
The Design of a Pretty-printing LibraryJohn HughesChalmers Tekniska H�ogskola, G�oteborg, Sweden.1 IntroductionOn what does the power of functional programming depend? Why are functionalprograms so often a fraction of the size of equivalent programs in other languages?Why are they so easy to write? I claim: because functional languages support soft-ware reuse extremely well.Programs are constructed by putting program components together. When wediscuss reuse, we should ask{ What kind of components can be given a name and reused, rather than recon-structed at each use?{ How
exibly can each component be used?Every programming language worthy of the name allows sections of a program withidentical control
ow to be shared, by de�ning and reusing a procedure. But `pro-gramming idioms' | for example looping over an array | often cannot be de�nedas procedures because the repeated part (the loop construct) contains a varying part(the loop body) which is di�erent at every instance. In a functional language thereis no problem: we can de�ne a higher-order function, in which the varying part ispassed as a function-valued parameter. This ability to name and reuse programmingidioms is at the heart of functional languages' power.Other features contribute to making reused components more
exible. Polymor-phic typing enables us to use the same programming idiom to manipulate data ofdi�erent types. Lazy evaluation abstracts away from execution time, and enables usto reuse the same function with many di�erent behaviours. For example, a lazy listcan behave like an array (a sequence of elements stored at the same time), or like animperative variable (a sequence of values stored at di�erent times), or like somethingin between (say a bu�er in which a bounded number of elements are stored at anyone time). Regardless of behaviour the same functions can be used to manipulatethe list.Software reuse is plainly visible in functional programs: for example, the Haskellstandard prelude contains many higher-order functions such asmap, foldr etc., whichare used intensively in many programs. These standard functions capture very gen-eral programming idioms that are useful in almost any context. But it is just asimportant to de�ne and use application speci�c idioms.The functional programmer, then, should approach a new application by seek-ing to identify the programming idioms common in that application area, and tode�ne them as (probably higher order) functions. Each particular application pro-gram should then be built by so far as possible combining these functions, ratherthan writing `new code'. (Perhaps for this reason, such functions are often called

combinators). The bene�ts of such an approach are very rapid programming, oncethe library of idioms is de�ned, and very often that application programs are correct�rst time, since they are built by assembling correct components.One example of an application area whose idioms have been thoroughly studiedis parsing: libraries of parsing combinators are described in this volume. Anothergood example on a much larger scale is Carlsson and Hallgren's fudget library, alsodescribed here, which enables graphical user interfaces to be constructed very easily.The question we address in this chapter is: how should libraries of combinatorsbe designed? How do we know which operations to provide? Monads, also explainedin this volume, are certainly helpful | but how do we know which monad to use?Must we rely completely on intuition?Our goal is to show how we can use formal speci�cation of the combinators, and astudy of their algebraic properties, to guide both the design and the implementationof a combinator library. Our case study is a library for pretty-printing, which hasgone through many iterations and been much improved by a more formal approach.But we hope the methods we present are of wider applicability, and we will alsopresent some smaller examples to justify this claim.2 A Preview of the Pretty-printing Library2.1 Why Pretty-printing?Almost every program which manipulates symbolic data needs to display this datato the user at some point | whether it is a compiler displaying internal structuresfor debugging, a proof-editor displaying proofs, or a program transformer writing itsoutput. The problem of displaying symbolic, and especially tree structured data, isthus a recurring one.At the same time, structured data is hard to read unless layout is used to makethe structure visible. Take a simple example: a binary tree of type1.data Tree = Node String Tree Tree j LeafThe tree Node \foo" (Node \baz" Leaf Leaf) (Node \foobaz" Leaf Leaf) is much easierto read if it is presented asNode \foo" (Node \baz" Leaf Leaf)(Node \foobaz" Leaf Leaf)A pretty-printer's job is to lay out structured data appropriately.Pretty-printing is complicated because the layout of a node cannot just be in-ferred from its form. In the example above, Nodes are laid out in two di�erent ways:some horizontally and some vertically. Moreover the correct indentation of the �nalNode depends on the length of the string in the parent node. A pretty-printer mustkeep track of much contextual information.Because of this pretty-printers are hard to write, and there is plenty of scopefor mistakes. Many programmers simply do not bother | they put up with badlyformatted output instead. There is much to be gained by capturing the hard part ofpretty-printing in a library.1 All examples in this chapter use Haskell syntax

Remark Note that we are considering the problem of displaying internal data-structures in a readable form, not the harder problem of improving the layout ofan existing text, such as a program. In the latter case we would have to considerquestions such as: should we try to preserve anything of the original layout? Howshould we handle comments? Such problems are outside the scope of this chapter.2.2 A Sketch of the DesignWhat kind of objects should pretty-printing combinators manipulate? I chose towork with `pretty documents', of type Doc, which we can think of as documentswhich `know how to' lay themselves out prettily. A pretty-printer for a particulardatatype is a function mapping any value to a suitable Doc. The library providesoperations for constructing Docs in various ways, and for converting a Doc to textat the top level.We will need to convert literal strings to Docs, and it seems reasonable to provideoperations that combine Docs horizontally and vertically. That suggests we provideoperations text :: String! Doc(<>) :: Doc! Doc! Doc [horizontal composition]($$) :: Doc! Doc! Doc [vertical composition]The composition operators (<>) and ($$) relieve the user of the need to think aboutthe correct indentation: for example, the pretty tree layout above can be constructedas text \Node \foo" " <> (text \Node \baz" Leaf Leaf " $$text \Node \foobaz" Leaf Leaf ")and the last Node is automatically indented the right amount.However, these operations only enable us to construct Docs with a �xed layout.We also need to construct Docs that choose between alternative layouts dependingon the context. We will therefore de�nesep :: [Doc]! Docwhich combines a list of Docs horizontally or vertically, depending on the context.With these operations we can write a pretty-printer for the tree type above:pp :: Tree! Docpp Leaf = text \Leaf"pp (Node s l r) = text (\Node "++s) <> sep [pp' l; pp' r]pp' Leaf = pp Leafpp' t = text \(" <> pp t <> \)"The context-dependent choice of layout is entirely hidden in the implementation ofthe Doc type | the only complication is deciding when to insert brackets.The library provides one further operation,nest :: Int! Doc! Doc

