ForSyDe’s embedded compiler

First development stage results.

Alfonso Acosta
alfonso.acosta@gmail.com

ICT/ECS
Royal Institute of Technology, Stockholm

January 14th, 2008

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 1/1


mailto:alfonso.acosta@gmail.com

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 2/1



A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 3/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:
e Finish the implementation of components (previously named Blocks
and Ports).

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:
e Finish the implementation of components (previously named Blocks

and Ports).

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:
e Finish the implementation of components (previously named Blocks

and Ports).

@ Add a simulation backend with support for any signal type.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:
e Finish the implementation of components (previously named Blocks

and Ports).
o Add a simulation backend with support for any signal type fouresic§

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:
e Finish the implementation of components (previously named Blocks
and Ports).
@ Add a simulation backend with support for any signal type.
@ Support all the synchronous process constructors in

ForSyDe.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:
e Finish the implementation of components (previously named Blocks
and Ports).
@ Add a simulation backend with support for any signal type.
@ Support all the synchronous process constructors in

ForSyDe [ioures/icf

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:
e Finish the implementation of components (previously named Blocks
and Ports).
@ Add a simulation backend with support for any signal type.
@ Support all the synchronous process constructors in

ForSyDe [ioures/icf

e Improve the error handling and reporting of the compiler.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:
e Finish the implementation of components (previously named Blocks
and Ports).
@ Add a simulation backend with support for any signal type.
@ Support all the synchronous process constructors in

ForSyDe [ioures/icf
e Improve the error handling and reporting of the compiler.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports).

Add a simulation backend with support for any signal type.
Support all the synchronous process constructors in

ForSyDe figures/ici

Improve the error handling and reporting of the compiler.
Optionally. Document the code with haddock and cabalize the
project.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports).

Add a simulation backend with support for any signal type.
Support all the synchronous process constructors in

ForSyDe figures/ici

Improve the error handling and reporting of the compiler.
Optionally. Document the code with haddock and cabalize the

project.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports).

Add a simulation backend with support for any signal type.
Support all the synchronous process constructors in

ForSyDe figures/ici

Improve the error handling and reporting of the compiler.
Optionally. Document the code with haddock and cabalize the

project.

Create a project webpage

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports).

Add a simulation backend with support for any signal type.
Support all the synchronous process constructors in

ForSyDe figures/ici

Improve the error handling and reporting of the compiler.
Optionally. Document the code with haddock and cabalize the
project.

Create a project webpagot until there’s a release

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

e Finish the implementation of components (previously named Blocks
and Ports).

@ Add a simulation backend with support for any signal type.

@ Support all the synchronous process constructors in
ForSyDe figures/ici

e Improve the error handling and reporting of the compiler.

o Optionally. Document the code with haddock and cabalize the
project.

e Create a project webpagdeUrescodNot until there’s a release

o Improve the VHDL backend.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

e Finish the implementation of components (previously named Blocks
and Ports).

@ Add a simulation backend with support for any signal type.

@ Support all the synchronous process constructors in
ForSyDe figures/ici

e Improve the error handling and reporting of the compiler.

o Optionally. Document the code with haddock and cabalize the
project.

e Create a project webpagdeUrescodNot until there’s a release

o Improve the VHDL backendfgureserosstill not advanced support

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports).

Add a simulation backend with support for any signal type.
Support all the synchronous process constructors in

ForSyDe figures/ici

Improve the error handling and reporting of the compiler.
Optionally. Document the code with haddock and cabalize the
project.

Create a project webpagot until there’s a release

Improve the VHDL backendgureserosStill not advanced support

@ Additional work done

The project was rewritten from scratch (slightly based on the old
code).

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports).

Add a simulation backend with support for any signal type.
Support all the synchronous process constructors in

ForSyDe figures/ici

Improve the error handling and reporting of the compiler.
Optionally. Document the code with haddock and cabalize the
project.

