
kthcmyk

ForSyDe’s embedded compiler
First development stage results.

Alfonso Acosta
alfonso.acosta@gmail.com

ICT/ECS
Royal Institute of Technology, Stockholm

January 14th, 2008

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 1 / 1

mailto:alfonso.acosta@gmail.com


kthcmyk

Outline

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 2 / 1



kthcmyk

Outline

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 3 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports).

figures/tick

Add a simulation backend with support for any signal type.

figures/tick

Support all the synchronous process constructors in
ForSyDe.

figures/tick

Improve the error handling and reporting of the compiler.

figures/tick

Optionally. Document the code with haddock and cabalize the
project.

figures/tick

Create a project webpage

figures/crossNot until there’s a release

Improve the VHDL backend.

figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports).

figures/tick

Add a simulation backend with support for any signal type.

figures/tick

Support all the synchronous process constructors in
ForSyDe.

figures/tick

Improve the error handling and reporting of the compiler.

figures/tick

Optionally. Document the code with haddock and cabalize the
project.

figures/tick

Create a project webpage

figures/crossNot until there’s a release

Improve the VHDL backend.

figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.

figures/tick

Support all the synchronous process constructors in
ForSyDe.

figures/tick

Improve the error handling and reporting of the compiler.

figures/tick

Optionally. Document the code with haddock and cabalize the
project.

figures/tick

Create a project webpage

figures/crossNot until there’s a release

Improve the VHDL backend.

figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.

figures/tick

Support all the synchronous process constructors in
ForSyDe.

figures/tick

Improve the error handling and reporting of the compiler.

figures/tick

Optionally. Document the code with haddock and cabalize the
project.

figures/tick

Create a project webpage

figures/crossNot until there’s a release

Improve the VHDL backend.

figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.

figures/tick

Improve the error handling and reporting of the compiler.

figures/tick

Optionally. Document the code with haddock and cabalize the
project.

figures/tick

Create a project webpage

figures/crossNot until there’s a release

Improve the VHDL backend.

figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.

figures/tick

Improve the error handling and reporting of the compiler.

figures/tick

Optionally. Document the code with haddock and cabalize the
project.

figures/tick

Create a project webpage

figures/crossNot until there’s a release

Improve the VHDL backend.

figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.figures/tick

Improve the error handling and reporting of the compiler.

figures/tick

Optionally. Document the code with haddock and cabalize the
project.

figures/tick

Create a project webpage

figures/crossNot until there’s a release

Improve the VHDL backend.

figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.figures/tick

Improve the error handling and reporting of the compiler.

figures/tick

Optionally. Document the code with haddock and cabalize the
project.

figures/tick

Create a project webpage

figures/crossNot until there’s a release

Improve the VHDL backend.

figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.figures/tick

Improve the error handling and reporting of the compiler.figures/tick

Optionally. Document the code with haddock and cabalize the
project.

figures/tick

Create a project webpage

figures/crossNot until there’s a release

Improve the VHDL backend.

figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.figures/tick

Improve the error handling and reporting of the compiler.figures/tick

Optionally. Document the code with haddock and cabalize the
project.

figures/tick

Create a project webpage

figures/crossNot until there’s a release

Improve the VHDL backend.

figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.figures/tick

Improve the error handling and reporting of the compiler.figures/tick

Optionally. Document the code with haddock and cabalize the
project.figures/tick

Create a project webpage

figures/crossNot until there’s a release

Improve the VHDL backend.

figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.figures/tick

Improve the error handling and reporting of the compiler.figures/tick

Optionally. Document the code with haddock and cabalize the
project.figures/tick

Create a project webpage

figures/crossNot until there’s a release

Improve the VHDL backend.

figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.figures/tick

Improve the error handling and reporting of the compiler.figures/tick

Optionally. Document the code with haddock and cabalize the
project.figures/tick

Create a project webpagefigures/crossNot until there’s a release
Improve the VHDL backend.

figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.figures/tick

Improve the error handling and reporting of the compiler.figures/tick

Optionally. Document the code with haddock and cabalize the
project.figures/tick

Create a project webpagefigures/crossNot until there’s a release
Improve the VHDL backend.

figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.figures/tick

Improve the error handling and reporting of the compiler.figures/tick

Optionally. Document the code with haddock and cabalize the
project.figures/tick

Create a project webpagefigures/crossNot until there’s a release
Improve the VHDL backend.figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.figures/tick

Improve the error handling and reporting of the compiler.figures/tick

Optionally. Document the code with haddock and cabalize the
project.figures/tick

Create a project webpagefigures/crossNot until there’s a release
Improve the VHDL backend.figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchy

figures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.figures/tick

Improve the error handling and reporting of the compiler.figures/tick

Optionally. Document the code with haddock and cabalize the
project.figures/tick

Create a project webpagefigures/crossNot until there’s a release
Improve the VHDL backend.figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchyfigures/tick

More general identifiers.

figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.figures/tick

Improve the error handling and reporting of the compiler.figures/tick

Optionally. Document the code with haddock and cabalize the
project.figures/tick

Create a project webpagefigures/crossNot until there’s a release
Improve the VHDL backend.figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchyfigures/tick

More general identifiers.figures/tick

Access to external scope of ProcFuns.

figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.figures/tick

Improve the error handling and reporting of the compiler.figures/tick

Optionally. Document the code with haddock and cabalize the
project.figures/tick

Create a project webpagefigures/crossNot until there’s a release
Improve the VHDL backend.figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchyfigures/tick

More general identifiers.figures/tick

Access to external scope of ProcFuns.figures/tick

Redesigned component API.

figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

General Goal Review

During this first stage it was agreed to obtain a robust
implementation attaining to this particular goals:

Finish the implementation of components (previously named Blocks
and Ports). figures/tick

Add a simulation backend with support for any signal type.figures/tick

Support all the synchronous process constructors in
ForSyDe.figures/tick

Improve the error handling and reporting of the compiler.figures/tick

Optionally. Document the code with haddock and cabalize the
project.figures/tick

Create a project webpagefigures/crossNot until there’s a release
Improve the VHDL backend.figures/crossStill not advanced support

Additional work done
The project was rewritten from scratch (slightly based on the old
code).

New module hierarchyfigures/tick

More general identifiers.figures/tick

Access to external scope of ProcFuns.figures/tick

Redesigned component API.figures/tick

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 4 / 1



kthcmyk

Outline

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 5 / 1



kthcmyk

Outline

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 6 / 1



kthcmyk

Components

Components were reimplemented from scratch, creating a more
functional and intuitive API.
Let’s see a simple example. Design a serial adder using
components in 5 simple steps.

figures/SeqAddFour

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 7 / 1



kthcmyk

Components

Components were reimplemented from scratch, creating a more
functional and intuitive API.
Let’s see a simple example. Design a serial adder using
components in 5 simple steps.

figures/SeqAddFour

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 7 / 1



kthcmyk

Components

Components were reimplemented from scratch, creating a more
functional and intuitive API.
Let’s see a simple example. Design a serial adder using
components in 5 simple steps.

figures/SeqAddFour

1) Create a process function which adds one to its input

addOnef :: ProcFun (Int -> Int)
addOnef = $(newProcFun [d| addOnef :: Int -> Int

addOnef n = n + 1 |]

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 7 / 1



kthcmyk

Components

Components were reimplemented from scratch, creating a more
functional and intuitive API.
Let’s see a simple example. Design a serial adder using
components in 5 simple steps.

figures/SeqAddFour

2) Create a system function corresponding to the unit adder

addOneProc :: Signal Int -> Signal Int
addOneProc = mapSY "addOne" addOnef

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 7 / 1



kthcmyk

Components

Components were reimplemented from scratch, creating a more
functional and intuitive API.
Let’s see a simple example. Design a serial adder using
components in 5 simple steps.

