
A Case Study of Hardware and Software Synthesis in
ForSyDe

Zhonghai Lu
Royal Institute of Technology

Stockholm, Sweden

zhonghai@imit.kth.se

Ingo Sander
Royal Institute of Technology

Stockholm, Sweden

ingo@imit.kth.se

Axel Jantsch
Royal Institute of Technology

Stockholm, Sweden

axel@imit.kth.se

ABSTRACT
ForSyDe (FORmal SYstem DEsign) is a methodology which ad-
dresses the design of SoC applications which may contain con-
trol as well as data flow dominated parts. Starting with a formal
system specification, which captures the functionality of the sys-
tem, it provides refinement methods inside the functional domain
to transform the abstract specification into an efficient implementa-
tion model which serves as a starting point for synthesis into hard-
ware and software. In this paper we illustrate with a case study of
a digital equalizer how a ForSyDe model can be synthesized into a
hardware, a software or a combined hardware/software implemen-
tation.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design-Aids; J.6 [Computer-Aided
Engineering]: Computer-Aided Design (CAD)

General Terms
Design

Keywords
Hardware Synthesis, Software Synthesis, Design Methodology, Sys-
tem Design

1. INTRODUCTION
A SoC (System-on-a-Chip) will be able to integrate more and

more heterogeneous computing resources. They can be dedicated
(ASICs), programmable (processors and DSP), configurable (FP-
GAs), passive (memory) or most likely a mixture of these. The
design methodology for such complex systems is not obvious.

The ForSyDe methodology [1] targets the design of SoC appli-
cations. It offers a modeling technique that results in an abstract
and formal system model, and formal design transformation meth-
ods for a transparent refinement process of the system model into
an efficient implementation model, which serves as a starting point
for synthesis into hardware and software.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

In earlier papers [2, 3] we have outlined a method for hardware
synthesis. Based on this method we have developed a software syn-
thesis method. In this paper we illustrate with a case study of a dig-
ital equalizer the synthesis of a ForSyDe model into a hardware, a
software and a combined hardware/software description. Although
the synthesis steps were applied manually, the whole synthesis pro-
cess can be automated and the case study will be the groundwork
for the future development of our synthesis tool.

2. RELATED WORK
Keutzer et al. discuss system-level design in [7]. They point out,

that “to be effective a design methodology that addresses complex
systems must start at high levels of abstraction”. In particular, a de-
sign methodology should separate (1) function (what the system is
supposed to do) from architecture (how it does it) and (2) communi-
cation from computation. And they “promote to use formal models
and transformations in system design so that verification and syn-
thesis can be applied to the advantage of the design methodology”
and believe that “the most important point for functional specifica-
tion is the underlying mathematical model of computation”. These
arguments not only strongly support but also establish the founda-
tions of the ForSyDe methodology [1].

Edwards et al. [6] give a comprehensive overview about models
of computation. The ForSyDe system model uses the perfect syn-
chrony hypothesis which forms the basis for the family of the syn-
chronous languages [4]. It assumes that the outputs of the system
are synchronized with the system inputs, while the reaction of the
system takes no observable time. This hypothesis abstracts from
physical time and serves as a base for a mathematical formalism.

Functional languages have been used in other research projects
in electronic design. Reekie [11] used the functional language
Haskell to model digital signal processing applications. Similarly
to us he modeled streams as infinite lists and used higher-order
functions to operate on them. Finally, semantic-preserving meth-
ods were applied to transform a model into a more efficient repre-
sentation. But this representation was not synthesized to hardware
or software. Lava [5] is a hardware description language based on
Haskell. It focuses on the structural representation of hardware and
offers a variety of powerful connection patterns. Our approach uses
the same language, but addresses both data flow and control domi-
nated applications, and adopts a synthesis method rather than deal-
ing with structures on lower levels. Hardware ML (HML) [10] is
a hardware description language based on the functional language
Standard ML. Though HML uses some features of Standard ML,
such as polymorphic functions and its type system, it is mainly
an improvement of VHDL, while our system specification is on a
significantly higher abstraction level with a very different compu-
tational model.

86

3. THE FORSYDE METHODOLOGY

3.1 The Design Process

VHDL

Code

C

Code

tation

Model

Implemen−

SW

Design Decisions

Code Generation
Hardware

Design Refinement

STUDY

Mapping

Simulation
Validation

Library

HW

Description

Implementation Domain

Description

Interface

Description

Software
Code Generation

Transform.
LibraryFormal Methods

Functional Domain

System

CASE

 Design Partitioning

Model

Semanrtic−Preserving Transf.