which indents a document a given number of spaces. For example,text \while x>0 do" $$ nest 2 (text \x := x-2")produces the layout while x>0 dox := x-2The di�erence between using nest and inserting spaces is that nest indents onlywhere it is appropriate | so for example,sep [text \while x>0 do"; nest 2 (text \x := x-2")]will appear as above laid out vertically, but without indentation aswhile x>0 do x := x-2if laid out horizontally.This choice of combinators was made quite early on in the development of thelibrary, and the �rst implementation was written from a description more or less likethe one just given. But the description is far from satisfactory: although the intentionof the design is fairly clear, the precise behaviour of the combinators is certainly not.Not surprisingly, this led to a number of di�culties and strange behaviours.Later on we will give a precise speci�cation of the combinators' behaviour, anduse this to derive several alternative implementations. But before we continue withthis larger case study, we'll present some simpler examples to illustrate the methodswe will be using.3 Deriving Functional Programs from Speci�cationsHow can we conveniently use a speci�cation to help develop a functional program?Let us suppose that the speci�cation consists of a signature, containing possibly newtypes such as Doc and the names and types of the functions being speci�ed, andproperties that the new functions must satisfy. Our task is to invent representationsof the new types and de�nitions of the functions so that the properties are satis�ed.We will call functions from the new types to old types observations. Observations areimportant: if there are none then we cannot distinguish between values of the newtypes, and so we can represent them all by (). We will assume that the speci�cationdetermines the value of every possible observation | if not, we must strengthen thespeci�cation until it does.The implementations which we are trying to derive consist of equations of a re-stricted form.We will derive implementations by proving their constituent equationsfrom the speci�cation. By itself this is no guarantee that the implemented functionssatisfy the speci�cation (because we might not have proved enough equations). Butif we also check that the derived de�nitions are terminating and exhaustive, thenthis property is guaranteed.To see why, consider the case of a single function f . We start from a speci�cationP (f) and derive implementation equations Q(f), both considered as predicates on f .

By construction P (f)) Q(f). But in general, the implementation equations Q(f)might be satis�ed by many di�erent functions, of which the least is the one thatthe equations de�ne. Call this least function fimp. Now, if the derived de�nitionsare exhaustive and terminating, then for any argument x, fimp=x is a de�ned valuey and Q(f)) f x = y. In other words Q(f)) f = fimp | the implementationequations have a unique solution. Now if the speci�cation is satis�ed by any f atall, we know that P (f)) Q(f)) f = fimpand therefore P (fimp) holds | the implementation satis�es the speci�cation.Since we will use the speci�cation to derive equations, it will be most convenientif the speci�cation also consists of equations | or laws | that the new functionsare to satisfy.But before we can start deriving implementations of functions we must choose arepresentation for each new type. We will present two di�erent ways of choosing sucha representation. The �rst is based on representing values by terms in the algebra weare working with. The second is based on representing values by functions from thecontext in which the value is placed to the value of the corresponding observation.4 Designing a Sequence TypeWe begin by considering a very simple and familiar example: the design of a repre-sentation for sequences. Of course we know how to represent sequences | as lists.The point here is not to discover a new representation, but to see how we couldhave arrived at the well-known representation of lists starting from an algebraicspeci�cation.We take the following signature as our starting point,nil :: Seq aunit :: a! Seq acat :: Seq a! Seq a! Seq alist :: Seq a! [a]where nil, unit, and cat give us ways to build sequences, and list is an observation.The correspondence with the usual list operations isnil = []unit x = [x]cat = (++)These operations are to satisfy the following laws2:xs `cat` (ys `cat` zs) = (xs `cat` ys) `cat` zsnil `cat` xs = xsxs `cat` nil = xslist nil = []list (unit x `cat` xs) = x : list xs2 Haskell allows a binary function to be used as an in�x operator if the name is enclosedin backquotes. Thus a `op` b is the same as op a b

4.1 Term RepresentationThe most direct way to represent values of sequence type is just as terms of thealbegra, for example usingdata Seq a = Nil jUnit a j Seq a `Cat` Seq aBut this trivial representation does not exploit the algebraic laws that we know tohold, and moreover the list observation will be a little tricky to de�ne (ideally wewould like to implement observations by very simple, non-recursive functions: thereal work should be done in the implementations of the Seq operators themselves).Instead, we may choose a restricted subset of terms | call them simpli�ed forms3| into which every term can be put using the algebraic laws. Then we can representsequences using a datatype that represents the syntax of simpli�ed forms.In this case, there is an obvious candidate for simpli�ed forms: terms of the formnil and unit x `cat` xs, where xs is also in simpli�ed form. Simpli�ed forms can berepresented using the typedata Seq a = Nil j a `UnitCat` Seq awith the interpretation4 Nil = nilx `UnitCat` xs = unit x `cat` xsWe choose this representation because a de�nition of list is now very simple to derive:list Nil = list nil= []list (x `UnitCat` xs) = list (unit x `cat` xs)= x : list xsWe can also derive implementations of the three operators of the algebra by simplyapplying the algebraic laws: nil = Nil [defn. Nil]unit x = unit x `cat` nil= x `UnitCat` Nil [defn. UnitCat]Nil `cat` ys = nil `cat` ys= ys(x `UnitCat` xs) `cat` ys = (unit x `cat` xs) `cat` ys= unit x `cat` (xs `cat` ys) [associativity]= x `UnitCat` (xs `cat` ys) [defn. UnitCat]

data Seq a = Nil j a `UnitCat` Seq anil = NilNil `cat` ys = ys(x `UnitCat` xs) `cat` ys = x `UnitCat` (xs `cat` ys)list Nil = []list (x `UnitCat` xs) = x : list xsFig. 1. Term representation of sequences.Collecting the results we obtain the de�nitions in �gure 1. Termination of eachfunction is obvious.How do we know that every Seq term can be expressed as a simpli�ed form? Thede�nitions we have derived are a proof! Since each function maps simpli�ed argu-ments to simpli�ed results (and always terminates), we can construct a simpli�edform equal to any term just by evaluating it with these de�nitions. In more compli-cated algebras this observation is valuable: when we're choosing a simpli�ed formwe need not worry whether all terms can be put into it | we simply try to deriveterminating de�nitions for the operations, and if we succeed, the result follows.So far we've just derived the usual implementation of lists | Nil and UnitCatcorrespond to [] and (:). But notice that it isn't without its problems: the implemen-tation of cat is linear in its �rst argument, and we run into the well known problemthat an expression such as(: : : (unit x1 `cat` unit x2) : : : `cat` unit xn�1) `cat` unit xntakes quadratic time to evaluate. Using the associative law n times we can obtainthe equivalent expressionunit x1 `cat` (unit x2 `cat` : : : (unit xn�1 `cat` unit xn))which runs in linear time. We might hope to exploit the associative law in an im-proved implementation that achieves the better complexity in the �rst case also.We could try to derive an implementation of cat that recognises cat in its left ar-gument, and applies the associative law before continuing. But alas, if we are torecognise applications of cat then they must be simpli�ed forms, which means thatthe cat operation can do nothing; we are forced back to the trivial representation westarted with. In the next section we look at a di�erent approach which can exploitassociativity in this case.3 We avoid the term `canonical form' because in general there's no reason why a term needhave a unique simpli�ed form.4 Here we really mean the semantics of Nil and UnitCat, and by equality we mean equalityin the algebra we are implementing | not necessarily Haskell's equality. Perhaps it wouldbe more conventional to write [[Nil]] and [[UnitCat]] here, but we prefer to identify syntaxand semantics in the interests of lightening the notation.