figures/SeqAddFour

3) Subsystem definition associated to the unit adder

addOneSysDef :: SysDef (Signal Int -> Signal Int)
addOneSysDef = $(newSysDef ’addOneProc ["in1"] ["out1"])

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 7 / 1



kthcmyk

Components

Components were reimplemented from scratch, creating a more
functional and intuitive API.
Let’s see a simple example. Design a serial adder using
components in 5 simple steps.

figures/SeqAddFour

4) Create the main system function

addFour :: Signal Int -> Signal Int
addFour = $(instantiate "addOne3" ’addOneSysDef) .

$(instantiate "addOne2" ’addOneSysDef) .
$(instantiate "addOne1" ’addOneSysDef) .
$(instantiate "addOne0" ’addOneSysDef)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 7 / 1



kthcmyk

Components

Components were reimplemented from scratch, creating a more
functional and intuitive API.
Let’s see a simple example. Design a serial adder using
components in 5 simple steps.

figures/SeqAddFour

5) Finally, build the main system definition

addFourSys :: SysDef (Signal Int -> Signal Int)
addFourSys = $(newSysDef ’addFour ["in1"] ["out1"])

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 7 / 1



kthcmyk

Design Flow Using Components

figures/compflow

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 8 / 1



kthcmyk

Outline

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 9 / 1



kthcmyk

Supporting any Signal type
Challenge: support simulating signals of any type.
How is it possible? Typeable and Lift constraints.
class Typeable a where

typeOf :: a -> TypeRep

toDyn :: Typeable a => a -> Dynamic

class Lift t where
lift :: t -> Q Exp

delaySY :: (Typeable a, Lift a) =>
ProcId -> a -> Signal a -> Signal a

What about the instantiation boilerplate code?
GHC supports automatic derivation of Typeable
I Improved Igloo’s Lift library (GHC 6.10 won’t need it, i.e.
instance Data a => Lift a will probably be included).

data LogicVal = High | Low deriving (Eq, Typeable)
$(deriveLift1 ’’LogicVal)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 10 / 1



kthcmyk

Supporting any Signal type
Challenge: support simulating signals of any type.
How is it possible? Typeable and Lift constraints.
class Typeable a where

typeOf :: a -> TypeRep

toDyn :: Typeable a => a -> Dynamic

class Lift t where
lift :: t -> Q Exp

delaySY :: (Typeable a, Lift a) =>
ProcId -> a -> Signal a -> Signal a

What about the instantiation boilerplate code?
GHC supports automatic derivation of Typeable
I Improved Igloo’s Lift library (GHC 6.10 won’t need it, i.e.
instance Data a => Lift a will probably be included).

data LogicVal = High | Low deriving (Eq, Typeable)
$(deriveLift1 ’’LogicVal)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 10 / 1



kthcmyk

Supporting any Signal type
Challenge: support simulating signals of any type.
How is it possible? Typeable and Lift constraints.
class Typeable a where

typeOf :: a -> TypeRep

toDyn :: Typeable a => a -> Dynamic

class Lift t where
lift :: t -> Q Exp

delaySY :: (Typeable a, Lift a) =>
ProcId -> a -> Signal a -> Signal a

What about the instantiation boilerplate code?
GHC supports automatic derivation of Typeable
I Improved Igloo’s Lift library (GHC 6.10 won’t need it, i.e.
instance Data a => Lift a will probably be included).

data LogicVal = High | Low deriving (Eq, Typeable)
$(deriveLift1 ’’LogicVal)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 10 / 1



kthcmyk

Supporting any Signal type
Challenge: support simulating signals of any type.
How is it possible? Typeable and Lift constraints.
class Typeable a where

typeOf :: a -> TypeRep

toDyn :: Typeable a => a -> Dynamic

class Lift t where
lift :: t -> Q Exp

delaySY :: (Typeable a, Lift a) =>
ProcId -> a -> Signal a -> Signal a

What about the instantiation boilerplate code?
GHC supports automatic derivation of Typeable
I Improved Igloo’s Lift library (GHC 6.10 won’t need it, i.e.
instance Data a => Lift a will probably be included).

