
Coquet: a Coq library for verifying hardware

Thomas Braibant

LIG, UMR 5217, INRIA

1 Abstract. We propose a new library to model and v erify hardware cir-

012 cdciueriectpus-iiet mns tb bheyed fd Coilnolqgow: p winreogou ft shea esas iu sts(audnealpte.p nT ednhe-inastnll dyib-rp tayarppyeedr al)ld od iwaagstrao a-ntmyespt e.oW te haeastid lm yefob indueeilldsa
g the architecture of circuits, and a meaning function. We propose tac-
u tics that ease the reasoning about the behavior of the circuits, and we
A demonstrate that our approach is practicable by proving the correctness

2 2 rociifrcc vs uaizirteiso,:us a somb c iuerfcf hueirig,thsa :enra -dot r aedx reter-gbc isootomerkb.id niavtiodresa o nfdc irc couniqtsu,ea rna ddds eormo efs p eaqureanmteiatl-
]

OL Introduction
.

cs[Fpoearmr aasl a m netechoesdssar ayre altw eirdnealtyiv uest eod ti enstt ha nedv es irimfiuclaattioionno t fecc hirnciuqiuted s.e Asimgno,na gnt dhea mp,-

3v15 tmophrnooeldyvo eetd rlshec aeh [1lre0 c wh,k9iati,nnh1gd4c ,] mi.rc Ficeruotcrihut oiin otdssfstaf cih anxanecvedeb ,s t etihhzef eeoo ra a mvnderdavalals nlyulta fas fpepgrepecrf o oriffoaiemcb dhe ii ca nnongtmdrf obuc dileunlyrcateta idfouireti idnaolm[u 9e as,x1itnp7egl]dot st oib houem not.orc edO amennl
42. csiirbclueib tseh ianvh iioguhre rof-o drdevericel osg.ic ist ou sep redicateso ft hel ogict oe xpresst hep os-

80 tionWse arp eret sweon-tfo alds .tuF dirystf ,o rths epreech ifyaisn bgea ennda v leortif oyfin wgoc rikrcsud itessci nribC inogq.a nO dur vem rioftyiivnag-
11: fceiarctuuirtess in de lpoegnicdei nntt ht yep HesOt Lhaa tna dr AeC mLo2ref a emxpilryeso sfivt eh.eoT rheemV p erroitvaesrsl a.nH gouwaegveee rx,pC eorq-

rXiva mccimiuroiecrtnuesitc ot s[ro 1nt r 0ech]ileis haeirib.n slWt ype:deec s aoit fmhilscoaeatt aie t orrhgrneuosser.esS t a h celacalotnonw dd bee,f pom ce rnao sduspegtenhoc ttifft e it ycahapretelsyiseo,n wa w srohet rheki nnasvtt m aya lrpouedae-eb lcblheoc eitf crohkcruic nid lgteesavt ru ehesloreinpa c gininra dg-
shallow-embedding: circuits are defined as predicates or functions in the logic of
the theorem prover, with seldom, if any, way to reason about the devices inside
the logic: for instance, functions that operate on circuits must be built at the
meta-level [21] , which precludes one from proving their correction. We define a
data-type for circuits and a meaning function: w e can write (and reason about)
Coq functions that operate on the structure of circuits.

Circuit diagrams describe the wire connections between gates and have nice
algebraic properties [5,15] . While w e do not prove algebraic laws, our library
features a set of basic blocks and combinators t hat allows one to describe such

diagrams in a hierarchic and modular way. We make precise the interconnec-

tion of circuits, y et, we remain high-level because we make implicit the low-level

diagram constructs such as wires and ports. Circuit diagrams are also used to
present recursive or parametric designs. We use Coq recursive definitions to gen-
erate circuits of parametric size, e.g., to generate a n-bit adder for a given n.
Then, we reason about these functions rather than on the tangible (fixed-size)
instantiations of such generators. Circuits modelled by recursion have already
been verified in other settings [14,17] . The novelty of our approach is that we
derive circuit designs in a systematic manner: w e structure circuits generators by
mimicking the usual circuit diagrams, using our combinators. Then, the proper-
ties of these combinators allow us to prove the circuits correct.

We are interested in two kinds of formal dependability claims. First, we want
to capture some properties of well-formedness of the diagrams. Second, we want
to be able to express the f unctional correctness of circuits – the fact that a circuit
complies to some specification, or that it implements a given function. Obviously,
the well-formedness of a circuit is a prerequisite to its functional correctness. We
will show that using dependent types, we can get this kind of verification for free.
As an example, the type-system of Coq will preclude the user to make invalid
compositions of circuits. Hence, we can focus on what is the intrinsic meaning
of a circuit, and prove that the meaning of some circuits entails a high-level
specification, e.g., some functional program.

Our contributions can be summarized as follows: we propose a new framework
to model and verify circuits in Coq that allows to define circuits in a systematic
manner by following usual diagrams; we provide tactics that allow to reason
about circuits; we demonstrate that our approach is practicable on practical
examples: text-book n-bit adders, high-level combinators, and sequential circuits.