4.2 Context Passing RepresentationIf we can't apply the associative law by making the outer cat recognise that its leftargument is a cat, perhaps we can make the inner cat recognise that it is called ina cat context. This idea motivates a representation of sequences as functions fromtheir context to the observation being made.A context is just an expression with a hole, written [�]. For example, [�] `cat` ysis a context. If C[�] is a context and e is an expression, we write C[e] for the resultof replacing the hole with e. In this case ([�] `cat` ys)[xs] is xs `cat` ys.We can describe the contexts we are interested in by a grammar. For example,the following grammar describes all possible contexts of type list for expressions oftype Seq . C[�] ::= list [�]j C[[�] `cat`E]j C[E `cat` [�]]where E is an expression of Seq type. And just as with terms, we can representcontexts by a corresponding Haskell datatype:data Cxt a = List jCatLeft (Seq a) (Cxt a) jCatRight (Seq a) (Cxt a)where List = list [�]CatLeft E C = C[[�] `cat`E]CatRight E C = C[E `cat` [�]]Notice that the representation of, say, a CatLeft context contains the representationof the enclosing context; contexts resemble therefore a stack. Notice also that thecontext type must be parameterised on a because it refers to Seq a.In fact, just as we used the laws to work with a restricted set of terms, we shall usethe laws to work with a restricted set of contexts. For our purposes in this example,we will only need to consider contexts of the formC[�] ::= list [�] j list ([�] `cat`E)represented by the following datatype:data Cxt a = List j ListCat (Seq a)Now we can represent sequence values by functions from contexts to lists: thevalue e is represented by the function �C[�]:C[e]. (So contexts are like continuationswhose internal structure can be inspected). For example,nil = �C[�]:C[nil]where again we make no notational distinction between the nil on the left, whichis a representation, and the nil on the right, which is a semantic object. When weapply this representation to a context, we derive for example

nil (ListCat zs) = nil (list ([�] `cat` zs)) [defn. ListCat]= list (nil `cat` zs) [defn. nil]In future we will switch backwards and forwards between the �rst and last form inone step, and without comment. We can derive de�nitions of the operators using thelaws of the algebra as before: nil List = list nil= []nil (ListCat zs) = list (nil `cat` zs)= list zs= zs Listunit x List = list (unit x)= list (unit x `cat` nil)= x : list nil= [x]unit x (ListCat zs) = list (unit x `cat` zs)= x : list zs= x : zs List(xs `cat` ys) List = list (xs `cat` ys)= xs (ListCat ys)(xs `cat` ys) (ListCat zs) = list ((xs `cat` ys) `cat` zs)= list (xs `cat` (ys `cat` zs)) [assoc!]= xs (ListCat (ys `cat` zs))Notice that the derived de�nition of cat recognises an enclosing cat and applies theassociative law | just the optimisation we wanted to capture. Gathering the resultstogether, we obtain the implementation shown in �gure 2.We can show that these de�nitions terminate, and moreover derive their complex-ity, by considering a suitable cost measure on terms. We construct the cost measureso that every reduction strictly reduces cost.Start by observing that terms not containing cat or ListCat are reduced to anormal form in one step. We'll give such terms a cost of zero. Now notice that thesecond equations de�ning nil and unit eliminate a ListCat. If ListCat is assigned acost of one, then these reductions reduce cost. Looking at the de�nition of cat, wesee that the �rst equation converts a cat to a ListCat. If we assign cat a cost of two,then this reduction also reduces cost. The tricky case is the second equation for cat,since it neither reduces the number of occurrences of cat nor of ListCat.We can obtain a cost reduction in this case also by assigning di�erent costs tothe occurrences of cat on the left and right hand side. We assign cat a cost of two ina `cheap' context, and a cost of three in other contexts. Cheap contexts are de�nedby the following grammar:Cheap[�] ::= [�] Listj ListCat [�]j Cheap[E `cat` [�]]

data Cxt a = List j ListCat (Seq a)type Seq a = Cxt a! [a]nil List = []nil (ListCat zs) = zs Listunit x List = [x]unit x (ListCat zs) = x : zs List(xs`cat`ys) List = xs (ListCat ys)(xs`cat`ys) (ListCat zs) = xs (ListCat (ys`cat`zs))list xs = xs ListFig. 2. The context passing implementation of sequences.Now it is easy to verify that the cat on the right in the last equation is in a cheapcontext, while that on the left is not. We also have to check that in every equation,bound variables appear in a cheap context on the left hand side i� they appearin a cheap context on the right hand side | otherwise our implicit assumptionthat a bound variable contributes the same cost at each occurrence would be false.Having done so, we know that the number of reductions needed to evaluate a termis bounded by its cost. And this is linear in the size of the term.We have therefore cured the quadratic behaviour that motivated us to considera context-passing implementation.4.3 Changing the Representation of ContextsIf we examine the de�nitions in �gure 2, we can see that the zs component ofListCat zs is only used by applying it to List. That is, we are not interested inthe value of zs itself, only in the value of list zs. This suggests that we try changingthe representation of contexts to store the latter rather than the former.The new context datatype will therefore bedata Cxt a = List j ListCat [a]with the interpretation List = list [�]ListCat (list zs) = list ([�] `cat` zs)Now if we let ẑs = list zs, we can derivenil (ListCat ẑs) = list (nil `cat` zs)= list zs= ẑs

unit x (ListCat ẑs) = list (unit x `cat` zs)= x : list zs= x : ẑs(xs `cat` ys) (ListCat ẑs) = list ((xs `cat` ys) `cat` zs)= list (xs `cat` (ys `cat` zs))= xs(ListCat (list (ys `cat` zs))= xs(ListCat (ys(ListCat (list zs))))= xs(ListCat (ys(ListCat ẑs)))Notice how each time we introduce a ListCat, the accompanying application of listenables a further simpli�cation.In each case we have succeeded in maneouvering the right hand side into a formin which zs does not appear | only ẑs. We can therefore take the derived equationsas de�nitions, with a formal parameter ẑs. Provided, of course, that contexts of theform ListCat ẑs always satisfy the invariant 9zs:ẑs = list zs, which is easily veri�ed.In this case we can go a little further still. Noting thatlist xs = list (xs `cat` nil)= xs(ListCat (list nil))= xs(ListCat [])we can rede�ne list and do without List contexts altogether. Now since only one formof context remains we can drop the ListCat constructor also, and represent contextsjust by lists. The resulting de�nitions appear in �gure 3.type Cxt a = [a]type Seq a = Cxt a! [a]nil ẑs = ẑsunit x ẑs = x : ẑs(xs `cat` ys) ẑs = xs (ys ẑs)list xs = xs []Fig. 3. Optimised context passing representation of sequencesExercise 1. Could we have used a similar trick to eliminate List contexts and theListCat constructor in the previous section?5 Implementing MonadsThe ideas in the previous section are applicable when we want to implement adatatype speci�ed by a signature and some equations that the operations in thesignature should satisfy. One very interesting class of datatypes speci�ed in this