Create a project webpagot until there’s a release

Improve the VHDL backendgureserosStill not advanced support

@ Additional work done

The project was rewritten from scratch (slightly based on the old
code).
@ New module hierarchyfiguresfici

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports).

Add a simulation backend with support for any signal type.
Support all the synchronous process constructors in

ForSyDe figures/ici

Improve the error handling and reporting of the compiler.
Optionally. Document the code with haddock and cabalize the
project.

Create a project webpagot until there’s a release

Improve the VHDL backendgureserosStill not advanced support

@ Additional work done

The project was rewritten from scratch (slightly based on the old
code).

@ New module hierarchyfiguresfici

@ More general identifiers figuresftic§

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports).

Add a simulation backend with support for any signal type.
Support all the synchronous process constructors in

ForSyDe figures/ici

Improve the error handling and reporting of the compiler.
Optionally. Document the code with haddock and cabalize the
project.

Create a project webpagot until there’s a release

Improve the VHDL backendgureserosStill not advanced support

@ Additional work done

The project was rewritten from scratch (slightly based on the old
code).

@ New module hierarchyfiguresfici

@ More general identifiers figuresftic§

@ Access to external scope of ProcFuns figuresfick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



General Goal Review

@ During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports).

Add a simulation backend with support for any signal type.
Support all the synchronous process constructors in

ForSyDe figures/ici

Improve the error handling and reporting of the compiler.
Optionally. Document the code with haddock and cabalize the
project.

Create a project webpagot until there’s a release

Improve the VHDL backendgureserosStill not advanced support

@ Additional work done

The project was rewritten from scratch (slightly based on the old
code).

@ New module hierarchyfiguresfici

@ More general identifiers figuresftic§

@ Access to external scope of ProcFuns figuresfick

@ Redesigned component AP figuresftick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4/1



A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 5/1



A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 6/1



@ Components were reimplemented from scratch, creating a more
functional and intuitive API.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 A



@ Components were reimplemented from scratch, creating a more
functional and intuitive API.

@ Let’s see a simple example. Design a serial adder using
components in 5 simple steps.

figures/SeqAddFour

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 A



@ Components were reimplemented from scratch, creating a more
functional and intuitive API.

@ Let’s see a simple example. Design a serial adder using
components in 5 simple steps.

figures/SeqAddFour

1) Create a process function which adds one to its input

addOnef :: ProcFun (Int -> Int)
addOnef = $ (newProcFun [d| addOnef :: Int -> Int
addOnef n = n + 1 |]

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 A



@ Components were reimplemented from scratch, creating a more
functional and intuitive API.

@ Let’s see a simple example. Design a serial adder using
components in 5 simple steps.

figures/SeqAddFour

2) Create a system function corresponding to the unit adder

addOneProc :: Signal Int -> Signal Int
addOneProc = mapSY "addOne" addOnef

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 A



@ Components were reimplemented from scratch, creating a more
functional and intuitive API.

@ Let’s see a simple example. Design a serial adder using
components in 5 simple steps.

figures/SeqAddFour

3) Subsystem definition associated to the unit adder

addOneSysDef :: SysDef (Signal Int -> Signal Int)
addOneSysDef = $(newSysDef ’addOneProc ["inl"] ["outl"])

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 A



@ Components were reimplemented from scratch, creating a more
functional and intuitive API.

@ Let’s see a simple example. Design a serial adder using
components in 5 simple steps.

figures/SeqAddFour

4) Create the main system function

addFour :: Signal Int -> Signal Int

addFour = $(instantiate "addOne3" ’addOneSysDef
S (instantiate "addOne2" ’addOneSysDef
$(instantiate "addOnel" ’addOneSysDef

)
)
)
S (instantiate "addOneO" ’addOneSysDef)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 A



@ Components were reimplemented from scratch, creating a more
functional and intuitive API.