Outline. In §1, we give a small overview of all the basic concepts underlying
our tmlineteh.od Ionlo §1g,y wtoe present hmoawll t ohvee vrvaireiowuso fpa ielclet sh feitb atosigcetc hoenr.c eWptes present tinheg
actual definitions we use in §2. Then, in §3 and §4, w e demonstrate the feasibility
aofc our dapefpinroitaiocnh on some nex§ a2.mT phleesn. W ine§ a3na anlyds§ e4 some ebmenoenfsittsr otfe using a dbeileitpy-
embedding in §5. Finally, we compare our study to other related work in §6.

1 Overview of our system

We give a global overview of the basic concepts of our methodology first, before
giving a formal Coq definition to these notions in the next section. W e take
this opportunity to illustrate the use of our system to represent parametrized
systems through the example of a simple n-bit adder: it computes an n-bit sum
and a 1-bit carry out from two n-bit inputs and a 1-bit carry in. The recursive

construction scheme of this adder is presented in Fig. 1 (data flows from left to
right) , using a f ull-adder, i.e. , a 1-bit adder, as basic building block.

Circuit interfaces. Informally, we want to build circuits that relate n in-
put wires to m output wires, where n, m are integers. For instance, the door

2

AND has two inputs and one output. However, using integers to number the
wires does not give much structure: the n-bit adder has 2n + 1 input w ires,
this does not specify how they are grouped. Hence, we use arbitrary f inite-types
as indexes for the wires rather than using integers [11] . A circuit that relates
inputs indexed by n to outputs indexed by m has type C n m, where n and
m are types. For instance, the full-adder, a circuit with three inputs and one
output, has type C (1⊕ (1⊕ 1)) (1⊕ 1) , where ⊕ is the disjoint sum (asso-
ocuiattpivuet ,tho atshe t lpeeft) C Can (1d ⊕1 i1s a singleton type. eHreen⊕ ce,i stht eh en-d biistj aidntdes ru hmas(type
C (1⊕ sumn 1n⊕ sumn 1n) (sumn 1n⊕ 1) , where sumn A n is a n-ary disjoint
sum.

Circuits combinators. The n-bit adder is made of several sub-components
that are composed together. We use circuit combinators (or combining forms [19])
to specify the connection layout of circuits. For instance, in Fig. 1, the dashed-
box is built by composing in parallel two HL circuits, that are then composed
serially w ith a combinator that reorders the wires. These combinators leave im-

plicit the connection points in the circuits, and focus on how informations flow
through the circuit: the wire names given in Fig. 1do not correspond to variables,
and are provided for the sake of readability.

In our “nameless” setting, wires have to be forked and reordered using plugs:
a plug is a circuit of type C n m, defined using a map from m to n that defines
how to connect an output wire (indexed by m) to an input wire (indexed by
n) . Since we use functions rather than relations, this definition naturally forbids
short-circuits (two input wires connected to the same output wire) .

Meaning of a circuit. We now depart from the syntactic definitions of circuits
to give an overview of their semantics. We assume a type T of what is carried
by the wires, for instance booleans (B) or streams of booleans (nat → B). Let x
bbey a ceirw cuiriets ,off type tCa n m. oTolheea inputs (resp. aomutspuo tfs b) oofl x are a tfin→ iteB fu).n Lcteito nx
ins of type n → T (resp. outs of type m → T) . The meaning of x is a relation
x ‘mn itynps . n/ →out Ts breestwp.ee onu sino sf at ynpde om ut s→ th T)at. we d meefiannei by ifnd xu icst iaonr e on x.

3
This is an abstract mathematical characterization, which may or may not be
computational (we will come back to this point later) .

Abstracting from the implementation. The meaning of a circuit is defined
by induction on its structure: this relation may be complex and may give infor-
mations about the internal implementation of a circuit. Thus, we want to move
from the definition of this relation, for instance, to give high-level specifications,
or to abstract their behavior. These abstractions can be expressed through the
following kind of entailment [17] :

∀ins, ∀outs, RIPPLE n ‘ ins ./ outs → R outs ins

We use data-abstraction [17] to be more elegant. Indeed, a v alue of type
1⊕ sumn 1n ⊕ sumn 1n → B is isomorphic to a value of type B ×W n ×W n
(1w⊕ hes ruem nW 1n ins ⊕ths eu type nof→ integers ofrmoomrp 0h ctot o2na) . aW luee use ytypepe- Bis× omW orp×hisW ms
to give tractable specifications for circuits: we prove that the parametric n-bit
adder depicted in fig 1implements the addition with carry function on Wn .

2 Formal development

We now turn t o define formally the concepts that were overviewed in the previous
section. We use Coq type-classes to structure our development and parametrize
code.

2.1 Circuit interfaces

We use arbitrary finite types (types with finitely many elements) as interfaces
for the circuits, i.e., as indexes for the wires. One can create such finite types by
using the disjoint-sum operator ⊕ and the one-element type 1. This construction
can bget hgeen deisrjaoliiznetd-s utom n-ary datisojroi⊕ nt a sums ewr ointtee-enl sumn tA n , foer1 a given oA.n Hstorwucetvieorn,
using a single singleton type for all wires can be confusing: there is no way to
distinguish one 1from another, except by its position in the type (which is
frustrating) . Hence, we use an infinite family of singleton types 1x where x is a
tag. Circuits are parametrised by some tags, which allows the Coq type-system
to rule out some ill-formed combinations. This tagging discipline allows to easily
follow circuit diagrams to define circuits in Coq, without much room for mistakes.