way are monads. At its simplest, a monad is a parameterised type M and a pair ofoperations unit :: a!M abind ::M a! (a!M b)!M bsatisfying the laws unit x `bind` f = f xm `bind` unit = mm `bind` �x! (f x `bind` g) = (m `bind` �x! fx) `bind` gSee the chapter by Wadler in this volume for an exposition of the uses of monads infunctional programming.With no further operations a monad is rather uninteresting. In reality, we alwaysextend the signature with some additional operations. In particular, there must besome way to observe a monad value | otherwise we could implement the monad bytype M a = ()unit x = ()m `bind` f = ()which satis�es the monad laws.We will consider the simplest interesting monad: that with one additional oper-ation value ::M a! asatisfying the law value (unit x) = xWe'll look at implementations based on simpli�ed terms and on context passing.5.1 The Term Representation of a Simple MonadSuppose we try to represent monad values directly by terms:data M a = Unit a jM b `Bind` (b!M a)Notice that the type variable b does not occur on the left hand side of this de�nition!It is an existentially quanti�ed type variable: one may construct an M a by applyingBind at any type b5. With this representation value can be de�ned byvalue ::M a! avalue (Unit x) = xvalue (m `Bind` f) = value (f (value m))5 Such existential type de�nitions were proposed by L�aufer[2] and are not part of standardHaskell, but are accepted by hbc.

which uses polymorphic recursion: the inner recursive call of value is at a di�erenttype from the enclosing one6.However, we can avoid these complications by using a representation based onsimpli�ed terms instead. In fact, we can simplify every term to the form unit x.Dropping the Bind constructor from the monad type, we obtainunit x = Unit x(Unit x) `bind` f = f xvalue (Unit x) = xwhere the only property of unit and bind we need to derive these de�nitions is the�rst monad law. And now, since Unit is the only constructor in the monad type wecan drop it too, represent M a just by a, and obtain the standard identity monad.5.2 The Context-passing Representation of a Simple MonadSuppose we instead derive a context-passing implementation. We are interested incontexts which make an observation by applying value, and using the monad lawswe will be able to put every such context into the form value ([�] `bind` k), becausevalue [�] = value ([�] `bind` unit)value (([�] `bind` f) `bind` k) = value ([�] `bind` �x! (f x `bind` k))Notice here that if the hole is of type M a, the �nal value computed may be ofsome other type | call it ans. We must therefore represent contexts by a typeparameterised on both a and ans. Consequently we are also obliged to representmonad values by a type parameterised on both a and ans. For example, we cande�ne data Cxt a ans = ValueBind (a!M ans ans)type M a ans = Cxt a ans! answhere ValueBind k = value ([�] `bind` k)However, it isn't hard to guess that uses of k will all take the form value (k x)for some x. We therefore optimise the representation of contexts todata Cxt a ans = ValueBind (a! ans)where ValueBind (�x:value (k x)) = value ([�] `bind` k)(If our guess proves to be wrong no harm will be done, we will simply be unable toderive de�nitions for the monad operations).Now letting k̂ = �x:value (k x), we can derive6 Again this is not standard Haskell, but is accepted by hbc provided the type of value isexplicitly given.

unit x (ValueBind k̂) = value (unit x `bind` k)= value (k x) [1st monad law]= k̂ x(m `bind` f) (ValueBind k̂)= value ((m `bind` f) `bind` k)= value (m `bind` �x! (f x `bind` k)) [3rd monad law]= m (ValueBind (�x! value (f x `bind` k))) [prop. ValueBind]= m (ValueBind (�x! f x (ValueBind k̂))) [again]value m = value (m `bind` unit) [2nd monad law]= m (ValueBind (�x! value (unit x))) [prop. ValueBind]= m (ValueBind (�x! x)) [prop. value]And now dropping the super
uous constructor ValueBind, we obtain the de�nitionsin �gure 4 | the standard monad of continuations!type M a ans= (Cxt a ans)! anstype Cxt a ans = a! ansunit x k̂ = k̂ x(m `bind` f) k̂ =m (�x! f x k̂)value m = m (�x! x)Fig. 4. The Optimised Context-passing Monad.6 Monads for BacktrackingWe've seen how we can derive both the identity monad and the monad of continu-ations from the `vanilla' monad speci�cation. But in reality we wish to add furtheroperations to the signature | that is the raison d'être of monads. As an example,we'll consider operations for backtracking:fail ::M aorelse ::M a!M a!M aThe new operations form a monoid,fail `orelse` x = xx `orelse` fail = x(x `orelse` y) `orelse` z = x `orelse` (y `orelse` z)

and we must also specify their interaction with the monad operations7:fail `bind` f = fail(x `orelse` y) `bind` f = (x `bind` f) `orelse` (y `bind` f)Finally, it is no longer appropriate to give value the typevalue ::M a! abecause there is no sensible behaviour for value fail. Instead, we give it the typevalue ::M a!Maybe awhere data Maybe a = Yes a jNosatisfying the laws value fail = Novalue (unit x `orelse`m) = Yes xSo we can observe whether a backtracking computation succeeds or fails, and ifit succeeds we observe the �rst answer. Let us apply the same methods to deriveimplementations of this monad.6.1 The Term Representation of the Backtracking MonadRather than start from scratch to develop a term representation for backtracking,observe that if we replace M by Seq, fail by nil, and orelse by cat, then these op-erations together with unit satisfy exactly the same axioms as in section 4. Thatsuggests that we try to use the same kind of simpli�ed terms as in section 4.1,namely fail and unit x `orelse`m. So let us de�nedata M a = Fail j a `UnitOrElse` M areuse the previously derived de�nitions for unit, fail and orelse, and see if we canderive implementations of the remaining operators.In the case of bind, we deriveFail `bind` f = fail `bind` f= fail= Fail(x `UnitOrElse`m) `bind` f = (unit x `orelse`m) `bind` f= (unit x `bind` f) `orelse` (m `bind` f)= f x `orelse` (m `bind` f)(which is a terminating de�nition because the recursive call of bind has a smaller�rst argument), and in the case of value, we �nd directly thatvalue Fail = Novalue (x `UnitOrElse`m) = Yes xSo as we expected, we can implement the backtracking monad using lists.7 It is the second equation here which distinguishes backtracking from exception handling.