Figure 1: The Design Process in ForSyDe

The ForSyDe design process (Figure 1) starts with the develop-
ment of a formal abstract functional system model, written in the
functional language Haskell [14]. This model is then refined inside
the functional domain by a stepwise application of well defined de-
sign transformations into an efficient implementation model. As
the implementation model is a refined version of the system model,
the same validation and verification methods can be applied to both
models. In the partitioning phase, the implementation model is par-
titioned into hardware and software blocks, which are mapped on
architectural components. Only now, in the code generation phase,
we leave the functional domain to generate VHDL or C code for
the hardware and software parts.

The case study focuses on the synthesis into a hardware and soft-
ware description. The refinement of the system model is briefly
presented in Section 3.3 and not part of this case study.

3.2 The System Model
A system is modeled by concurrent processes. Signals connect

processes with each other. A signal is defined as a set of events
according to the denotational framework of Lee and Sangiovanni-
Vincentelli [9]. It is possibly an infinite, ordered sequence of events.
Events have a tag and a value. Synchronous models require totally
ordered events with the same set of tags. Events with the same tag

are processed synchronously. In order to model the absence of a
value, a data type D can be extended into a data type D? by adding
the special value ?. Absent values are used to establish a total or-
der of events when dealing with signals with different or aperiodic
event rates.

To model processes, we use the concept of skeletons. A skeleton
is a process constructor, which takes combinatorial functions, i.e.
functions that have no internal state, and values as input to construct
a process. The concept of skeletons has the following additional
properties:

� A skeleton cleanly separates computation from synchroniza-
tion. Synchronization is expressed by the skeleton and com-
putation by the employed combinatorial function(s).

� Skeletons have a structural HW and SW interpretation. Thus
a system model based on skeletons also has an interpretation
in HW, SW or a mixture of both.

There are two classes of skeletons. The skeleton zipWithSY is an
example of a combinatorial skeleton. It repeatedly applies a func-
tion f pairwise on all values of two input signals, and generates the
corresponding output signal as illustrated in Figure 2. A process
Sum can be expressed as Sum = zipWithSY(+).

zipWithSY

f

v11;v12; : : :

f (v11;v21); f (v12;v22); : : :
v21;v22; : : :

Figure 2: Process Construction with zipWithSY

A process zipWithSY(f) is implemented as a combinatorial cir-
cuit that implements the function f . Thus the process of Figure 2 is
implemented as an adder in hardware. In software such a process is
implemented as a software function f with two arguments, in case
of Figure 2 an addition operation.

The skeleton mooreSY is an example for a sequential skeleton.
It models a finite state machine of Moore type. The skeleton takes
a function ns to calculate the next state as first argument, a func-
tion out to calculate the output as second argument and a value
s0 for the initial state as last argument. Thus a process Moore =
mooreSY(ns;out;s0) implements the behavior of a finite state ma-
chine. In hardware such process is implemented as follows. The
functions ns and out are implemented as combinatorial circuits, the
next state and output decoder, and the state is maintained by the
memory elements with the initial state s0, as shown in Figure 3.

Input State
Next

Event
Clock

State OutputNext
State

Decoder
Elements
Memory Output

Decoder

(ns) (s0) (out)

Figure 3: Process Construction with mooreSY

Processes can be glued together to build networks of processes.
Such a network is called a block. Figure 4 shows how a block
is formed by a network of processes. The function of a block is
expressed by a set of equations. In the same way, blocks can be
composed into higher level blocks, subsystems and a system. The
hierarchy can be represented by a structural object tree in which we
distinguish three layers as illustrated in Figure 5. The top layer is
the system layer which defines the system’s interfaces to its envi-
ronment. The middle layer is the subsystem layer which consists of
one or more levels of networks of blocks. The bottom layer is the
process layer.

87

s1
s2P1

Block
s5

P2

s3
s4P3

Block(s1) = s5
where (s2;s3) = P1(s1)

s5 = P2(s2;s4)
s4 = P3(s3)

Figure 4: A Network of Processes

Block 1 Block k
Subsystem

Layer

Block 1...1 Block 1...m

Process nProcess 1

Skeleton Functions Values

Layer
Process

SystemSystem Layer

Figure 5: The Layered Structure of a System Model

In order to allow for formal design on a high abstraction level,
the system model has the following characteristics:

� It is based on a synchronous computational model, which
cleanly separates computation from communication.