Inductive tag (t : string) : Type := _tag : tag t. (** we write 1t for tag t*)

Finite types are defined as a class Fin A that packages a duplicate-free list of
all the elements of the type A, defined along the lines of [8] .

2.2 Type isomorphisms

We use type-isomorphisms as “lenses” to express the specification of circuits in
user-friendly types, without loss of information. In a nutshell, we define in Coq an

4
isomorphism between two types A and B as a pair of functions iso : A → B and
iusonimsoo : Ahi s→m Bb tthwaete are poro tyvepdes tAo ba ne dinB vea rsse aopf eaairco hf fo ftuhnecrt. Wonse use :tAh e →noB tata ionnd
uAn =∼is oB: fAor → an Bist ohmator aprheisp mro bveedtwt eoen b eAi avnedrs eBo, fae nadc we tdheefirn.We some n thoteatn iootnast ifoonr
operations (or instances)that allow one to build such isomorphisms in Fig. 2. The
most important instance state the duality between disjoint-sums in the domain
of the finite functions to a cartesian product.

Class Iso (A B : Type) :={ Class Iso_Props {A B: Type} (I : Iso A B) := {
ilsaos : IA → B; iso_uniso : ∀o (x : B) , i Tsyop (uniso x) = x;
iusnois: oA : →B → A}. uniso_iso : ∀∀ (x : A) , i unsios(ou (iso x) = x}.

2.3 Plugs

Rewiring circuits of type C n m are defined by mapping output wires indexed
by m to input wires indexed by n. We define plugs using usual Coq functions to
get small and computational definition of maps. (Note that, since we map the
indexes of the wires, there is no way to embed an arbitrary function inside our
circuits to compute, e.g., the addition of the value carried by two input wires.)

We give three examples: (a) is a circuit that forgets its first input (types
must be read bottom-up on diagrams) ; (b) is a circuit that duplicates its inputs;
(c) implements some re-ordering and duplication of the wires. (We leave implicit
the associativity of wires on the diagrams.)

(a) (b) (c)

C (n ⊕ m) m C n (n ⊕ n) C (n ⊕ m ⊕ p) (p ⊕ (n ⊕ n))

A possible implementation for (a) is fun x ⇒ inr x and (b) can be imple-
mented as fun x ⇒ m atch x with inl e ⇒ e | inr e ⇒ e end. If the type of the cir-
cuit gives enough informations, liiknle eth⇒ e examples above, it is possible to define
such plugs using proof-search. Indeed, plugs that deal with the associativity of
the wires, or even re-orderings, are completely defined by their type, and we use
tactics to write the map between wires (it amounts to some case splitting and
little automation) . Hence, in the formal definition of circuits, we omit the plugs
that deal with associativity or re-orderings of the wires, not only for the sake of
readability, but also because we do so in the actual Coq code: we leave holes in
the code (thanks t o the Coq Program feature) that will be filled automatically.

·• · A →A⊕ T=B ∼ →σ T=∼B (σ→ F ×iT gτ .=)∼2: τ Isomoιrxp1hxis→msT b =∼etT ween tsyupmensA n A→ → T T =∼=∼v σ ectorσ n
5

2.4 Abstract syntax

In the following, we use some basic gates from which all other circuits are defined.
Hence, we parametrize the definition of circuits by the type of the gates:

Class Techno := techno : Type → Type → Type.

The Fig. 3 presents the dependent type that models circuits, as defined in Coq.
This abstract syntax is strongly typed: it ensures that circuits built using the
provided combinators are well-formed: dimensions have to agree, and it is not
possible to connect circuits in the wrong direction. (Note that this is not anecdo-
tal: if we were to describe circuits with ports and wires, ensuring these properties
would require some boilerplate.) We denote serial composition (Ser) with the in-
fix B symbol, and parallel composition (Par) with &. (Note that these definitions
do not deal with what transit in the wires.)

2.5 Structural specifications

Let T be the type of what is carried in the wires. We now define the meaning
relation for circuits. For a given circuit of type C n m, we build a relation between
two functions of type n → T and m → T. We define several operations on such
tfuwnoctf uionncst,i oinn so rodfet yr ptoe express atnhde meaning Wreela dtieofinn iens a legible manner:

Context {T : Type}.
CDoefnitnexitti{ oTn :lT efypt {n} {m} (x : (n ⊕ m) → T) : n → T := fun e ⇒ (x (inl _ e)) .
DDeeffiinniittiioonn right {n} {m} (x : (n ⊕ m) → T) : m → TT := ffuunn e ⇒ (x (inr _ e)) .
DDeeffiinniittiioonn lriigfth {n} {m} (f : m → n) (x : n → T) : m → Tf := ef⇒u n e ⇒ x (f e) .
DDeeffiinniittiioonn app {n m } (x : n → T) (y : m → T) : n ⊕ m → TT: :=

effuinn e ⇒ n maa tpcph e w mi}t(hx in: ln e ⇒ x e | i mn r→ e ⇒ y e ⊕enm d→.