6.2 Context-passing Implementation of BacktrackingWhen we develop a context-passing implementation of backtracking we have to con-sider more complex forms of context than in section 5.2, since of course the newoperations fail and orelse may occur in the context too. But just as we used themonad laws then to express all contexts with a single bind, so here we can use themonoidal properties of fail and orelse to express all contexts with a single orelse.Furthermore, we need not consider contexts with orelse nested inside bind, because([�] `orelse` b) `bind` k = ([�] `bind` k) `orelse` (b `bind` k)It is therefore su�cient to consider contexts of the formvalue (([�] `bind` k) `orelse` b)(Remember that this choice isn't critical. If we make a mistake at this point, we willdiscover it when we are unable to complete the derivations of the operators.)Moreover, we may reasonably guess (or discover by doing the derivations) thatuses of k will be in the context value (k x `orelse` b) for some x and b, and uses of bwill be in the context value b. We will therefore represent contexts by the typedata Cxt a ans = VBO (a!Maybe ans!Maybe ans) (Maybe ans)where (8x; b0:k̂ x (value b0) = value (k x `orelse` b0))) VBO k̂ (value b) = value (([�] `bind` k) `orelse` b)The antecedent says that uses of k of the form we expect can be represented byapplying k̂. Since we plan to store only the value of b and b0 it is natural to requirethat k̂ need only the value. The conclusion says that in that case, the contexts weare interested in can be represented using VBO.Now assuming that k̂ has the property in the antecedent and that b̂ = value b,we can deriveunit x (VBO k̂ b̂) = value ((unit x `bind` k) `orelse` b)= value (k x `orelse` b) [1st monad law]= k̂ x (value b) [prop. k̂]= k̂ x b̂ [prop. b̂]fail (VBO k̂ b̂) = value ((fail `bind` k) `orelse` b)= value (fail `orelse` b)= value b= b̂The derivation of bind is a little more complicated because of the more complexproperty that k̂ satis�es. We begin in the usual way,(m `bind` f) (VBO k̂ b̂)= value (((m `bind` f) `bind` k) `orelse` b)= value ((m `bind` (�x! f x `bind` k)) `orelse` b) [3rd monad law]= m (VBO k̂0 b̂)

provided k̂0 satis�eŝk0 x (value b0) = value ((f x `bind` k) `orelse` b0)But the right hand side of this equation is equal tof x (VBO k̂ (value b0))and so we can satisfy the condition by takingk̂0 x b̂0 = f x (VBO k̂ b̂0)So completing the derivation,(m `bind` f) (VBO k̂ b̂) = m (VBO (�x b̂0 ! f x (VBO k̂ b̂0)) b̂)The derivation of orelse is straightforward:(m `orelse` n) (VBO k̂ b̂)= value (((m `orelse` n) `bind` k) `orelse` b)= value (((m `bind` k) `orelse` (n `bind` k)) `orelse` b)= value ((m `bind` k) `orelse` ((n `bind` k) `orelse` b)) [associativity]= m (VBO k̂ (value ((n `bind` k) `orelse` b))) [prop. VBO]= m (VBO k̂ (n (VBO k̂ (value b)))) [prop. VBO]= m (VBO k̂ (n (VBO k̂ b̂)))Finally, we derive value:value m = value (m `orelse` fail)= value ((m `bind` unit) `orelse` fail)= m (VBO k̂0 (value fail))= m (VBO k̂0 No)provided k̂0 x (value b0) = value (unit x `orelse` b0)But the right hand side here is equal to Yes x, so we take k0 = �x b̂0 ! Yes x tocomplete the derivation.We can simplify the de�nitions slightly further by dropping the VBO constructorand replacing every context argument by two arguments, k̂ and b̂. Putting the resultstogether, we obtain the de�nitions in �gure 5, a continuation passing implementationof backtracking.Exercise 2. Consider the state monad, with additional operationsfetch ::M Ststore :: St!M ()run ::M a! St! a

type M a ans = (a! Maybe ans! Maybe ans)! Maybe ans! Maybe ansunit x k̂ b̂ = k̂ x b̂(m `bind` f) k̂ b̂ = m (�x b̂0 ! f x k̂ b̂0) b̂fail k̂ b̂ = b̂(m `orelse` n) k̂ b̂ =m k̂ (n k̂ b̂)value m =m (�x b̂0 ! Yes x) NoFig. 5. A Context-passing Implementation of Backtracking.satisfying fetch `bind` �s! store s = unit ()store s `bind` �()! fetch = store s `bind` �()! unit sstore s `bind` �()! store s0 = store s0run (unit x) s = xrun (fetch `bind` f) s = run (f s) srun (store s `bind` f) s0 = run (f ()) sDerive term and context passing implementations of these operations.7 Specifying Pretty-printingNow we shall return to our case study: pretty-printing. Before we can start to deriveimplementations of the pretty-printing combinators we must develop a speci�cation.But in this case, it isn't intuitively obvious what laws the pretty-printing combinatorsshould satisfy! We need some way to guide our intuition, to lead us to write downthe right laws for the combinators.In mathematics, we often guide our intuition with the help of an example. If weare formulating hypothesis about certain topological spaces, we might think aboutthe reals. It is even more important when formulating a new concept, such as a group,to have a concrete model in mind. We are trying to formulate a theory of pretty-printing, but as yet we have no model to guide us. So we shall start o� by lookingfor an abstract model of documents, on which we can agree what the behaviourof the combinators should be. Our model will not be | and is not intended to be| a reasonable implementation, but it can be thought of as a kind of `denotationalsemantics' for the combinators. Using the model we can establish algebraic propertieswhich the combinators should satisfy | in any implementation. And then once theseproperties are established, we can use them as in the previous sections to deriveimplementations.7.1 Abstract LayoutsWe'll begin by looking for an abstract model of a pretty-printer's output | that is,prettily indented text. We could say that the output is just a string, but a string has