� It is purely functional and deterministic.

� It uses ideal data types such as lists with infinite size.

We have chosen the functional language Haskell [14] as model-
ing language. Haskell is based on a formal semantics and includes
many powerful concepts such as higher-order functions, which fit
well with the semantics of the ForSyDe system model. In addition
the system model is executable.

3.3 Refinement of the System Model
The system model abstracts from implementation details, such

as buffer sizes and low-level communication mechanisms. This en-
ables the designer to focus on the functional behavior on the system
rather than structure and architecture. This abstract nature leaves
a wide design space for further design exploration and design re-
finement, which is supported by our transformational refinement
technique [1].

During the refinement phase the system model is stepwise re-
fined through the use of well defined design transformations from
an initial specification model S0 to a final optimized implementa-
tion model Sn (Figure 6).

T1
S0

T2
S1 SnS1

Tn

Figure 6: Refinement through Design Transformations

There are two classes of transformation techniques:

Semantic Preserving Transformations Semantic preserving trans-
formations do not change the meaning of the model, i.e. the
transformed model behaves in the same way as the original
model. Since in a formal sense, processes are just like any

other function powerful transformations can be applied to
change the process structure. For instance, processes can be
merged and split, functions inside processes can be moved
from one process to another. Thus, at this level it is much
easier to explore alternative designs than at the VHDL, Sys-
temC, or C level. Semantic preserving transformations are
mainly used to optimize the model for synthesis.

Design Decisions Design Decisions change the meaning of a model.
A typical design decision is the refinement of an infinite buffer
into a fixed-size buffer with n elements. While such a de-
sign decision clearly modifies the semantics, the transformed
model may still behave in the same way as the original model.
For instance, if it is possible to prove, that a certain buffer
will never contain more than n elements, the ideal buffer can
be replaced by a finite one of size n.

Usually before synthesis the system model is refined into an
implementation model using our refinement technique. However,
for this case study we used the initial system model as a starting
point for the synthesis process since the synthesis principles are the
same.

4. CASE STUDY: THE DIGITAL EQUAL-
IZER

The digital equalizer regulates the bass and treble parts of an
input audio signal in response to the button levels. In addition, it
prevents the bass from exceeding a predefined threshold in order
not to damage the later stages in the audio system.

In our case study we have synthesized the digital equalizer model
into a hardware, a software and a combined hardware/software de-
scription. The refinement was not part of the case study. Since HW
synthesis has already been presented in [2, 3] we illustrate the syn-
thesis steps by mainly focusing on the synthesis to software and a
combined hardware/software description.

4.1 The Digital Equalizer Model
The digital equalizer is structurally decomposed into four func-

tional blocks or subsystems shown in Figure 7. The function of the

AudioOut

Equalizer

DistortionFlagLevels(Bass,Treble)

AudioIn

Buttons Button Control (BC)

Audio Filter (AF)

Dist. Control (DC)Overrides

Audio Analyzer (AA)

Figure 7: The Digital Equalizer

digital equalizer can be described by the following set of equations:

AudioOut = Equalizer(Buttons;AudioIn)
where
AudioOut = AF(Levels;AudioIn)
Levels = BC(Buttons; init:Overrides)
DistortionFlag = AA(AudioOut)
Overrides = DC(DistortionFlag)
init = ?

The first equation represents the system layer. It takes two input
signals Buttons and AudioIn as arguments, generating the output
signal AudioOut. The evaluation of this equation calls for the eval-
uation of the next four equations. These equations describe the
subsystem layer. The final equation sets the initial value of the sig-
nal Overrides, which is needed as the system includes a feedback

88

loop. The Audio Filter (AF) subsystem handles the bass and treble
part of the digital audio input in response to the amplification level
from the Button Control (BC). The internal structure of the Audio
Filter is depicted in Figure 8. It also shows the skeletons employed
for modeling those processes. The Audio Analyzer (AA) analyzes

l
AudioIn

Audio Filter

Low Pass FIR-Filter

Sum

Amplifier

Levels.Treble

Levels.Bass

Amplifier
zipWithSY zipWith3SY

zipWithSY

AudioOut
Band Pass FIR-Filter

High Pass FIR-Filter

mooreSY

mooreSY

mooreSY

Figure 8: The AudioFilter’s Internal Structure

the audio output signal and determines if the bass exceeds a prede-
fined threshold using an FFT to determine the frequency spectrum.
The Distortion Control (DC) is modeled as an FSM by a sequential
skeleton and determines if a violation occurs. In this case it gen-
erates the corresponding commands for the Button Control. The
Button Control is also modeled as an FSM and monitors the button
inputs and the override signal from the Distortion Control, in turn
passing the current amplification level to the Audio Filter. From the
above description we see that the two subsystems Button Control
and Distortion Control are control dominated while the other two
subsystems Audio Filter and Audio Analyzer are data flow domi-
nated.