data LogicVal = High | Low deriving (Eq, Typeable)
$(deriveLift1 ’’LogicVal)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 10 / 1



kthcmyk

Outline

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 11 / 1



kthcmyk

The simulation backend

A new sequential simulation backend has been implemented

figures/Simulate

It detects combinational loops (i.e. loops not including a delaySY
process).

The detection was impossible with the previous stream-based
signal implementation.

Completely usable but still not optimal:
Due to some implementation problems, simulation is strict and its
efficiency could be improved.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 12 / 1



kthcmyk

The simulation backend

A new sequential simulation backend has been implemented

figures/Simulate

It detects combinational loops (i.e. loops not including a delaySY
process).

The detection was impossible with the previous stream-based
signal implementation.

Completely usable but still not optimal:
Due to some implementation problems, simulation is strict and its
efficiency could be improved.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 12 / 1



kthcmyk

The simulation backend

A new sequential simulation backend has been implemented

figures/Simulate

It detects combinational loops (i.e. loops not including a delaySY
process).

The detection was impossible with the previous stream-based
signal implementation.

Completely usable but still not optimal:
Due to some implementation problems, simulation is strict and its
efficiency could be improved.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 12 / 1



kthcmyk

Outline

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 13 / 1



kthcmyk

Full support of the Synchronous Process Library

All ForSyDe synchronous process and process constructors are
supported in the frontend and the simulation backend.

Even polymorphic processes work (big thanks to Oleg Kisleyov for
his help at haskell-cafe)

The Equalizer was ported to the new compiler API and is correctly
simulated
The frontend already supports supplying identifiers for each
process (detection of duplicates is not implemented yet)
Error reporting was improved

GHC 6.10 will provide line information to Template Haskell, allowing
to make error reports more useful.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 14 / 1



kthcmyk

Full support of the Synchronous Process Library

All ForSyDe synchronous process and process constructors are
supported in the frontend and the simulation backend.

Even polymorphic processes work (big thanks to Oleg Kisleyov for
his help at haskell-cafe)

The Equalizer was ported to the new compiler API and is correctly
simulated
The frontend already supports supplying identifiers for each
process (detection of duplicates is not implemented yet)
Error reporting was improved

GHC 6.10 will provide line information to Template Haskell, allowing
to make error reports more useful.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 14 / 1



kthcmyk

Full support of the Synchronous Process Library

All ForSyDe synchronous process and process constructors are
supported in the frontend and the simulation backend.

Even polymorphic processes work (big thanks to Oleg Kisleyov for
his help at haskell-cafe)

The Equalizer was ported to the new compiler API and is correctly
simulated
The frontend already supports supplying identifiers for each
process (detection of duplicates is not implemented yet)
Error reporting was improved

GHC 6.10 will provide line information to Template Haskell, allowing
to make error reports more useful.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 14 / 1



kthcmyk

Full support of the Synchronous Process Library

All ForSyDe synchronous process and process constructors are
supported in the frontend and the simulation backend.

Even polymorphic processes work (big thanks to Oleg Kisleyov for
his help at haskell-cafe)

The Equalizer was ported to the new compiler API and is correctly
simulated
The frontend already supports supplying identifiers for each
process (detection of duplicates is not implemented yet)
Error reporting was improved

GHC 6.10 will provide line information to Template Haskell, allowing
to make error reports more useful.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 14 / 1



kthcmyk

Outline

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 15 / 1



kthcmyk

Cabal-ready and Haddock-tagged

By the time the library was rewritten, all modules were
haddock-tagged.
Thanks to the recent release of Haddock 2.0 (which is embedded
in GHC), using Template Haskell is not a problem anymore.
The package was cabalized. Configuring the package, building it,
generating the documentation and installing it is as easy as typing:

$ cd ForSyDe; ./Setup.hs configure; ./Setup.hs build; \
./Setup.hs haddock; ./Setup.hs install

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 16 / 1



kthcmyk

Cabal-ready and Haddock-tagged

By the time the library was rewritten, all modules were
haddock-tagged.
Thanks to the recent release of Haddock 2.0 (which is embedded
in GHC), using Template Haskell is not a problem anymore.
The package was cabalized. Configuring the package, building it,
generating the documentation and installing it is as easy as typing:

$ cd ForSyDe; ./Setup.hs configure; ./Setup.hs build; \
./Setup.hs haddock; ./Setup.hs install

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 16 / 1



kthcmyk

Cabal-ready and Haddock-tagged

By the time the library was rewritten, all modules were
haddock-tagged.
Thanks to the recent release of Haddock 2.0 (which is embedded
in GHC), using Template Haskell is not a problem anymore.
The package was cabalized. Configuring the package, building it,
generating the documentation and installing it is as easy as typing:

$ cd ForSyDe; ./Setup.hs configure; ./Setup.hs build; \
./Setup.hs haddock; ./Setup.hs install

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 16 / 1



kthcmyk

Outline

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 17 / 1



kthcmyk

Improved VHDL backend

Not ready yet and currently broken.
Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
Currently working on a common API for translation backends.

Reasons
Underestimated the task cost.
Time: stuck in various Template Haskell bugs and working in the
frontend and the simulation backend.
Design problems still unsolved:

What types to support? How? i.e. Vectors, Floating point types.
How to support user-defined types? (Data typeclass constraints in
process constructors could be an option).
What Haskell subset should be allowed inside ProcFuns?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18 / 1



kthcmyk

Improved VHDL backend

Not ready yet and currently broken.
Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
Currently working on a common API for translation backends.

Reasons
Underestimated the task cost.
Time: stuck in various Template Haskell bugs and working in the
frontend and the simulation backend.
Design problems still unsolved:

What types to support? How? i.e. Vectors, Floating point types.
How to support user-defined types? (Data typeclass constraints in
process constructors could be an option).
What Haskell subset should be allowed inside ProcFuns?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18 / 1



kthcmyk

Improved VHDL backend

Not ready yet and currently broken.
Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
Currently working on a common API for translation backends.

Reasons
Underestimated the task cost.
Time: stuck in various Template Haskell bugs and working in the
frontend and the simulation backend.
Design problems still unsolved:

What types to support? How? i.e. Vectors, Floating point types.
How to support user-defined types? (Data typeclass constraints in
process constructors could be an option).
What Haskell subset should be allowed inside ProcFuns?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18 / 1



kthcmyk

Improved VHDL backend

Not ready yet and currently broken.
Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
Currently working on a common API for translation backends.

Reasons
Underestimated the task cost.
Time: stuck in various Template Haskell bugs and working in the
frontend and the simulation backend.
Design problems still unsolved:

What types to support? How? i.e. Vectors, Floating point types.
How to support user-defined types? (Data typeclass constraints in
process constructors could be an option).
What Haskell subset should be allowed inside ProcFuns?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18 / 1



kthcmyk

Improved VHDL backend

Not ready yet and currently broken.
Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
Currently working on a common API for translation backends.

Reasons
Underestimated the task cost.
Time: stuck in various Template Haskell bugs and working in the
frontend and the simulation backend.
Design problems still unsolved:

What types to support? How? i.e. Vectors, Floating point types.
How to support user-defined types? (Data typeclass constraints in
process constructors could be an option).
What Haskell subset should be allowed inside ProcFuns?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18 / 1



kthcmyk

Improved VHDL backend

Not ready yet and currently broken.
Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
Currently working on a common API for translation backends.