so little structure that we can derive no intuition from it. Let us say instead, that alayout is a sequence of indented lines, which we can model astype Layout = [(Int; String)]+Notice that we shall allow indentations to be negative: later on this will contributeto a nicer algebra, just as integers have a nicer algebra than natural numbers. Butnotice also that we restrict layouts to be non-empty (we use [�]+ for the type ofnon-empty lists). We'll return to this point below.We can now specify text, nest and ($$) very easily:text s = [(0; s)]nest k l = [(i+ k; s)j(i; s) l]l1 $$ l2 = l1 ++l2The right de�nition of horizontal composition (<>) is not so obvious. The desiredbehaviour is clear enough when text s is placed beside text t, but what if both layoutsare indented? What if the arguments occupy more than one line each?Our choice is guided by the following principles:{ The two dimensional structure of each argument should be preserved; that is,the appearance of x <> y on the page should consist of some combination of atranslation of x and a translation of y.{ Our intention is that a layout is just a pretty way of displaying a string. Whatstring? We de�ne string :: Layout! Stringstring l = foldr1 (�) (map snd l)where s � t = s++\ "++t(We interpret a line break as white space | equivalent to a single space). Thenwe expect that string (x <> y) = string x ++string y. This property enablesthe programmer to predict the string that x <> y represents, without thinkingabout how x and y are laid out.{ Indentation cannot appear in the middle of a line | since our abstract model(fortunately) cannot represent this.There is really only one choice for (<>) that meets these three criteria: to translatethe second operand so that its �rst character abuts against the last character of the�rst operand. Formally,(x++[(i; s)]) <> ([(j; t)] ++y) = x++[(i; s ++t)] ++nest (i + length s � j) yTo see that the de�nition is reasonable, consider the following two examples:one: <> twothree = one: twothreewhile x>0 dox := x-2 <> ; = while x>0 dox := x-2;So at least in cases where one of the operands is a single line, the result is reasonableand useful.

Now look again at the formal de�nition of (<>). It is only de�ned for non-emptyarguments! This is the reason for the restriction to non-empty layouts that we madeabove: there is simply no sensible de�nition of (<>) for empty arguments. The re-striction is unfortunate: the empty layout would be a unit for $$, so improvingthe combinator algebra, and moreover would be useful in practice. But if we allowempty layouts and simply make some arbitrary choice for the value of <> in thesecases, many algebraic laws involving <> cease to hold. A way out of the dilemmawould be to allow empty layouts, and de�ne <> to be a partial operator. But sincethis would complicate the development we have not done so.7.2 The Algebra of LayoutsNow that we have formal de�nitions of the layout operators we can study theiralgebra. The laws in �gure 6 are easily proved, although the proofs are not includedhere. (x <> y) <> z = x <> (y <> z)(x $$ y) $$ z = x $$ (y $$ z)x <> text \" = xnest k (x $$ y) = nest k x $$ nest k ynest k (x <> y) = nest k x <> yx <> nest k y = x <> ynest k (nest k0 x) = nest (k+ k0) xnest 0 x = x(x $$ y) <> z = x $$ (y <> z)text s <> ((text \" <> y) $$ z) = (text s <> y) $$ nest (length s) ztext s <> text t = text (s++t)Fig. 6. Algebraic laws for layout operations.First, both<> and $$ are associative, and <> has text \" as a right unit. However,<> has no left unit because the indentation of the second operand is always lost.For example, text \" <> foo = fooSince we excluded empty layouts, $$ has no units at all.The indentation combinator nest distributes over $$, and distributes over <>on the left. We do not need to indent the right operand of <> here, because it istranslated to abut against the left operand and so its indentation is lost. For thesame reason nest can be cancelled to the right of <>. Of course consecutive nestscan be combined, and nesting by zero is the identity operation.

Moreover $$ and <> are related to one another by a kind of associative law: wemay say they `associate with' one another. For example,(a $$ b) <> cd = abcd = a $$ (b <> cd)On the other hand, (x <> y) $$ z 6= x <> (y $$ z)Here the indentation of z is di�erent in the two cases: for example,(a <> b) $$ c = abc 6= abc = a <> (b $$ c)It is the failure of this law to hold that makes the pretty-printing algebra interesting!We have to have some way to transform expressions of the form x <> (y $$ z),and we can in the special case when we know the position where x ends, and theindentation of the �rst line of y. For example, when x is just a text, and y is of theform text \" <> y0. The following law is su�cient:text s <> ((text \" <> y) $$ z) = (text s <> y) $$ nest (length s) zOne might say that the di�cult part of pretty-printing is transforming expressionsso that this law is applicable.Finally there is a simple law relating <> and text.In a sense these laws completely specify the bahaviour of the layout operators:any two closed terms which denote the same layout can be proved equal using theselaws.Exercise 3. Prove this remark, by choosing a canonical form for layout expressionssuch that every layout is denoted by a unique canonical form, and by deriving im-plementations of the operators that map canonical forms to canonical forms.Remark on the bene�ts of a formal approach: This formal speci�cation of the lay-out operators is an after-the-fact reconstruction. The �rst implementation was con-structed using seat-of-the-pants intuition, and the combinators' behaviour was verysubtly di�erent. The nest combinator inserted spaces `in a vertical context': that is,when used as an operand of $$ or at the top level.As a consequence the law nest k x <> y = x <> yheld in the implementation | the context here is `horizontal'. But since the be-haviour of a layout depended on its context, we could not give a simple abstractmodel such as that in the previous section. Moreover, of the eleven laws in �gure 6,four did not hold (which four?) Both the user and the developer of the library weredeprived of a useful algebra.For the user (that is the author of a pretty-printer) each law means one lessworry: there is no need to think about whether to write the left or the right hand

side. For the developer, each law simpli�es optimisation: the original library was veryhard to optimise without changing its behaviour. The program we are following now,of deriving implementations from the algebra, would have been extremely di�cultto follow.And all these problems stemmed from a very subtle error that was only revealedby writing a formal speci�cation. . .7.3 Abstract DocumentsThe layout operations enable us to construct individual layouts, but a pretty-printermust of course choose between many alternative layouts. We make a design decision:to separate the construction of alternatives from the choice of the prettiest layout.We represent a collection of alternatives by a set:type Doc = P(Layout)We will require that every layout in a Doc represent the same string, so that theprogrammer knows which string is being pretty-printed.The choice of a particular layout will be made by a functionbest :: Doc! LayoutThus the author of a pretty-printer need only construct a set of alternatives; thehard work of selecting the best alternative is done just by reusing the function best.Since Docs are just sets of layouts, there is a natural way to promote the layoutoperations to work on Docs too. We just apply the operation to the elements of theoperand sets and form a set of the results | for example,d1 <> d2 = fl1 <> l2jli 2 digThe promoted operations distribute over [and preserve ; | for example,(x [y) <> z = (x <> z) [(y <> z); <> z = ;Moreover, since the laws of the layout algebra are all linear in the sense that novariable appears more than once on either the left or right hand side, then they holdfor documents also. So all the laws in �gure 6 remain true for Docs.Of course, if we con�ne ourselves to the layout operations we can only constructDocs with a single element. We must add an operation with multiple possible layouts.Since we require that all layouts in a document represent the same string, union isnot an appropriate operator to provide | rather we should de�ne an operation thatforms the union of two Docs that are guaranteed to represent the same string. Notingthat string (x $$ y) = string x++\ "++string yit is tempting to de�ne x <+> y = x <> text \ " <> y