We define the semantics of a given set of basic gates tech: Techno by defining

instances of the following type-class, (typically, one instance for the boolean
setting, and one instance in the stream of boolean setting):

Class Technology_spec (tech : Techno) T:=
spec : ∀ {a b : Type}, tech a b → (a → T) → (b → T) → Prop.

The meaning relation for circuits is generated by this parameter and rules
for each combinator. These rules are presented on Fig. 4 using inference rules
rather than the corresponding Coq inductive, for the sake of readability.

6

2.6 Abstractions

The meaning relation defines precisely the behavior of a circuit, but cannot be
used as it is. First, it may be too precise, e.g. , with some internal details leaking,
or imposing constraints between the inputs and the outputs of a circuit that
are not relevant from an external point of view. Second, it defines a constraint
between the inputs and outputs of a circuit as a relation between two func-
tions n → T and m → T, which is not user-friendly. In his book [17] , Melham
dtieofninsesn t →wo T Tka inndds omf a→bs Ttr,aw cthioicnhs itsh anot are erre-lferviaenndt yh.er Ine: hbeisha bovoiokra[1l a7b],stM realchtiaomn
(expressed through the logical entailment of a weak specification R by the mean-
ing relation) and data-abstraction (when the specification is expressed in terms
of higher-level types than the above function types) .

We combine these two notions to specify that a given circuit realises a specifi-
cation R up-to two type isomorphisms, and to get more concise specifications, we
also define the fact that a circuit implements a function f up-to isomorphisms:

Context {n m N M : Type} (Rn : (n→ T) =∼ N) (Rm : (m→ T) =∼ M) .
CClonastse Rte{a nlim se N (c : TCy n m) (R : (Nn → TM) →= Prop) := mr→eaTli)se: ∀ ins outs,

c ‘R emn ianliss ./ (ocu :tsC → mR) (iso ins) (iso outs) .
Classc Implement (c : →C n m) (f : nNs → M) := implement: ∀ ins outs,

c ‘I mmn ipnlesm ./ tou(tcs → nism o) o (fut: sN = →f (iso ins) .

2.7 Atoms and modular proofs

We develop circuits in a modular way: to build a complex circuit, we define a
functor that takes as argument a module that packages the implementations
of the sub-components, and the proofs that they meet some specification. This

means that our proofs are hierarchical: we do not inspect the definition of the
sub-components when we prove a circuit. These functors can then be applied to
a module that contains a set of basic doors (of type Techno) and its meaning
relation (of type Technology_spec) .

7

baAXNODRscFig.5:D eFCDfioeonnrfktiiten2ioix(n tt1iao a o⊕fnb a H s 1A bhc)DaD : Blfs -: at(C XdrOd(iRe1nraga .⊕b (∗1 s sbe)& c(t1 iAsoNn⊕Dv 1 a acrb)i: c a=)b.les∗)
3 Proving some combinatorial circuits

In this section, we focus on acyclic combinational circuits, and implements some
arithmetic circuits. We assume a set of basic gates (AND, XOR among others,
that can all be defined and proved correct starting from NOR only) . Wires carry
booleans, i.e., the meaning relation is defined on booleans for the basic gates.
We first illustrate our proof methodology on a half-adder. Then, we present
operations on n-bits integers, that will be used to specify n-bit adders.

3.1 Proving a half-adder

A half-adder adds two 1-bit binary numbers together, producing a 1-bit number
and a carry out. However, they cannot be chained together since they have no
carry in input. We present a diagram of this circuit, along with its formal defini-
tion, in Fig. 5. The left-hand side of the following Coq excerpt is the statement
we prove: the circuit HADD implements the function hadd on booleans (defined as
λ(a,b).(a ⊕ b , a ∧ b) , where ⊕ is the boolean exclusive-or, and ∧ is the boolean
and) up-to isomorp,hiw shmesr e(w⊕ e use tehbe onoolteaatnio enxsc flursomive -Foirg,. a2n fdo∧r i sisost)h . eTb hoeo lCeaoqn
system ask us to give evidence of the right-hand side.

Instance HADD_Spec : Implement I: 1a ⊕ 1b → B, O : 1s ⊕ 1c → B

((ιιsa••ι ι cb)) ((∗∗ii ssoo oo nno i unptuptutss∗)∗) =H: =H= A=DD=‘ =11=as⊕⊕=11bc=i=n=s=. /=o =ut=s=====
HAD•D h a)d(d∗. @iso (ιs • ιc) O = hadd (@iso (ιa • ιb) I)

We have developed several tactics that help to prove this kind of goals. First, we
automatically invert the derivation of the meaning relation in the hypothesis H,
following the structure of the circuit, to get rid of parallel and serial combinators.
This leaves the user with one meaning relation hypothesis per sub-component
in the circuit (plugs included) . Second, we use the type-class Implement as a
dictionary of interesting properties. This allows one to make fast-forward rea-
soning by applying implements in any hypothesis stating a meaning relation for
a sub-component. The type-class resolution mechanism will look for an instance
of Implement for this sub-component, and transform the “meaning relation” hy-
pothesis into an equation. (Note that at this point, the user may have to interact
with the proof-assistant, e.g., to choose other Implement instances than the one
that are picked automatically, but in many cases, this step is automatic.) At this
point, the goal looks like the left-hand side of the following excerpt:

8
I: 1a ⊕ 1b → B, O : 1s ⊕ 1c → B I: B ∗ B, O: B ∗ B ,
M : (1a ⊕ 1b) ⊕ (1a ⊕ 1b) → B→ MI : (B ∗ B) ∗ (B ∗ B),
H0: iso⊕ ⊕M = (fun x ⇒ (x,x)) (iso I) HM0: : (MB = (fun x ⇒ (x,x)) I
HH01:: iissoo (left O) = uncurry ⊕ (iso (left M)) HH01:: fMs= t (O = uncurry ⊕ (fst M)
HH12:: iissoo (right O)= uncurry ⊕∧ (iso (right M)) HH12:: sfsndt OO = uncurry ∧⊕ (snd M)
========================== ==================

iso O = h add (iso I) O = h add I

Third, we move to the right-hand side of the excerpt: we massage the goal to

make some iso commute with the left, right and app operations, in order to
generalize the goal w.r.t. the isos. (Note that the user may be required to interact
with Coq if different isos are applied to the same term in different equations.)
Finally, the proof context deals only with high-level data-types, and functions
operating on these. The user may then prove the “interesting” part of the lemma.

3.2 n-bits integers

From now, we use a dependently typed definition of n-bits integers, along the
lines of the fixed-size machine integers of [16] . W e omit the actual definitions of
functions when they can be infered from the type. In the following, we prove
that various (recursive) circuits implement the carry_add function (that adds
two n-bit numbers and a carry) .

Record w ord (n:nat) := mk_word {val : Z; range: 0 ≤ val < 2n}. (∗ Wn ∗)

Definition repr n (x : Z) : Wn := ...
Definition high n m (x : W (n+m)) : Wm := ...
Definition low n m (x : W (n+m)) : Wn := ...
Definition combine n m (low : Wn) (high : Wm) : W (n+m) := ...
Definition carry_add n (x y : Wn) (b : B) : Wn ∗ B :=

let e := val x + val y + (if b then 1else 0) i: =n (e mod 2n,2n ≤ e)

Definition Φxn : Iso (sumn 1x n→ B) (Wn) := ...

3.3 Two specifications of a 1-bit adder

A full-adder adds two 1-bit binary numbers with a carry in, producing a 1-bit
number and a carry out, and is built from two half-adders. W e present a diagram
of this circuit, along with its formal definition in Fig. 6.

From this circuit, we can derive two specifications of interest. First, the mean-
ing of the full-adder can be expressed in terms of a boolean function, that mimics
the truth-table of the circuit. Second, we can prove that this circuit actually im-
plements the carry_add function up-to isomorphism. Both these specifications
are proved using the aforementioned tactics, only the interesting parts differ.

Instance FADD_1 : Implement Instance FADD_2 : Implement
(ιcin • (ιa • ιb)) (∗ iso on inputs ∗) (ιcin • (Φ1a • Φb1)) (∗ iso on inputs ∗)
(ιsum • ιcout) (∗ i (∗soi on outputs ∗) (Φ1sum• • ιcout) (∗ i (∗soi on outputs ∗)
FADD (fun (c,(x,y)) ⇒ FADD (fun (c,(x,y)) ⇒

(x ⊕ (y ⊕ c) ,(x)∧⇒ y) ∨ c ∧ (x ⊕ y))) . carry_add (1x x y c) .

9

3.4 Ripple-carry adder

We present in Fig. 7 the formal definition of the ripple-carry adder from Fig. 1
(we omit the rewiring plugs) . This definition is based on two new circuits to split
wires, and combine them. Indeed, to build a 1+ n-bit adder, the lowest-order
wire of each parameter is connected to a full-adder, while the n high-order wires
of each parameter are connected to another ripple-carry adder. Conversely, the
wires corresponding to the sum must be combined together. We use two plugs
to define the HL and the COMBINE circuits.

Definition HL x n p : C (sumn 1x (n + p)) (sumn 1x n ⊕ sumn 1x p) := Plug .. .
Definition COMBINE x n p : C (sumn 1x n⊕ sumn 1x p) (sumn 11x (n + p)):= Plug ...

Then, we prove that these functions on wires implements their counterparts
on words. These gates are then easily combined two-by-two to build HIGHLOWS
and COMBINES that works with two sets of wires at the same time to get more
economical designs (i.e., designs with less sub-components) .

Lemma HL_Spec x n p: Implement Lemma COMBINE_Spec x n p: Implement
(Φxn+p) (Φnx • Φxp) (HL x n p) (Φnx • Φxp) (Φxn+p) (COMBINE x n p)
(fun x ⇒ (low n p x, h igh n p x)) . (fun x ⇒ (combine n p (fst x) (snd x))) .

Finally, we prove by induction on the size of the circuit that it implements the
high-level carry_add addition function on words. (Note that this is a high-level

10
specification of the circuit: the carry_add function is not recursive and disclose
nothing of the internal implementation of the device.) This boils down to the
proof of lemma add_parts.

Lemma add_parts n m (xH yH: w ord m) (xL yL : word n) cin:
let (sumL,middle) := carry_add n xL yL cin in
let (sumH,cout) := carry_add m xH yH m iddle in
let sum := combine n m sumL sumH in
carry_add (n + m) (combine n m xL xH) (combine n m yL yH) cin = (sum,cout) .