@ Let’s see a simple example. Design a serial adder using
components in 5 simple steps.

figures/SeqAddFour

5) Finally, build the main system definition

addFourSys :: SysDef (Signal Int -> Signal Int)
addFourSys = $ (newSysDef ’addFour ["inl"] ["outl"])

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 A



Design Flow Using Components

figures/compfjow

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 8/1



A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 9/1



Supporting any Signal type

@ Challenge: support simulating signals of any type.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 10/1



Supporting any Signal type

@ Challenge: support simulating signals of any type.
@ How is it possible? Typeable and Lift constraints.

class Typeable a where
typeOf :: a —-> TypeRep

toDyn :: Typeable a => a —-> Dynamic

class Lift t where
1ift :: t -> Q Exp

delaySY :: (Typeable a, Lift a) =>
ProcId -> a —-> Signal a -> Signal a

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 10/1



Supporting any Signal type

@ Challenge: support simulating signals of any type.
@ How is it possible? Typeable and Lift constraints.

class Typeable a where
typeOf :: a —-> TypeRep

toDyn :: Typeable a => a —-> Dynamic

class Lift t where
1ift :: t -> Q Exp

delaySY :: (Typeable a, Lift a) =>
ProcId -> a —-> Signal a -> Signal a

@ What about the instantiation boilerplate code?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 10/1



Supporting any Signal type

@ Challenge: support simulating signals of any type.
@ How is it possible? Typeable and Lift constraints.

class Typeable a where
typeOf :: a —-> TypeRep

toDyn :: Typeable a => a —-> Dynamic

class Lift t where
1ift :: t -> Q Exp

delaySY :: (Typeable a, Lift a) =>
ProcId -> a —-> Signal a -> Signal a

@ What about the instantiation boilerplate code?
@ GHC supports automatic derivation of Typeable
o | Improved Igloo’s Lift library (GHC 6.10 won’t need it, i.e.
instance Data a => Lift a will probably be included).

data LogicVal = High | Low deriving (Eq, Typeable)
$(derivelLiftl ’’LogicVal)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 10/1



A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 11/1



The simulation backend

@ A new sequential simulation backend has been implemented

=

igures/Simulate

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 12/1



The simulation backend

@ A new sequential simulation backend has been implemented

=

igures/Simul

ate

@ |t detects combinational loops (i.e. loops not including a delaySy

process).
e The detection was impossible with
signal implementation.

the previous stream-based

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 12/1



The simulation backend

@ A new sequential simulation backend has been implemented

=

igures/Simul

ate

@ |t detects combinational loops (i.e. loops not including a delaySy

process).
e The detection was impossible with
signal implementation.

the previous stream-based

@ Completely usable but still not optimal:
e Due to some implementation problems, simulation is strict and its

efficiency could be improved.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 12/1



A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 13/1



Full support of the Synchronous Process Library

@ All ForSyDe synchronous process and process constructors are
supported in the frontend and the simulation backend.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 14 /1



Full support of the Synchronous Process Library

@ All ForSyDe synchronous process and process constructors are
supported in the frontend and the simulation backend.

e Even polymorphic processes work (big thanks to Oleg Kisleyov for
his help at haskell-cafe)

@ The Equalizer was ported to the new compiler APl and is correctly
simulated

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 14 /1



Full support of the Synchronous Process Library

@ All ForSyDe synchronous process and process constructors are
supported in the frontend and the simulation backend.

e Even polymorphic processes work (big thanks to Oleg Kisleyov for
his help at haskell-cafe)

@ The Equalizer was ported to the new compiler APl and is correctly
simulated

@ The frontend already supports supplying identifiers for each
process (detection of duplicates is not implemented yet)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 14 /1



Full support of the Synchronous Process Library

@ All ForSyDe synchronous process and process constructors are
supported in the frontend and the simulation backend.
e Even polymorphic processes work (big thanks to Oleg Kisleyov for
his help at haskell-cafe)

@ The Equalizer was ported to the new compiler APl and is correctly
simulated

@ The frontend already supports supplying identifiers for each
process (detection of duplicates is not implemented yet)

@ Error reporting was improved

o GHC 6.10 will provide line information to Template Haskell, allowing
to make error reports more useful.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 14 /1



A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 15/1



Cabal-ready and Haddock-tagged

@ By the time the library was rewritten, all modules were
haddock-tagged.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 16/1



Cabal-ready and Haddock-tagged

@ By the time the library was rewritten, all modules were
haddock-tagged.

