
Embedded Hardware Description Languages:

Exploring the Design Space
(Presentation Abstract)

Koen Lindström Claessen1 and Gordon Pace2

1 Chalmers University, Gothenburg, Sweden
2 Dept. of Computer Science and AI, University of Malta, Msida, Malta.

{koen@chalmers.se; gordon.pace@um.edu.mt}

Abstract. The embedding of hardware description languages in func-
tional programming languages has been actively explored for a number
of decades, and a surprising number of such embedded languages have
been developed and used. The first thing a developer of such a lan-
guage realises, is the rich set of options and possible approaches. In this
presentation, we discuss these issues, and examine their advantages and
disadvantages in different settings, for languages developed with different
objectives in mind.

1 Introduction

Using the embedded language approach, one attacks a problem domain by design-
ing a domain-specific description language (in which to describe elements of the
problem domain), and by implementing this language as a library in a host lan-

guage. The host language is usually a powerful general programming language.
Thus, the embedded language inherits many of the features, tools, and users
of the host language, allowing the designer of the embedded language to con-
centrate on the actual problem domain rather than on programming language
design.
Functional languages have shown themselves to be excellent host languages for
all kinds of domains, and for embedded hardware description languages in par-
ticular. Some modern examples are DUAL-EVAL [12], Hawk [5], Hydra [8], Lava
[4], “Lava in ReFLect” [6], and Wired [1]. In this paper, we identify some ele-
ments of the design space that one faces when designing and implementing an
embedded hardware description language, and discusses advantages and disad-
vantages.
We focus on embedded structural synchronous hardware description languages,
embedded in a pure functional language with a rich type system. The intention
is for descriptions to be simulatable (i.e. we know the behavioral meaning of our
circuits) as well as traversable (i.e. we can generate netlists, call model checkers,
or transform circuits). However, we believe that many of the issues are applicable,
either directly or indirectly, to other settings as well.

Hardware Design and Functional Languages 89

In the following sections, we will illustrate the concepts using Haskell [10] code.
However, note that the concepts are in no way limited to embedded hardware
description languages in Haskell.

2 Modelling circuits

The first issue that comes up is how to model circuits in the language.
A natural choice to modelling a circuit in a functional language, is to model
them directly as functions from inputs to outputs. In this setting, combinational
circuits can simply be modelled using boolean operators. However, describing
synchronous circuits forces us to use a richer type for signals. Various options
present themselves here, which we discuss in more detail in section 3. We illus-
trate this approach to circuit modelling using two alternative signal implemen-
tations — the first representing a signal as a function from time to its value, and
the second using lazy lists.

-- Functions from time to values -- Lazy lists

inv s t = not (s t) inv s = map not s

and2 (s1,s2) t = s1 t && s2 t and2 (s1,s2) = zipWith (&&) s1 s2

delay s 0 = False delay s = low:s

delay s (t+1) = s t

Using this approach, we get simulation of circuits for free, and circuit composition
is trivial. However, it is more difficult to implement traversability of circuits;
some kind of symbolic simulation or reflection needs to be implemented. For
example, simply attempting to count the number of gates in a circuit description
is impossible in this setting.
An alternative to this approach is to model circuits as a function, but to keep the
structure of the signals in the circuit as a datatype. Primitive circuit combinators
now simply become constructors. This choice is for example taken in Lava. With
this approach, we still get trivial circuit composition, but simulation requires
an additional interpretation of the circuit constructors. More importantly, since
circuits are now simply data objects upon which we can check equality, we can
traverse, access and reason about their structure directly.

data Bit = And Bit Bit | Inv Bit | Delay Bit | Low | High

-- A concrete datatype

inv s = Inv s

and2 (s1,s2) = And s1 s2

delay s = Delay s

Another choice is to model circuits as special objects (a choice taken in Wired
and DUAL-EVAL). In this way, the structure of the circuit can be kept track of

90 Hardware Design and Functional Languages

explicitly, and there is greater freedom in what kind of information can be stored
within components. However, since function composition cannot be used directly
anymore, simulation and composition of circuits becomes more cumbersome.