Reasons
Underestimated the task cost.
Time: stuck in various Template Haskell bugs and working in the
frontend and the simulation backend.
Design problems still unsolved:

What types to support? How? i.e. Vectors, Floating point types.
How to support user-defined types? (Data typeclass constraints in
process constructors could be an option).
What Haskell subset should be allowed inside ProcFuns?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18 / 1



kthcmyk

Improved VHDL backend

Not ready yet and currently broken.
Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
Currently working on a common API for translation backends.

Reasons
Underestimated the task cost.
Time: stuck in various Template Haskell bugs and working in the
frontend and the simulation backend.
Design problems still unsolved:

What types to support? How? i.e. Vectors, Floating point types.
How to support user-defined types? (Data typeclass constraints in
process constructors could be an option).
What Haskell subset should be allowed inside ProcFuns?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18 / 1



kthcmyk

Improved VHDL backend

Not ready yet and currently broken.
Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
Currently working on a common API for translation backends.

Reasons
Underestimated the task cost.
Time: stuck in various Template Haskell bugs and working in the
frontend and the simulation backend.
Design problems still unsolved:

What types to support? How? i.e. Vectors, Floating point types.
How to support user-defined types? (Data typeclass constraints in
process constructors could be an option).
What Haskell subset should be allowed inside ProcFuns?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18 / 1



kthcmyk

Improved VHDL backend

Not ready yet and currently broken.
Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
Currently working on a common API for translation backends.

Reasons
Underestimated the task cost.
Time: stuck in various Template Haskell bugs and working in the
frontend and the simulation backend.
Design problems still unsolved:

What types to support? How? i.e. Vectors, Floating point types.
How to support user-defined types? (Data typeclass constraints in
process constructors could be an option).
What Haskell subset should be allowed inside ProcFuns?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18 / 1



kthcmyk

Improved VHDL backend

Not ready yet and currently broken.
Got the point of supporting components, Bool, Int signals, and
only basic process constructors.
Currently working on a common API for translation backends.

Reasons
Underestimated the task cost.
Time: stuck in various Template Haskell bugs and working in the
frontend and the simulation backend.
Design problems still unsolved:

What types to support? How? i.e. Vectors, Floating point types.
How to support user-defined types? (Data typeclass constraints in
process constructors could be an option).
What Haskell subset should be allowed inside ProcFuns?

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 18 / 1



kthcmyk

Outline

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 19 / 1



kthcmyk

Outline

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 20 / 1



kthcmyk

Accessing the external scope within ProcFuns

Previously, ProcFuns had to be selfcontained.
i.e. The translation backends didn’t have a way of accesing the
external scope of a ProcFun, for instance:

$(newProcFun [d| filterer :: (a -> Bool) -> a -> AbstExt a
filterer pred val =

if pred val then Prst val else Abst |])

New functions allow to pass parameters without loosing
encapsulation:
defArgVal :: (Lift a, Typeable a) => ProcFun (a -> b) -> a

-> ProcFun b
defArgPF :: ProcFun (a -> b) -> ProcFun a -> ProcFun b

Implementation of filterSY
filterSY id pred = mapSY id (filterer ‘defArgPF‘ pred)

Not a primitive anymore

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 21 / 1



kthcmyk

Accessing the external scope within ProcFuns

Previously, ProcFuns had to be selfcontained.
i.e. The translation backends didn’t have a way of accesing the
external scope of a ProcFun, for instance:

$(newProcFun [d| filterer :: (a -> Bool) -> a -> AbstExt a
filterer pred val =

if pred val then Prst val else Abst |])

New functions allow to pass parameters without loosing
encapsulation:
defArgVal :: (Lift a, Typeable a) => ProcFun (a -> b) -> a

-> ProcFun b
defArgPF :: ProcFun (a -> b) -> ProcFun a -> ProcFun b

Implementation of filterSY
filterSY id pred = mapSY id (filterer ‘defArgPF‘ pred)