@ Thanks to the recent release of Haddock 2.0 (which is embedded
in GHC), using Template Haskell is not a problem anymore.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 16/1



Cabal-ready and Haddock-tagged

@ By the time the library was rewritten, all modules were
haddock-tagged.

@ Thanks to the recent release of Haddock 2.0 (which is embedded
in GHC), using Template Haskell is not a problem anymore.

@ The package was cabalized. Configuring the package, building it,
generating the documentation and installing it is as easy as typing:

$ cd ForSyDe; ./Setup.hs configure; ./Setup.hs build; \
./Setup.hs haddock; ./Setup.hs install

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 16/1



A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 17 /1



Improved VHDL backend

@ Not ready yet and currently broken.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18/1



Improved VHDL backend

@ Not ready yet and currently broken.

o Got the point of supporting components, Bool, Int signals, and
only basic process constructors.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18/1



Improved VHDL backend

@ Not ready yet and currently broken.

o Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
@ Currently working on a common API for translation backends.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18/1



Improved VHDL backend

@ Not ready yet and currently broken.

o Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
@ Currently working on a common API for translation backends.

@ Reasons

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18/1



Improved VHDL backend

@ Not ready yet and currently broken.

o Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
@ Currently working on a common API for translation backends.

@ Reasons
@ Underestimated the task cost.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18/1



Improved VHDL backend

@ Not ready yet and currently broken.
o Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
e Currently working on a common API for translation backends.
@ Reasons
e Underestimated the task cost.
e Time: stuck in various Template Haskell bugs and working in the
frontend and the simulation backend.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18/1



Improved VHDL backend

@ Not ready yet and currently broken.
o Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
@ Currently working on a common API for translation backends.
@ Reasons
o Underestimated the task cost.
e Time: stuck in various Template Haskell bugs and working in the

frontend and the simulation backend.
@ Design problems still unsolved:

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18/1



Improved VHDL backend

@ Not ready yet and currently broken.
o Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
@ Currently working on a common API for translation backends.
@ Reasons
o Underestimated the task cost.
e Time: stuck in various Template Haskell bugs and working in the

frontend and the simulation backend.
@ Design problems still unsolved:

@ What types to support? How? i.e. Vectors, Floating point types.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18/1



Improved VHDL backend

@ Not ready yet and currently broken.
o Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
@ Currently working on a common API for translation backends.
@ Reasons
o Underestimated the task cost.
e Time: stuck in various Template Haskell bugs and working in the
frontend and the simulation backend.
@ Design problems still unsolved:

@ What types to support? How? i.e. Vectors, Floating point types.
@ How to support user-defined types? (Data typeclass constraints in
process constructors could be an option).

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18/1



Improved VHDL backend

@ Not ready yet and currently broken.
o Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
@ Currently working on a common API for translation backends.

@ Reasons

o Underestimated the task cost.
e Time: stuck in various Template Haskell bugs and working in the
frontend and the simulation backend.
@ Design problems still unsolved:
@ What types to support? How? i.e. Vectors, Floating point types.
@ How to support user-defined types? (Data typeclass constraints in
process constructors could be an option).
@ What Haskell subset should be allowed inside ProcFuns?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18/1



A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 19/1



A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 20/1



Accessing the external scope within ProcFuns

@ Previously, ProcFuns had to be selfcontained.

e i.e. The translation backends didn’'t have a way of accesing the
external scope of a ProcFun, for instance:

$ (newProcFun [d| filterer :: (a —-> Bool) -> a -> AbstExt a
filterer pred val =
if pred val then Prst val else Abst |])