3 Modelling signals

When modelling circuits as functions, the abstraction level we pick is the level
of signals. A signal models the value of a wire that varies over time. What kind
of signals do we allow? Should these be reflected in the types? In Hawk, any
value is allowed to flow through a signal. In Lava, only booleans (modelling bits)
and integers (modelling abstract numbers) are allowed. In Hydra, signals can
not only model the values, but also some aspects of non-functional behavior.
Another choice to make is how to model vectors of signals. In Hawk, these are
modelled by a “signals of lists of booleans”, in Lava, these are modelled by “lists
of signals of booleans”. This seemingly trivial choice actually has a profound
impact on how the rest of the language is designed. One such example is the
types of standard components and connection patterns.

-- Hawk-style

and2 :: Signal (Bit,Bit) -> Signal Bit

-- Lava-style

and2 :: (Signal Bit, Signal Bit) -> Signal Bit

The advantage of the Hawk-style is that everything is a signal, which makes for a
clean and flexible design and implementation of an API. The disadvantage of the
Hawk-style is that the user is forced to convert back and forth between “struc-
tures of signals” and “signals of structures”, using zip- and unzip-like functions:

unzipp :: Signal (a,b) -> (Signal a, Signal b)

zipp :: (Signal a, Signal b) -> Signal (a,b)

4 Components

What components are we allowed to use to construct the circuit? Possible com-
ponents are standard logical gates, busses, transistors, abstract components (per-
haps implemented in another language like VHDL). A natural choice seems to
be to take the components of our back-end (different kinds of FPGA, CMOS
gates, etc.). However, if we want circuits to be model-checked, or if we want
to be able to generate parameterized Verilog or VHDL code, we have different
restrictions on what kind of components we should allow. What effects does this
choice have on the design of the language? What type safety issues are there?

Hardware Design and Functional Languages 91

5 Sharing and Loops

No talk on using pure functional languages to describe hardware is complete
without a discussion on the effect of the language design on reasoning about
the circuit. A pure functional language enjoys the property of referential trans-
parency; we can substitute equals for equals, without changing the meaning of
our program. However, we might not end up with the same structural circuit if we
do this. Consider the circuit let c = inv low in and2 (c,c), which should
(by referential transparency) be equivalent to and2 (inv low, inv low). Does
it have one, or two negation gates? In the case of (sequential) loops, the situation
is seemingly even worse: let c = or2 (delay c, s) in c. One can open up
the definition of c arbitrarily many times, resulting in that many instances of
the disjunction gate and the delay. How sharing of circuit wires (and, relatedly,
loops) can be expressed is influenced directly by the choice of how to model
circuits [2, 9].

5.1 Named Circuits

One approach to identify sharing (and loops) is to name wires, and using these
names to check for sub-circuit equality. This approach has been used in Hydra
[7]. With this approach, the major disadvantage is that the users are responsible
for responsible naming of circuits — the same name may not be used more than
once. Furthermore, unless users are forced to name every single wire, they are
also responsible for introducing names in every instance of shared circuits and
loops. The advantage of introducing explicit names, is that these can also be
used for naming the wires when generating netlist descriptions, or output to
model-checkers, since the users would be able to relate the resulting wires with
the wires in their design.

and2 :: Name -> (Signal Bit, Signal Bit) -> Signal Bit

5.2 Monadic Descriptions

A slightly different approach, to relieve the user from the responsibility of nam-
ing, one can create a counter which is needed by all circuit generators. The
counter is used internally to generate unique names, and is incremented as nec-
essary and returned as an output.

and2 :: (Signal Bit, Signal Bit) -> Counter -> (Counter, Signal Bit)

The user is now solely responsible for threading the counter though the circuit
being generated:

halfAdder (a, b) c = (c’’, (sum, carry))

where

(c’, sum) = xor2 (a, b) c

(c’’, carry) = and2 (a,b) c’

92 Hardware Design and Functional Languages

Apart from the clutter in the circuit descriptions, this still can give rise to
errors through mis-threading the counter. To avoid this, and to make the counter
implicit, one can encapsulate it in a state monad:

and2 :: (Signal Bit, Signal Bit) -> ST Counter (Signal Bit)

halfAdder (a, b) =

do

sum <- xor2 (a, b)

carry <- and2 (a, b)

This approach has been used in the original version of Lava [3], although dropped
in subsequent versions.