Instance RIPPLE_Spec cin a b cout sum n : Implement (RIPPLE cin a b cout s n)
(ιcin • (Φna • Φbn)) (Φnsum • ιcout) (fun (c,(x,y)) ⇒ carry_add c x y) .

This design is simple (a linear chain of 1-bit adders) and slow (each full-
adder must wait for the carry-in bit from the previous full-adders) . In the next
subsection, we address the case of a more efficient adder, w hich is incidentally
more complicated, and a better benchmark for our methodology.

3.5 Divide and conquer adder

A text-book [1] solution to improve on the delay of the ripple-carry adder is to
use a divide and conquer scheme, and to compute both the sum when there is a
carry in, and the sum when t here is no carry in. It is then possible to compute
at the same time the sum for the high-order bits, and the sum for the low order
bits. Hence, we build a circuit that computes four pieces of data: s (resp. t), the

n-bit sum of the inputs, assuming that there is no carry in (resp. assuming that
there is a carry in) ; p the carry-propagate bit (resp. g the carry-generate bit) ,
which is true when there is a carry out of the circuit, assuming that there is a
carry in (resp. that there is no carry in) .

We provide a diagram in Fig. 8 that depicts the base case and the recursive
case, but we omit the actual Coq implementation, for the sake of readability. We
prove that this circuit implements the following Coq function:

Definition dc n :W2n ∗ W2n → B ∗ B ∗ W2n ∗ W2n := fun (x,y) ⇒

let (s,g) := carry_add ∗2Wn x y →falB se∗ iBn
let (t,p) := carry_add 2n x y true in (g,p,s,t) .

Again, this is a high-level specification w .r.t. the definition of the circuit:
it does not disclose how the circuit compute its results (for instance, the dc
function is not recursive) . In a nutshell, the circuit computes in parallel the 4-
uple of results for the high-order and low-order part of the inputs. Then, the
propagate and generate bits for both parts can be combined by the PG circuit to
compute the propagate and generate bits for the entire circuit. In parallel, the
FIX circuit is made of two 2n−1-bit multiplexers (easily defined with a fixpoint
using 1-bit multiplexers), and update the high-order parts of the sum, w.r.t. the
propagate and generate carry-bits of the low-order adder.

11

4 Sequential circuits: time and loops

While we have focused our case studies on combinational circuits, our method-

ology can be applied to sequential circuits, with or without the loops that were
allowed in the syntax of circuits in §2.4. In this section, the wires carry streams
oalfl bowooedleai nnst (hoef s type xnao tf → cBu)i,t sani nd we assume a sbecatsiioc gate eDw FFir tehsa cta irmrypls termeaemntss
the pre function (in tnahet particular case of booleans) :

Definition pre {A} (d : A) : Instance DFF_Realise_stream {a out}:
sDtefreianmi Ai → srter e{aAm} (Ad := f)u:n f t ⇒ Implement (DFF a out) (ιa) (ιout)
smatrtceha mt A w→ iths | 0r ⇒ dA | S= p ⇒ ff p ⇒end. (pre false).

A buffer. A DFF delays one wire by one unit of time; a FIFO buffer generalize
this behavior in two dimensions, by chaining layers of DFF one after another. This
circuit is simple, but is a good example for the use of high-level combinators.

These combinators capture the underlying regularity in some common circuit
pattern, for instance replicating a sub-component in a serial or parallel manner.

Variable CELL : C n n. Variable CELL : C n m.
Fixpoint COMPOSEN k : C n n := Fixpoint MAP k : C (sumn 1n k) (sumn 1m k) :=
match k w ith match k with
| 0 ⇒ Plug id | 0 ⇒ Plug id
| S0 p ⇒ CuEgL Li B (COMPOSEN p) | S0 p ⇒ CuEgL Li & (MAP p)
e|S ndp. e|S ndp.

We prove that the COMPOSEN combinator implements a higher-order itera-
tion function, up-to isomorphism: if CELL implements a given function f, then
COMPOSEN k implements the iteration of f. Respectively, we prove that the MAP cir-
cuit implements the higher-order map function on vectors. Hence, a FIFO buffer
in one-line, and we prove that it implements the function below.

Definition FIFO x n k : C (sumn 1x k) (sumn 1x k) := COMBINEN (MAP (DFF x x) k) n .
Definition fifo n k (v : stream (vector B k)) : stream (vector B k) :=

fun t ⇒ if n < t then v (t −n) else Vector.repeat k false.
Remfuanrkt useful_iso : sumn 1(n→ s)te rlesaem V Be c∼=t sotr.rreeapme (vector sBe n) := ...

The proof of this specification relies on the above useful isomorphism between
groups of wires that carries streams of booleans, and a stream of vectors of

12

@(CPCB.Lro.o.D (not1BgF olprFeo xMaa "(tmdU1iX⊕l anD2oa_el 1 d afdoa⊕if) aonfud1 1i"tto aoo u)itl uuoo1 tt:n=ao: ud B Rts E" 1tGF iroIoiunSrtn_TFkgdE2.ifRg1 f:."9out:)A .m emorye lemaloeoaudnttXUMDFFoouutt
booleans. The proof that the circuit implements a function on streams is done
in the same fashion as the proofs from the previous section.