Not a primitive anymore

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 21 / 1



kthcmyk

Accessing the external scope within ProcFuns

Previously, ProcFuns had to be selfcontained.
i.e. The translation backends didn’t have a way of accesing the
external scope of a ProcFun, for instance:

$(newProcFun [d| filterer :: (a -> Bool) -> a -> AbstExt a
filterer pred val =

if pred val then Prst val else Abst |])

New functions allow to pass parameters without loosing
encapsulation:
defArgVal :: (Lift a, Typeable a) => ProcFun (a -> b) -> a

-> ProcFun b
defArgPF :: ProcFun (a -> b) -> ProcFun a -> ProcFun b

Implementation of filterSY
filterSY id pred = mapSY id (filterer ‘defArgPF‘ pred)

Not a primitive anymore

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 21 / 1



kthcmyk

Outline

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 22 / 1



kthcmyk

Lessons learned

1 Template Haskell is in a less mature state than I expected
Reported ≈ a dozen bugs/feature requests during this stage.
I got stuck finding workarounds for many of them.
Fortunately the GHC team is more open and understanding than I
can even wish.
All the reported problems are likely to be fixed for GHC’s next major
release (GHC 6.10)

2 E-mail communication should be more fluent when possible
Quick feedback is extremely important!

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 23 / 1



kthcmyk

Lessons learned

1 Template Haskell is in a less mature state than I expected
Reported ≈ a dozen bugs/feature requests during this stage.
I got stuck finding workarounds for many of them.
Fortunately the GHC team is more open and understanding than I
can even wish.
All the reported problems are likely to be fixed for GHC’s next major
release (GHC 6.10)

2 E-mail communication should be more fluent when possible
Quick feedback is extremely important!

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 23 / 1



kthcmyk

Lessons learned

1 Template Haskell is in a less mature state than I expected
Reported ≈ a dozen bugs/feature requests during this stage.
I got stuck finding workarounds for many of them.
Fortunately the GHC team is more open and understanding than I
can even wish.
All the reported problems are likely to be fixed for GHC’s next major
release (GHC 6.10)

2 E-mail communication should be more fluent when possible
Quick feedback is extremely important!

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 23 / 1



kthcmyk

Lessons learned

1 Template Haskell is in a less mature state than I expected
Reported ≈ a dozen bugs/feature requests during this stage.
I got stuck finding workarounds for many of them.
Fortunately the GHC team is more open and understanding than I
can even wish.
All the reported problems are likely to be fixed for GHC’s next major
release (GHC 6.10)

2 E-mail communication should be more fluent when possible
Quick feedback is extremely important!

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 23 / 1



kthcmyk

Lessons learned

1 Template Haskell is in a less mature state than I expected
Reported ≈ a dozen bugs/feature requests during this stage.
I got stuck finding workarounds for many of them.
Fortunately the GHC team is more open and understanding than I
can even wish.
All the reported problems are likely to be fixed for GHC’s next major
release (GHC 6.10)

2 E-mail communication should be more fluent when possible
Quick feedback is extremely important!

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 23 / 1



kthcmyk

Lessons learned

1 Template Haskell is in a less mature state than I expected
Reported ≈ a dozen bugs/feature requests during this stage.
I got stuck finding workarounds for many of them.
Fortunately the GHC team is more open and understanding than I
can even wish.
All the reported problems are likely to be fixed for GHC’s next major
release (GHC 6.10)

2 E-mail communication should be more fluent when possible
Quick feedback is extremely important!

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 23 / 1



kthcmyk

Lessons learned

1 Template Haskell is in a less mature state than I expected
Reported ≈ a dozen bugs/feature requests during this stage.
I got stuck finding workarounds for many of them.
Fortunately the GHC team is more open and understanding than I
can even wish.
All the reported problems are likely to be fixed for GHC’s next major
release (GHC 6.10)

2 E-mail communication should be more fluent when possible
Quick feedback is extremely important!

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 23 / 1



kthcmyk

Outline

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 24 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Specific issues to discuss

Technical issues
VHDL backend

What primitives types to accept?
Custom types?
What Haskell subset in ProcFuns?
Process identifiers. Continue with current approach?