6 Deep vs Shallow Embedding

The discussion regarding the modelling of circuits in section 2 started by dis-
cussing the merits of describing a circuit simply as a function from inputs to
outputs, as opposed to storing its structure as a data object which one can
access and traverse. The former is called a shallow embedding, in which the
meaning, but not the structure is stored, while the latter is called a deep em-
bedding. If one requires access to the structure of a system, one has to opt for
a deep embedding. If one is further interested in the structure of the function
calls constructing the circuit (for example to be able to reason about recursive
descriptions), one would have to deeply embed further language constructs.
One approach proposed to avoid this issue, is to use a reflective language to
enable access to the actual code itself. This approach has been used in ReFLect
[6] and Meta-ML [11]. In such languages, one would then be able to use a shallow
embedding, and still have access to the circuit components.

7 Conclusions

Although it seems a trivial exercise at first to embed a structural hardware
description language in a functional language, there are a number of choices to
make, each combination of which leads to a possibly different end result. It is a
good idea to make these choices concrete and to categorize them.

References

1. Emil Axelsson, Koen Claessen, and Mary Sheeran. Wired: Wire-aware circuit de-
sign. In Proc. of Conference on Correct Hardware Design and Verification Methods
(CHARME), volume 3725 of Lecture Notes in Computer Science. Springer Verlag,
October 2005.

Hardware Design and Functional Languages 93

2. Koen Claessen and David Sands. Observable sharing for functional circuit descrip-
tion. In Proc. of Asian Computer Science Conference (ASIAN), Lecture Notes in
Computer Science. Springer Verlag, 1999.

3. Koen Claessen, Mary Sheeran, and Satnam Singh. The design and verification of
a sorter core. In CHARME. Springer, 2001.

4. Koen Claessen, Mary Sheeran, and Satnam Singh. Using Lava to design and
verify recursive and periodic sorters. International Journal on Software Tools for
Technology Transfer, 4(3):349–358, 2003.

5. Nancy A. Day, Jeffrey R. Lewis, and Byron Cook. Symbolic simulation of micro-
processor models using type classes in Haskell. In CHARME’99 Poster Session,
1999.

6. Tom Melham and John O’Leary. A functional HDL for ReFLect. In Designing
Correct Circuits, 2006.

7. John O’Donnell. Generating netlists from executable circuit specifications in a
pure functional language. In Functional Programming Glasgow, pages 178–194.
Springer Verlag Workshops in Computing, 1993.

8. John O’Donnell. From transistors to computer architecture: Teaching functional
circuit specification in Hydra. In Functional Programming Languagues in Educa-
tion, volume 1125 of Lecture Notes In Computer Science, pages 221–234. Springer
Verlag, 1996.

9. John T. O’Donnell. Interconnect and geometric layout in Hydra. In Designing
Correct Circuits, 2006.

10. Simon Peyton Jones, John Hughes, (editors), Lennart Augustsson, Dave Barton,
Brian Boutel, Warren Burton, Joseph Fasel, Kevin Hammond, Ralf Hinze, Paul Hu-
dak, Thomas Johnsson, Mark Jones, John Launchbury, Erik Meijer, John Peterson,
Alastair Reid, Colin Runciman, and Philip Wadler. Report on the Programming
Language Haskell 98, a Non-strict, Purely Functional Language. Available from
http://haskell.org, February 1999.

11. Walid Taha. Two-level languages and circuit design and synthesis. In Designing
Correct Circuits, 2006.

12. Jr. Warren A. Hunt and Erik Reeber. A hierarchical modeling system. In Designing
Correct Circuits, 2004.

94 Hardware Design and Functional Languages