A memory element. Our next goal is to demonstrate how we deal with state-
holding structures. Hence, we turn to the implementation of a 1-bit memory
element, as implemented in Fig. 9. The register is meant to hold 1-bit of infor-
mation through time, which does not fit nicely in the Implement framework (we
cannot easily express the meaning of the register in terms of a stream trans-
former) . Hence, we use a relational specification through the use of Realise:

Instance Register_Spec : Realise
(... : 1load ⊕ 1a → stream B =∼ stream B ∗ B) (ιout) REGISTER
(fun (ins : ⊕s1 tre→am (B ∗ B)) (=outs : asmtr Be∗a m B B) ⇒

ouunt (si = pre rfeaalmse((fun)t) ⇒ itfs :fs stt (ins t) t⇒hen snd (ins t) else outs t)).

Here, the state of the register is stored inside the history of the stream (the
previous values that were taken by the output) . While we do not advocate that
this is the nicest way to reason about state holding devices, we were able to prove
this specification in the same fashion as the previous combinatorial devices. We
leave more thorough investigation of state-holding devices to future work.

5 Interesting corollaries

We now turn on to investigate some interesting consequences of the use of a
concrete data-type to represent circuit. First, we prove that the behavior of
combinatorial circuits without delay can be lifted to the stream setting. Second,
we build some functions (or interpretations [2]) that operates on circuits.

Lifting combinatorial circuits. The meaning relation is parametrized by the
semantics of the basic gates. This can be put to good use to prove the functional
correction of some designs in the boolean setting, and then, to mechanically lift
this proof of functional correction to the boolean stream setting (for the same set
of gates) . For instance, if a loop-less and delay-less circuit implements a function
f in the boolean setting, we can prove that the very same circuit implements the
function Stream.map f in the boolean stream setting.

13
Simulating and checking designs. One key feature of our first-order encod-
ing of circuits in Coq is that it allows to check designs by simulation before
attempting to prove them. This verification is done on the same definition than
the one which w ill be proved later, allowing a seamless approach. While simula-
tion cannot be done on circuits parametrized by a size, this remains a valuable
help to avoid dead-ends. W e define a simulation function sim that works on loop-
free circuits, if the user provide a computational interpretation of each basic gate.
For instance, it allows t o simulate the adders of §3.

Delay and pretty-printing. Using the same ideas, we can build functions
that compute the list of gates of circuits (with or without loops) , or compute the
length of the critical path in combinatorial circuits. While this is more anecdotal,
and less directly useful than the previous simulation function, these functions
are still interesting: one could, for instance, prove t hat some complex designs
meet some time (or gate-count) complexity properties. (Note that is the only
place where we exploit the finiteness of types.)

6 Comparisons with related works

Verifying circuits with theorem provers. There has been a substantial
amount of work on specification and verification of hardware in HOL. In [9,17] ,
HOL is used as a hardware description language and as a formalism to prove
that a design meets its specification. They model circuits as predicates in the
logic, using a shallow-embedding that merges the architecture of a circuit and
its behavior. Building on the former methodology, [21] defines a compiler from
a synthetisable subset of HOL that creates correct-by-construction clocked syn-
chronous hardware implementations of mathematical functions specified in HOL.

This methodology allows the designer to focus on high-level abstraction instead
of reasoning and verifying at the gate level, admitting the existence of some
base low-level circuits (like the addition on words [13]). By contrast, our work
complement their behavioral “correct by design” synthesis from a subset of the
high-level language of the theorem-prover with structural verification of circuits.

In the Boyer-Moore theorem prover (untyped, quantifier-free and first-order) ,
Brock and Hunt proved the correctness of functions that generate correct hard-
ware designs. They studied the correctness of an arithmetic and logic unit,
parametrised by a size [14] . This verified synthesis approach was used to verify
a microprocessor design [4] . While our proofs are not as automated, and our ex-
amples are less ambitious, we are able to prove higher-order circuits. Moreover,
the dependent-types w e use are helpful when defining complex circuits.

In Coq, Paulin-Mohring [18] proved the correction of a multiplier unit, us-
ing a shallow-embedding similar to the methodology used in HOL: circuits are
modelled as functions of the Coq language. More recently, [6] investigated how
to take advantage of dependent types and co-inductive types in hardware verifi-
cation: they use a shallow embedding of Mealy automata to describe sequential
circuits. By contrast with both works, we use a deep-embedding of circuits in

14
Coq, that makes explicit the definition of circuits. We still need to investigate
the examples of sequential circuits studied in these papers.

Algebraic definitions of circuits. Circuit diagrams have nice algebraic prop-
erties. Lafont [15] studied the algebraic theory of boolean circuits and Hinze [12]
studied the algebra of parallel prefix circuits. Both settings are close to ours:
however the former focused on the algebraic structure of circuits, while the lat-
ter defined combinators that allows to model (and prove correct using algebraic
reasoning) all standard designs of a restricted class of circuits.

