Note that eval can be applied directly to a term of type ClosedExpr.
Shared trees If we abbreviate one= lit 1, and use Int→ClosedExpr Int
as the type signature, then the two versions treeI and treeE from
Figure 1 work once again. However, the behavior here is similar
to what we discussed in Section 2 for shallow DSLs: both versions
preserve sharing. There is no indirection of data constructors when
using the class-based encoding: a term is directly encoded as its
interpretation (or actually, all possible interpretations).

Still, there are advantages to using explicit sharing, as implicit
sharing remains rather fragile: if we, for example, define a function

double :: ClosedExpr t→ ClosedExpr t

that traverses an expression and doubles all literals, then the traver-
sal over an implicitly shared term will destroy the sharing. We also
need to be explicit whenever we have to observe sharing.
Printing terms As an example of an operation that observes shar-
ing and does not make use of the default instance for BindAlg, we
return to our text function. We only show the instance for BindAlg:

newtype Text (f ::∗→ ∗) t = T { text′ :: Int→ String}
instance BindAlg Text (K String) where

var x = T (λ → unK x)
letrec es e = T (λc→

let vs = tmapK (λ i→ "v"++ show i) (tenumFrom c)
c′ = c + tlength vs
ds = ttoList $

tzipWith (λ (K v) e→ K (v++" = "++ text′ e c′))
vs (es vs)

in "(let { "++ intercalate "; " ds++
" } in "++ text′ (e vs) c′++")")

The code is nearly the same as that given in Section 5. The actual
text function wraps text′:

text ::∀t.ClosedExpr t→ String
text e = text′ (e :: Text (K String) t) 0

Summary Using the class-based encoding of ASGs is recom-
mended whenever extensibility is a must. It is easily possible to
encode well-typed terms in the class-based setting, but actually not
necessary. The untyped ASGs of Section 3 can easily be translated
into the class-based setting as well. A disadvantage of the class-
based encoding is that it forces interpretation functions to be folds
– if functions require nested pattern matches or have strange recur-
sion behavior, they can be tricky to encode as algebras.

7. Conclusion
We propose using ASGs instead of ASTs to provide a more conve-
nient representation of abstract syntax for EDSLs. ASGs internalize
the information about sharing and recursion directly in the repre-
sentation. As such, environments can in most cases be avoided, and
there is no need to deal with other binding-related issues such as
α-equivalence, name capture or generation of fresh variables.

We show that ASGs are flexible: they extend nicely to the gen-
eralized setting of terms with statically encoded type information,
and they are suitable for class-based as well as datatype-based en-
codings. The ability to encode well-typed terms is particularly in-
teresting, because many DSLs have type systems that can be en-
coded directly in the host language. The ability to modularize DSL
constructs is important to provide flexibility and reuse.

References
[1] T. Altenkirch and B. Reus. Monadic presentations of lambda terms

using generalized inductive types. In CSL ’99, 1999.
[2] A. I. Baars and S. D. Swierstra. Type-safe, self inspecting code. In

Haskell ’04, 2004.
[3] A. I. Baars, S. D. Swierstra, and M. Viera. Typed transformations of

typed grammars: The left corner transform. Electron. Notes Theor.
Comput. Sci., 253(7), 2010.

[4] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: hardware
design in Haskell. In ICFP ’98, 1998.

[5] J. Carette, O. Kiselyov, and C. Shan. Finally tagless, partially evalu-
ated: Tagless staged interpreters for simpler typed languages. J. Funct.
Program., 19(5), 2009.

[6] J. Cheney and R. Hinze. A lightweight implementation of generics
and dynamics. In Haskell 2002, 2002.

[7] A. Chlipala. Parametric higher-order abstract syntax for mechanized
semantics. In ICFP’08, 2008.

[8] K. Claessen and D. Sands. Observable sharing for functional circuit
description. In In Asian Computing Science Conference. Springer
Verlag, 1999.

[9] D. Devriese and F. Piessens. Finally tagless observable recursion for
an abstract grammar model. Journal of Functional Programming,
22(6):757–796, November 2012.

[10] D. Devriese, I. Sergey, D. Clarke, and F. Piessens. Fixing idioms: A
recursion primitive for applicative dsls. In PEPM’13, 2013.

[11] A. Gill. Type-safe observable sharing in Haskell. In Haskell’09, 2009.
[12] R. Hinze. Generics for the masses. J. Funct. Program., 16(4-5), 2006.
[13] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic

embedding of dsls. In GPCE ’08, 2008.
[14] P. Hudak. Building domain-specific embedded languages. ACM

Computing Surveys, 28, 1996.
[15] P. Jansson and J. Jeuring. Polyp – a polytypic programming language

extension. In POPL’97, 1997.
[16] O. Kiselyov. Implementing explicit and finding implicit sharing in em-

bedded DSLs. In Proceedings IFIP Working Conference on Domain-
Specific Languages, 2011.

[17] E. Meijer and G. Hutton. Bananas in space: extending fold and unfold
to exponential types. In FPCA’95, 1995.

[18] M. Might, D. Darais, and D. Spiewak. Parsing with derivatives: a
functional pearl. In ICFP ’11, 2011.

[19] J. T. O’Donnell. Overview of Hydra: A concurrent language for
synchronous digital circuit design. In IPDPS ’02, 2002.

[20] B. C. d. S. Oliveira and W. R. Cook. Functional programming with
structured graphs. In ICFP ’12, 2012.

[21] B. C. d. S. Oliveira and J. Gibbons. Typecase: a design pattern for
type-indexed functions. In Haskell ’05, 2005.

[22] B. C. d. S. Oliveira, R. Hinze, and Andres Löh. Extensible and
Modular Generics for the Masses. In TFP ’06, 2006.

[23] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for gadts. In ICFP’06, 2006.

[24] F. Pfenning and C. Elliot. Higher-order abstract syntax. In PLDI ’88,
1988.

[25] F. Pottier. Lazy least fixed points in ML. Unpublished, 2009.
[26] P. Wadler. The essence of functional programming. In POPL’92, 1992.
[27] P. Wadler. The expression problem. Note to Java Genericity mailing

list, Nov. 1998.
[28] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and

J. P. Magalhães. Giving Haskell a promotion. In TLDI ’12, 2012.

96

	Introduction
	Sharing in EDSLs
	(Mutual) recursion
	Typed Lists
	Typed ASGs and DSLs
	Encodings of ASGs
	Conclusion