4.2 Synthesis Technique
In our earlier work [2, 3] we have outlined a synthesis method

for hardware. Based on this method we have extended this method
to cover also software synthesis. In this case study we follow the
steps in Figure 9 to synthesize the digital equalizer into a hardware
and software description written in behavioral VHDL and C. It re-
flects the layered structure of the system model. The synthesis task

Create/Select Skeleton Template
Determine Process Parameters

Map Data Types

Translate Functions
Generate Process Description

Subsystem Layer

System Layer

Process Layer

Figure 9: The Synthesis Technique in ForSyDe

is divided into three sub-tasks, each of which corresponds to one
layer in the system model. At first we synthesize the process layer.
We identify all processes in the system model. Each process is
constructed by a skeleton, at least one function, and in some cases
values like initial states or generic parameters. The process synthe-
sis is built on its skeleton template and the employed combinatorial
function(s). Skeleton templates are created once, and later form
a skeleton template library in order to be reused. Of course, the
data types of the modeling language are mapped to the correspond-
ing data types of the target language, including primitive and com-
pound data types. We also identify values, that are used together
with skeletons to form processes. These values are translated to
generic parameters or initial states in case of sequential skeletons.
Next, we derive translations for all blocks. Since blocks are either

composed of blocks or processes, the results from the process layer
are used. A block can be implemented as a netlist of components
in hardware or as a hierarchy of functions in software. Finally, the
system layer is similarly constructed based on the results from the
second step, resulting in a single top-level component in HW and
the main program in SW.

4.3 Software Synthesis
In the following sections we illustrate software synthesis of the

digital equalizer according to Figure 9. We have chosen to con-
centrate our presentation of the process layer on the synthesis of a
FIR-Filter process in the Audio Filter subsystem.

4.3.1 Process Layer
Here we show the synthesis of the parametric process FIR(h) that

is used to model the filter blocks of the block Audio Filter (Figure
8). The FIR filter is shown in Figure 10. The state of the FIR-

xn�2

h0 h2 hkh1

yn

z�1z�1
xn�1 xn�kxn

z�1

Figure 10: FIR-Filter

Filter can be viewed as a queue with the finite size k+1. At each
event cycle the function shiftlV shifts the input samples one step to
the right. The result of the FIR-filter operation is the inner product
ipV(h) of the state queue and the coefficient vector h.

FIR(h) = mooreSY (shiftlV; ipV(h);s0)

The FIR-filter can be modeled as a Moore process by means of
the skeleton mooreSY, where shiftlV is the next state function ns,
ipV(h) is the output function out and s0 is the initial state containing
a vector of zeros. The coefficients h0, . . . , hk are given as a vector
h of the size k+ 1 as argument to the FIR-filter. We briefly show
the synthesis of the process FIR(h):

1. Map Data Types. The input signal xn and the output signal
yn are floating point numbers which are directly mapped to
the data type ’double’ in C. The state type is a vector of float-
ing point numbers which is mapped to an array of ’double’.

2. Create Skeleton Templates. Processes communicate via
variables shared by the communicating processes. Skeletons
are translated into function templates in software. The func-
tion template ’moore’ for the skeleton mooreSY is created as
follows:

StateType current state , next state ;
int initial flag ;
OutputType moore(InputType input)
f if (initial flag ==0)

f current state = Initial Value ;
initial flag =1;g

else
current state = next state ;

next state =ns(current state , input);
return out(current state); g

The external variable ’initial flag’ denotes if the system is
in the initial state. The ’ns’ corresponds to the next state
function ns and the ’out’ to the output function out.

89

3. Function Translation. We translate the two combinatorial
functions ipV(h) and shiftlV in the FIR filter model into the
function ’ipV’ with an additional parameter ’h’ and ’shiftlV’
according to their definitions.