Functional languages in hardware design. Sheeran [20] made a thorough
review of the use of functional languages in hardware design, and of the chal-
lenges to address. Our work is a step toward one of them: the design and verifi-
cation of parametrized designs, through the use of circuit combinators. Lava [2]
is a language embedded in Haskell to describe circuits, allowing one to define
parametric circuits or higher-order combinators. While much of our goals are
common, one key difference is that our encoding of circuits in Coq avoid the

use of bound variables (we use only combinators) . Moreover, we use dependent
types, that are required to deal precisely with parametric circuits. Finally, we
prove the correctness of these parametric circuits in Coq, while verification in
Lava is reduced to the verification of finite-size circuits.

7 Conclusion and future works

We have presented a deep-embeding of circuits in the Coq proof-assistant that al-
lows to build and reason about circuits, proving high-level specifications through
the use of type-isomorphism. We have demonstrated that dependent types are
useful to prove automatically some well-formedness conditions on the circuits,
and helps to avoid time consuming mistakes. Then, we proved by induction the
correctness of some arithmetic circuits of parametric size: this could not have
been possible without mimicking the structure of the usual circuit diagrams to
define circuit generators in Coq. The formal development accompanying this
paper is available from the authors web-page [3] .

In the immediate future, we plan to continue the case studies described in
§3. In particular, w e would like to investigate how to construct parallel prefix
§c3ir.cuI nits p ainr our afrra,mw eew wooruk [d12l ,i2ke0] , oani ndv tesot investigate ocomc onbsintaruticotna pal rmaluleltlip plrieerfisx.
In the more distant future, it would be interesting t o study some front-ends to
automatically generate some circuits: this could range to the reduction of the
boiler-plate inherent to the definition of plugs, to the compilation of circuits from
automaton. A major inspiration on behavioral synthesis is the work of Ghica [7] .
We also look forward to study how our methodology applies to other settings
that booleans or streams of booleans. For instance, if we move from booleans to
the three-valued Scott’s domain (unknown, true, false) , we may interpret circuits
in the so-called constructive semantics. We also hope that some of our methods
could be applied to the probabilistic setting.

15

References

1. A. V. Aho and J. D. Ullman. Foundations of Computer Science. Computer Science
Press, W. H. Freeman and Company, 1992.

2. P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware Design in
Haskell. In Proc. ICFP, pages 174–184. ACM Press, 1998.

3. T. Braibant. Coquet: a coq library for verifying hardware. http ://sardes .

inrialpes .fr/~braibant/coquet, June 2011.
4. B. Brock and W. A. Hunt Jr. The DUAL-EVAL Hardware Description Language

and Its Use in the Formal Specification and Verification of the FM9001 Micropro-
cessor. Formal Methods in System Design, 11(1) :71–104, 1997.

5. C. Brown and G. Hutton. Categories, allegories and circuit design. In Proc. LICS,
pages 372–381. IEEE Computer Society, 1994.

6. S. Coupet-Grimal and L. Jakubiec. Certifying circuits in type theory. Formal Asp.
Comput., 16(4):352–373, 2004.

7. D. R. Ghica. Geometry of synthesis: a structured approach to V LSI design. In
Proc. POPL, pages 363–375, 2007.

8. G. Gonthier and A. Mahboubi. An introduction to small scale reflection in Coq.
Journal of Formalized Reasoning, 3(2) :95–152, 2010.

9. M. Gordon. Why higher-order logic is a good formalisation for specifying and veri-
fying hardware. Technical Report UCAM-CL-TR-77, Cambridge Univ., Computer
Lab, 1985.

10. F. K. Hanna, N. Daeche, and M. Longley. Veritas+ : A specification language based
on type theory. In Hardware Specification, Verification and Synthesis, LNCS, pages
358–379. Springer, 1989.

11. J. R. Harrison. A HOL theory of Euclidean space. In J. Hurd and T. Melham,
editors, Proc. TPHOLs 2005, volume 3603 of LNCS, pages 114–129. Springer, 2005.

12. R. Hinze. An Algebra of Scans. In Dexter Kozen and Carron Shankland, editors,
MPC, LNCS, pages 186–210. Springer, 2004.

13. J. Iyoda. Translating HOL functions to hardware. Technical Report UCAM-CL-
TR-682, University of Cambridge, Computer Laboratory, April 2007.

14. W . A. Hunt Jr. and B. Brock. The Verification of a Bit-slice ALU. In Miriam Leeser
and Geoffrey Brown, editors, Hardware Specification, Verification and Synthesis,
volume 408 of LNCS, pages 282–306. Springer, 1989.

15. Y . Lafont. Towards an algebraic theory of boolean circuits. Journal of Pure and
Applied Algebra, 184:2003, 2003.

16. X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,
43(4):363–446, 2009.

17. T. Melham. Higher Order Logic and Hardware Verification, volume 31 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1993.

18. C. Paulin-Mohring. Circuits as Streams in Coq: Verification of a Sequential Mul-
tiplier. In TYPES, pages 216–230, 1995.

19. M. Sheeran. µFP, A Language for VLSI Design. In LISP and Functional Program-
ming, pages 104–1 12, 1984.

20. M. Sheeran. Hardware Design and Functional Programming: a Perfect Match. J.
UCS, 11(7):1135–1158, 2005.

21. K. Slind, S. Owens, J. Iyoda, and M. Gordon. Proof producing synthesis of arith-
metic and cryptographic hardware. Formal Asp. Comput. , 19(3) :343–362, 2007.

16