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 21/1



Accessing the external scope within ProcFuns

@ Previously, ProcFuns had to be selfcontained.
e i.e. The translation backends didn’'t have a way of accesing the
external scope of a ProcFun, for instance:

$ (newProcFun [d| filterer :: (a —-> Bool) -> a -> AbstExt a
filterer pred val =
if pred val then Prst val else Abst |])

@ New functions allow to pass parameters without loosing
encapsulation:

defArgval :: (Lift a, Typeable a) => ProcFun (a -> b) -> a
—> ProcFun b
defArgPF :: ProcFun (a -> b) -> ProcFun a —> ProcFun b

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 21/1



Accessing the external scope within ProcFuns

@ Previously, ProcFuns had to be selfcontained.

e i.e. The translation backends didn’'t have a way of accesing the
external scope of a ProcFun, for instance:

$ (newProcFun [d| filterer :: (a —-> Bool) -> a -> AbstExt a
filterer pred val =
if pred val then Prst val else Abst |])

@ New functions allow to pass parameters without loosing
encapsulation:

defArgval :: (Lift a, Typeable a) => ProcFun (a -> b) -> a
—> ProcFun b
defArgPF :: ProcFun (a -> b) -> ProcFun a —> ProcFun b

@ Implementation of filtersSy

filterSY id pred = mapSY id (filterer ‘defArgPF‘' pred)

o Not a primitive anymore

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 21/1



A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 22/1



Lessons learned

@ Template Haskell is in a less mature state than | expected

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 23/1



Lessons learned

@ Template Haskell is in a less mature state than | expected
o Reported =~ a dozen bugs/feature requests during this stage.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 23/1



Lessons learned

@ Template Haskell is in a less mature state than | expected

o Reported =~ a dozen bugs/feature requests during this stage.
o | got stuck finding workarounds for many of them.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 23/1



Lessons learned

@ Template Haskell is in a less mature state than | expected
o Reported =~ a dozen bugs/feature requests during this stage.
o | got stuck finding workarounds for many of them.
o Fortunately the GHC team is more open and understanding than |
can even wish.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 23/1



Lessons learned

@ Template Haskell is in a less mature state than | expected
o Reported =~ a dozen bugs/feature requests during this stage.
| got stuck finding workarounds for many of them.
o Fortunately the GHC team is more open and understanding than |

can even wish.
All the reported problems are likely to be fixed for GHC’s next major

release (GHC 6.10)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 23/1



Lessons learned

@ Template Haskell is in a less mature state than | expected
o Reported =~ a dozen bugs/feature requests during this stage.
o | got stuck finding workarounds for many of them.
o Fortunately the GHC team is more open and understanding than |

can even wish.
o All the reported problems are likely to be fixed for GHC’s next major

release (GHC 6.10)
© E-mail communication should be more fluent when possible

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 23/1



Lessons learned

@ Template Haskell is in a less mature state than | expected

o Reported =~ a dozen bugs/feature requests during this stage.
o | got stuck finding workarounds for many of them.
o Fortunately the GHC team is more open and understanding than |

can even wish.
o All the reported problems are likely to be fixed for GHC’s next major

release (GHC 6.10)
© E-mail communication should be more fluent when possible
o Quick feedback is extremely important!

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 23/1



A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 24/1



Specific issues to discuss

@ Technical issues

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
e VHDL backend

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
e VHDL backend
@ What primitives types to accept?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
e VHDL backend

@ What primitives types to accept?
@ Custom types?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
e VHDL backend

@ What primitives types to accept?
@ Custom types?
@ What Haskell subset in ProcFuns?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
e VHDL backend

What primitives types to accept?

Custom types?

What Haskell subset in ProcFuns?

Process identifiers. Continue with current approach?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
e VHDL backend

What primitives types to accept?

Custom types?

What Haskell subset in ProcFuns?