4. Determination of Process Parameters. The initial state s0
corresponds to an array of zeros in C. The parameter h is
translated into an input argument for the process function.
Depending on different values for h, the filter process realizes
a LPF, a BPF and a HPF.

5. Generating the Process Description. Integrating the results
from step1 to 4 leads to the following code for ’filter’. Here
’shiftlV’ replaces ’ns’ and ’ipV’ with an additional argument
’h’ replaces ’out’.

Vector current state , next state ;
int initial flag ;
double filter (double input , Vector h)
f int j ;

if (initial flag ==0)
ffor (j =0; j<length(h); j++)

current state [j]=0.0;
initial flag =1;g

else
ffor(j =0; j<length(h); j++)

current state [j]= next state [j];g
next state =shiftlV (current state , input);

return ipV(current state ,h); g

4.3.2 Subsystem and System Layer
A subsystem is composed of concurrent processes. However in

our synthesis scenario there is only one microprocessor. A schedul-
ing policy is needed. We apply the Periodic Admissible Sequential
Schedule (PASS) algorithm developed for the scheduling of Syn-
chronous Data Flow (SDF) networks [8] to the subsystem and sys-
tem layer of our system model. PASS is a nonempty ordered list
of nodes (processes or subsystems) which can be executed repeti-
tively.

Since a process is a function, a subsystem is a function as well. It
is hierarchical. For example, we get three process functions ’filter’,
’amplifier’, ’sum’ from the synthesis of the process layer. Applying
the SDF theory and the PASS algorithm, we derive a PASS for the
subsystem Audio Filter.

PASS(AF) = f LPF;BPF;HPF;

BAmp;TrAmp;Sumg

The subsystem function ’AudioFilter’ is created by calling its pro-
cess functions by the PASS sequence. In the same way we trans-
form the other three subsystems of the digital equalizer into sub-
system functions.

At the system layer we schedule the four parallel subsystem
components, leading to a PASS for the digital equalizer:

PASS(Equalizer) = fBC;AF;AA;DCg

The ’ButtonControl’ function should run first due to the initial value
init of the override signal.

4.4 Hardware Synthesis
The HW synthesis of the digital equalizer has been done follow-

ing the same steps as the SW synthesis. For the process layer, a pro-
cess in ForSyDe is translated into a component in VHDL. The syn-
thesis is also centered on the skeleton template in HW. For instance,

the FIR filter is modeled by the sequential skeleton mooreSY, where
its VHDL template consists of three processes (refer to Figure 3).
The next state decoder implements shiftlV and the output decoder
ipV(h). The sequential logic implements the memory bank. Next,
each subsystem can be easily translated into a subsystem compo-
nent by instantiating and connecting the components from the pro-
cess layer according to the subsystem’s internal structure. Finally
the system layer is translated into a system component by instanti-
ating and connecting the subsystem components from the subsys-
tem layer according to the system structure.

4.5 HW-SW Implementation
In the case study we have also investigated a mixed HW/SW

implementation with two separated clock domains. The data flow
parts Audio Filter and Audio Analyzer are the critical parts of the
system and are implemented in HW. The control parts Button Con-
trol and Distortion Control can run at a much lower speed since
the buttons are only pressed occasionally. Thus we implement the
control parts in SW. Since we have already separately synthesized
the digital equalizer into HW and SW, we reuse the data flow parts
in HW and the control parts in SW. In addition we introduce an
asynchronous interface, a handshake protocol, to handle the com-
munication between the two parts. This asynchronous communi-
cation mechanism enables us to turn a synchronous system into
a GALS (Globally Asynchronous Locally Synchronous) [12] [13]
system to meet design constraints. Figure 11 shows the structure of
the implementation using a sender Send and receiver Rec process
for each connection. The protocol works as follows. After data is

Data ButtonControl

DistortionControl

Ack

Ack
Data
Req

Req

(HW) (FLI)

AudioAnalyzer

AudioFilter

AudioOut

Rec

Send

Send

Rec

Clock Domain 1

AudioIn Buttons

Clock Domain 2
(SW)

Figure 11: Asynchronous Interfaces

ready, a data transaction is completed in the following four steps:
(1) Send asserts Req, and sends data. (2) Rec accepts data, and
asserts Ack. (3) Send deasserts Req. (4) Rec deasserts Ack. For
the SW solution the processes including the Send (S) and Rec (R)
processes have to be scheduled. As we use the handshaking proto-
col receiving and sending data takes two cycles, which is reflected
in the following PASS:

PASS(SW) = fR;R;DC;BC;S;Sg

We have validated this mixed hardware/software implementation
by co-simulation using the VHDL Foreign Language Interface (FLI)
of the ModelSim simulator by Mentor Graphics. The VHDL FLI
allows to replace a VHDL architecture with C code or to replace
the body of a VHDL function with C code. Using the FLI we have
co-simulated the hardware parts (VHDL) and software parts (C)
together with the handshaking protocol (VHDL and C).