and de�ne an operator that forms the union of x $$ y and x <+> y.However, this isn't quite enough. Sometimes we want to make several choicesconsistently: for example, we may want to allowif e <+> then s1 <+> else s2 = if e then s1 else s2if e $$ then s1 $$ else s2 = if ethen s1else s2as alternatives, without also allowingif e <+> (then s1 $$ else s2) = if e then s1else s2if e $$ then s1 <+> else s2 = if ethen s1 else s2We therefore de�ne an n-ary operation, which makes n � 1 choices consistently:sep :: [Doc]+ ! Docsep xs = foldr1 (<+>) xs [foldr1 ($$) xsWe'll revise this de�nition slightly below, but �rst let us observe a pleasing interac-tion between sep and nest. Consider for example,sep [while x�0 do ; nest 2 x := x-2]The alternative layouts here arewhile x�0 do <+> nest 2 x := x-2 = while x�0 do <+> x := x-2= while x�0 do x := x-2and while x�0 do $$ nest 2 x := x-2 = while x�0 dox := x-2In the horizontal form no unwanted extra indentation appears, because nest can becancelled on the right of (<>).Now let us consider an example which motivates a slight re�nement to the def-inition of sep. Suppose we wish to pretty-print pairs of statements separated by asemicolon, choosing between horizontal and vertical layouts. We might de�nesemic x y = sep [x <> text \;"; y]Now for example, semic x:=0 y:=0 = � x:=0; y:=0 ; x:=0;y:=0 �

in which both horizontal and vertical layouts look �ne. But considersemic while x�2 dox:=x-2 while y�2 doy:=y-2= 8>><>>:while x�2 dox:=x-2; while y�2 doy:=y-2 ; while x�2 dox:=x-2;while y�2 doy:=y-2 9>>=>>;In cases such as this, the horizontal layout is ugly or even misleading. We thereforerede�ne sep xs = �t (foldr1 (<+>) xs) [foldr1 ($$) xswhere �t d = fl 2 djlength l = 1gwhich restricts the horizontal form of a sep to �t on one line.The algebraic properties of �t are very simply stated | see �gure 7. The sepoperator has fewer useful properties, and we will develop them as we need them.�t (text s) = text s�t (nest k x) = nest k (�t x)�t (x <> y) = �t x <> �t y�t (x $$ y) = ;�t (x [y) = �t x [�t y�t ; = ;Fig. 7. The �t laws.Exercise 4. De�ne a type of abstract syntax trees for a simple imperative language,with assignment statements, if{then{else,while{do, and begin{end.Use the com-binators to write a pretty-printer for this type.7.4 Choosing a Pretty LayoutNow that we have designed combinators for constructing documents with manypossible layouts, it is time to discuss choosing among those alternatives. Many pretty-printers aim simply to avoid exceeding a given page width. However, we found thatusing this criterion alone tends to produce layouts such asfor i = 1 to 100 do for j = 1 to 100 do for k = 1 to 100 do a[i,j,k] := 0which �ts on a page, but cannot be described as pretty. We therefore impose anadditional constraint limiting the number of characters on each line (excluding in-dentation) to a smaller number. The idea is to avoid placing too much information

on a line | even a line that begins at the left margin. Under this constraint theexample above might instead be laid out asfor i = 1 to 100 dofor j = 1 to 100 dofor k = 1 to 100 do a[i,j,k] := 0In general a pretty layout will consist of a ribbon of text snaking across the page.To see that this is reasonable, ask yourself: `is the prettiest layout on an in�nitelywide page really to place everything on one line?'We will say that a line that meets both constraints is nice, and de�nenicewr (i; s)() i + length s � w ^ length s � rwhere w is the page width and r is the width of the ribbon.We might be tempted to specify that the pretty-printer choose a layout all ofwhose lines are nice, but we must be careful: some documents have no such layoutat all. For example, text \13 characters" cannot be made to �t within a pagewidth of12. Even in such cases we want the pretty-printer to produce something, and ratherthan adopt an ad hoc solution we accept that the niceness criteria will not alwaysbe met.Moreover, even if a nice layout exists we may not want the pretty-printer tochoose it! Consider for example the documentsep �a ; b� <> 1...99913 characters= 8>>>>><>>>>>: a b1...99913 characters ; ab1...99913 characters 9>>>>>=>>>>>;This document has a nice layout on a page of width 14 characters | the second one.But it would be unreasonably ine�cient for a pretty-printer to decide whether ornot to split the �rst line of a document on the basis of the contents of the last. Ane�cient pretty-printer should need only a limited look-ahead, and so we must expectthe �rst layout to be chosen despite the trouble ahead8. The question of which layouta pretty-printer chooses is thus trickier than it at �rst appears. Of course, it couldnever have been su�cient to say simply that a nice layout is chosen, since even ifall layouts are nice, some will be preferable to others. We must instead de�ne anordering on layouts and choose the best.We begin by de�ning an ordering �wr on individual lines. Our guiding principlesare8 A di�erent design decision is possible: we might choose to `play safe' and split the �rstline unless a limited look-ahead shows that it is de�nitely unnecessary. We have notexplored this alternative.

{ a nice line is always better than an over
owing line,{ if one cannot avoid over
owing, it is better to over
ow by a little than by a lot,{ unnecessary line breaks should be avoided.We therefore de�nex �wr y () (nicewr x ^ :nicewr y)_ (:nicewr x ^ :nicewr y ^]x <]y)_ (nicewr x ^ nicewr y ^]x >]y)where the length of a line is given by](i; s) = i+ length s.If we know that]x >]y then we can test �wr particularly simply:nicewr x =) x �wr y:nicewr x =) y �wr xIn the �rst case y must also be nice, but not as nice because it is shorter. In thesecond case either y is nice (and therefore nicer than x), or it is not nice, but nicerthan x because it is shorter. We will use this property in the implementations.Unfortunately an ordering on lines does not extend in a unique way to an orderingon layouts, and so we must make an arbitrary decision. We choose to order layoutsby the lexicographic extension of the ordering on lines, which we will also writeas �wr . The reason for this choice is simple: lexicographic ordering can be decidedleft-to-right, and we hope to pretty-print documents from left to right without muchlook-ahead. We de�ne rwr :: Layout! Layout! Layoutto select the lexicographically nicer of its arguments, andbest :: Int! Int! Doc! Layoutsuch that best w r selects the lexicographically nicest layout in the set. It's alsoconvenient to introduce a unit 1 for rwr , representing a layout uglier than anyother.The careful reader will have noticed that �wr is only a partial order | if x and yare both lines of equal length, then neither x �wr y nor y �wr x holds, even though xand y need not be equal. Consequently both rwr and best are partial operations. Butthis will not trouble us, because all the document operations construct sets which aretotally ordered by �wr . This will become evident when we derive implementations ofthe library. Consider this: our task is to de�ne when one layout is nicer than anotherlayout of the same document; we have no need to (and indeed, we cannot) de�newhen a layout is nicer than a layout of an unrelated document.Let us now investigate the properties of �wr , rwr and best. Since the ordering onlayouts is lexicographic, x �wr y =) 0@ z $$ x �wr z $$ y^ x �wr y $$ z^ x $$ z �wr y 1A