Process identifiers. Continue with current approach?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
o VHDL backend
What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

@ Bureaucratic issues

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
o VHDL backend
What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

@ Bureaucratic issues
o Release

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
o VHDL backend
What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

@ Bureaucratic issues
o Release
@ When should the package be released in Hackage?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
o VHDL backend
What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

@ Bureaucratic issues
o Release

@ When should the package be released in Hackage?
@ What version number should it carry?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
o VHDL backend
What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

@ Bureaucratic issues
o Release

@ When should the package be released in Hackage?
@ What version number should it carry?
@ Name? ForSyDe vs ForSyDeStdLib

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
o VHDL backend
What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

@ Bureaucratic issues
o Release

When should the package be released in Hackage?
What version number should it carry?

Name? ForSyDe vs ForSyDeStdLib

License, copyright holder, maintainer e-mail.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
o VHDL backend
What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

@ Bureaucratic issues
o Release

@ When should the package be released in Hackage?
@ What version number should it carry?

@ Name? ForSyDe vs ForSyDeStdLib

@ License, copyright holder, maintainer e-mail.

@ Resources

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
o VHDL backend
What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

@ Bureaucratic issues
o Release

@ When should the package be released in Hackage?
@ What version number should it carry?

@ Name? ForSyDe vs ForSyDeStdLib

@ License, copyright holder, maintainer e-mail.

o Resources
@ Darcs repository

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
o VHDL backend
What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

@ Bureaucratic issues
o Release

@ When should the package be released in Hackage?
@ What version number should it carry?

@ Name? ForSyDe vs ForSyDeStdLib

@ License, copyright holder, maintainer e-mail.

@ Resources

@ Darcs repository
@ Mailing list archives

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



Specific issues to discuss

@ Technical issues
o VHDL backend
What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

@ Bureaucratic issues

o Release
@ When should the package be released in Hackage?
@ What version number should it carry?
@ Name? ForSyDe vs ForSyDeStdLib
@ License, copyright holder, maintainer e-mail.

e Resources
@ Darcs repository
@ Mailing list archives
@ Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25/1



A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 26/1



What’s next?

@ What should be done now?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 /1



What’s next?

@ What should be done now?
@ Personal proposal

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27/1



What’s next?

@ What should be done now?
@ Personal proposal
@ Finish the VHDL backend

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27/1



What’s next?

@ What should be done now?
@ Personal proposal

e Finish the VHDL backend
o Move on to the new library

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27/1



What’s next?

@ What should be done now?
@ Personal proposal

@ Finish the VHDL backend
o Move on to the new library
o Continue adding features

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27/1



What’s next?

@ What should be done now?
@ Personal proposal

@ Finish the VHDL backend
o Move on to the new library
o Continue adding features

@ What features? With what precedence? Options:

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 /1



What’s next?

@ What should be done now?
@ Personal proposal

@ Finish the VHDL backend
o Move on to the new library
o Continue adding features

@ What features? With what precedence? Options:
@ Graphical backend.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 /1



What’s next?

@ What should be done now?
@ Personal proposal

@ Finish the VHDL backend
o Move on to the new library
o Continue adding features

@ What features? With what precedence? Options:

@ Graphical backend.
e SystemC backend.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 /1



What’s next?

@ What should be done now?
@ Personal proposal
@ Finish the VHDL backend
o Move on to the new library
o Continue adding features
@ What features? With what precedence? Options:

@ Graphical backend.
e SystemC backend.
o Verification backend (SMV).

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 /1



What’s next?

@ What should be done now?
@ Personal proposal
@ Finish the VHDL backend
o Move on to the new library
o Continue adding features
@ What features? With what precedence? Options:
Graphical backend.
SystemC backend.
Verification backend (SMV).
Graphical frontend.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 /1



What’s next?

@ What should be done now?
@ Personal proposal

@ Finish the VHDL backend

o Move on to the new library

o Continue adding features
@ What features? With what precedence? Options:
Graphical backend.
SystemC backend.
Verification backend (SMV).
Graphical frontend.
Transformational refinement.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 /1