5. CONCLUSION

Haskell Model VHDL (Ratio) C (Ratio)
185 1278 (6.91) 1420 (7.68)

Table 1: Comparison of the No. of Code Lines

With a case study of a digital equalizer we have demonstrated the

90

synthesis of an abstract ForSyDe system model into a hardware, a
software and a combined hardware/software description. Table 1
compares the number of code lines of the ForSyDe model of the
digital equalizer in Haskell, with its translated results, the hardware
representation in behavioral VHDL as well as the software repre-
sentation in C. Although the synthesis has been done manually it
can be automated because of the formal definition of the synthesis
steps.

The synthesis technique is an integral part of our methodology.
We have formulated the basic foundations and techniques of the
ForSyDe methodology including modeling, refinement as well as
synthesis, and have applied them manually for several designs. We
will continue our work with the development of tool support in
order to automate the design flow.

6. ACKNOWLEDGMENTS
The work reported in this paper was supported in part by the

Swedish government within the Socware program, and in part by
the Swedish Foundation for Strategic Research (SSF) in the Inte-
grated Electronic Systems (INTELECT) program.

7. REFERENCES
[1] Ingo Sander and Axel Janstch. Transformation Based

Communication and Clock Domain Refinement for System
Design. In Proceedings of the 39th Design Automation
Conference, 20(1):281–286, New Orleans, USA, June 2002.

[2] Ingo Sander and Axel Jantsch. System synthesis utilizing a
layered functional model. In Proceedings Seventh
International Workshop on Hardware/Software Codesign,
pages 136-140, Rome, Italy, May 1999. ACM Press.

[3] Ingo Sander and Axel Jantsch. System synthesis based on a
formal computational model and skeletons.In Proceedings
IEEE Workshop on VLSI’99, pages 32-39, Orlando, Florida,
April 1999. IEEE Computer Society.

[4] A. Benveniste and G. Berry. The synchronous approach to
reactive and real-time systems. Proceedings of the IEEE,
79(9):1270–1282, September 1991.

[5] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava:
Hardware design in Haskell. In International Conference on
Functional Programming, 1998.

[6] S. Edwards, L. Lavagno, E. A. Lee, and
A. Sangiovanni-Vincentelli. Design of embedded systems:
Formal models, validation, and synthesis. Proceedings of the
IEEE, 85(3):366–390, March 1997.

[7] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and
A. Sangiovanni-Vincentelli. System-level design:
Orthogonolization of concerns and platform-based design.
IEEE Transaction on Computer-Aided Design of Integrated
Circuits and Systems, 19(12):1523–1543, December 2000.

[8] E. A. Lee and D. G. Messerschmitt. Static scheduling of
synchronous data flow programs for digital signal processing.
IEEE Transactions on Computers, C-36(1), January 1987.

[9] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for
comparing models of computation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
17(12):1217–1229, December 1998.

[10] Y. Li and M. Leeser. HML, a novel hardware description
language and its translation to VHDL. IEEE Transactions on
VLSI, 8(1):1–8, February 2000.

[11] H. J. Reekie. Realtime Signal Processing. PhD thesis,
University of Technology at Sydney, Australia, 1995.

[12] Daniel M. Chapiro. Globally-Asynchronous
Locally-Synchronous Systems. PhD Thesis, Stanford
University, Oct. 1984.

[13] Thomas Meincke, Ahmed Hemani, S. Kumar, P. Ellervee, J.
Öberg, T. Olsson, P. Nilsson, D. Lindqvist, and H. Tenhunen.
Globally asynchronous locally synchronous architecture for
large high performance ASICs. In Proceedings of IEEE
International Symposium on Circuits and Systems, pages II
512-515, Orlando, USA, May 1999.

[14] S. Thompson. Haskell - The Craft of Functional
Programming. Addison-Wesley, 2 edition, 1999.

91