Bureaucratic issues
Release

When should the package be released in Hackage?
What version number should it carry?
Name? ForSyDe vs ForSyDeStdLib
License, copyright holder, maintainer e-mail.

Resources
Darcs repository
Mailing list archives
Maybe use external hosting? (code.haskell.org, Sourceforge ...)

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 25 / 1



kthcmyk

Outline

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 26 / 1



kthcmyk

What’s next?

What should be done now?
Personal proposal

Finish the VHDL backend
Move on to the new library
Continue adding features

What features? With what precedence? Options:
Graphical backend.
SystemC backend.
Verification backend (SMV).
Graphical frontend.
Transformational refinement.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 / 1



kthcmyk

What’s next?

What should be done now?
Personal proposal

Finish the VHDL backend
Move on to the new library
Continue adding features

What features? With what precedence? Options:
Graphical backend.
SystemC backend.
Verification backend (SMV).
Graphical frontend.
Transformational refinement.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 / 1



kthcmyk

What’s next?

What should be done now?
Personal proposal

Finish the VHDL backend
Move on to the new library
Continue adding features

What features? With what precedence? Options:
Graphical backend.
SystemC backend.
Verification backend (SMV).
Graphical frontend.
Transformational refinement.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 / 1



kthcmyk

What’s next?

What should be done now?
Personal proposal

Finish the VHDL backend
Move on to the new library
Continue adding features

What features? With what precedence? Options:
Graphical backend.
SystemC backend.
Verification backend (SMV).
Graphical frontend.
Transformational refinement.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 / 1



kthcmyk

What’s next?

What should be done now?
Personal proposal

Finish the VHDL backend
Move on to the new library
Continue adding features

What features? With what precedence? Options:
Graphical backend.
SystemC backend.
Verification backend (SMV).
Graphical frontend.
Transformational refinement.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 / 1



kthcmyk

What’s next?

What should be done now?
Personal proposal

Finish the VHDL backend
Move on to the new library
Continue adding features

What features? With what precedence? Options:
Graphical backend.
SystemC backend.
Verification backend (SMV).
Graphical frontend.
Transformational refinement.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 / 1



kthcmyk

What’s next?

What should be done now?
Personal proposal

Finish the VHDL backend
Move on to the new library
Continue adding features

What features? With what precedence? Options:
Graphical backend.
SystemC backend.
Verification backend (SMV).
Graphical frontend.
Transformational refinement.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 / 1



kthcmyk

What’s next?

What should be done now?
Personal proposal

Finish the VHDL backend
Move on to the new library
Continue adding features

What features? With what precedence? Options:
Graphical backend.
SystemC backend.
Verification backend (SMV).
Graphical frontend.
Transformational refinement.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 / 1



kthcmyk

What’s next?

What should be done now?
Personal proposal

Finish the VHDL backend
Move on to the new library
Continue adding features

What features? With what precedence? Options:
Graphical backend.
SystemC backend.
Verification backend (SMV).
Graphical frontend.
Transformational refinement.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 / 1



kthcmyk

What’s next?

What should be done now?
Personal proposal

Finish the VHDL backend
Move on to the new library
Continue adding features

What features? With what precedence? Options:
Graphical backend.
SystemC backend.
Verification backend (SMV).
Graphical frontend.
Transformational refinement.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 / 1



kthcmyk

What’s next?

What should be done now?
Personal proposal

Finish the VHDL backend
Move on to the new library
Continue adding features

What features? With what precedence? Options:
Graphical backend.
SystemC backend.
Verification backend (SMV).
Graphical frontend.
Transformational refinement.

A.Acosta (KTH) ForSyDe’s embedded compiler January 14th, 2008 27 / 1