Moreover, x �wr y =) nest k x �w+kr nest k yand therefore nest k (xrwr y) = nest k xrw+kr nest k yFinally, we can reformulate the observation about a simple test for �wr as follows:length s > length t =) �^ length s � w `min` r) text s �wr text tlength s > w `min` r) text t �wr text s�From these properties, and from the fact that best chooses the nicest elementfrom a set, we can derive the laws in �gure 8 for best.best w r (x $$ y) = best w r x $$ best w r ybest w r (nest k x) = nest k (best w�kr x)best w r (text s) = text sbest w r (x [y) = best w r xrwr best w r ybest w r ; =1Fig. 8. The best laws.8 Implementing Pretty-printing: A Term RepresentationNow that we have developed a collection of algebraic properties of the pretty-printingoperators, we can apply the methods presented in the earlier sections of the chapterto construct implementations.(The reader may be wondering why we can't just use the abstract representationof documents as an implementation, say representing a Doc as a list of the possibleLayouts. Consider for a moment a medium sized syntax tree for an imperative lan-guage, which contains 100 occurrences of if{then{else, each pretty-printed usingsep. Ignoring the fact that nesting may force some seps to make related choices,such a Doc has 2100 alternative layouts, and so would be represented by a list withthis many elements. There is no reason to expect the best layout to be near thebeginning, and so it should be clear that searching for it in such a list is a hopelessexercise.)We will begin by deriving an implementation based on a term representation ofDocs. We choose simpli�ed terms to which the best laws are easily applicable, whichsuggests E ::= text S j nest N E jE $$E jE [E j ;

However, we also want to be sure that we can apply our simpli�ed test for �wr , andso we will restrict the form of unions further. We can de�ne a class of documentswith a `manifest' �rst line byM ::= text S j text S $$EThe simpli�ed test is easily applicable to documents of this form provided one hasa longer �rst line than the other. We will therefore only permit unions of the formU ::=M jU [Uand moreover we shall impose an invariant that the �rst line of every layout in theleft operand of [must be strictly longer than the �rst line of every layout in the rightoperand. Since both operands represent the same string it follows that all layouts inthe right operand consist of at least two lines.Now we can de�ne simpli�ed terms byE ::= U j nest N EWe allow ; only at the top level of the result of �t,E0 ::= E j ;With these restrictions best of a union is easily determined.We can represent Docs by the typedata Doc = Text String �� text sj String `TextAbove` Doc �� text s $$ xj Doc `Union` Doc �� x [yj Empty �� ;j Nest Int Doc �� nest k xalthough we must be careful only to construct documents of the form describedabove.We can use the same type to represent Layouts: a Doc not involving Union orEmpty represents a Layout.The de�nition of best is now easy to derive by applying the best laws | see �gure9. We'll discuss only the Union case. We know from the best laws thatbest w r (x `Union` y) = best w r xrwr best w r yBut since best must choose one of the layouts in its argument, the datatype in-variant implies that if best w r x is either text s or text s $$ x0, and best w r y istext t $$ y0, then length s > length t. So the simpli�ed niceness comparison is appli-cable. If nicewr (text s) then text s �wr text t, and by the lexicographic properties itfollows that text s �wr text t $$ y0 and text s $$ x0 �wr text t $$ y0. So in this caserwr chooses its left operand. If :nicewr (text s) then the opposite holds. So we canimplement rwr in this case by the function nicest, which simply inspects the �rstline of its �rst operand.Haskell's lazy evaluation is exploited here, in two ways. Firstly, shorter xs n isde�ned to test whether length xs � n without evaluating all of xs if it is not. Since

best w r (Text s) = Text sbest w r (s `TextAbove`x) = s `TextAbove` best w r xbest w r (Nest k x) = Nest k (best (w� k) r x)best w r (x `Union` y) = nicest w r (best w r x) (best w r y)nicest w r x y = if shorter (�rstline x) (w `min` r) then x else yshorter xs n = null (drop n xs)�rstline (Text s) = s�rstline (s `TextAbove`x) = sFig. 9. The de�nition of best.some layouts may have very long �rst lines | for example, the layout produced whenall seps adopt a horizontal form| this is an important optimisation. Secondly, sincenicest makes its decision on the basis of the �rst line of each argument only, thenwhen we select the best layout from a Union the layout of the unsuccessful branchis evaluated only as far as the �rst line. Although the Doc we apply best to may bea large tree, we follow (and therefore evaluate) only a single path through it.De�nitions of text, nest, (<>) and ($$) are obtained by simple algebraic manipu-lation. To take just two examples,(Nest k x) $$ y = (nest k x) $$ y= (nest k x) $$ (nest k (nest (�k) y))= nest k (x $$ nest (�k) y)= Nest k (x $$Nest (�k) y)Text s <> (t `TextAbove` x) = text s <> (text t $$ x)= text s <> ((text \" <> text t) $$ x)= (text s <> text t) $$ nest (length s) x [<>/ $$ law]= text (s ++t) $$ nest (length s) x= (s ++t) `TextAbove` Nest (length s) xThe remaining equations are derived similarly; the complete de�nitions appear in�gure 10. It is easy to verify that the de�nitions terminate. We leave it to the readerto check that if the datatype invariant holds for the arguments, it also holds for theresult of each these operators.It is interesting to look at the way Unions are treated in these de�nitions. Inalmost every case Unions in arguments are `
oated upwards' to give a Union in theresult. The exception is a Union in the right argument of ($$): we do not use theproperty x $$ (y [z) = (x $$ y) [(x $$ z)One good reason is that to do so would violate the datatype invariant: the operandsof the union on the right hand side have the same �rst lines. Another good reasonis e�ciency: the Doc form we have chosen groups together all layouts with the same�rst line in a value of the form s `TextAbove` x. The best function can then rejectall these layouts in one go, if s is not nice. Here x may represent many billions of

text s = Text snest k x = Nest k xText s $$ y = s `TextAbove`y(s `TextAbove`x) $$ y = s `TextAbove` (x $$ y)(Nest k x) $$ y = Nest k (x $$ Nest (�k) y)(x `Union` y) $$ z = (x $$ z) `Union` (y $$ z)Text s <> Text t = Text (s++t)Text s <> (t `TextAbove`x) = (s++t) `TextAbove`Nest (length s) xText s <> (Nest k x) = Text s <> xText s <> (x `Union` y) = (Text s <> x) `Union` (Text s <> y)(s `TextAbove`x) <> y = s `TextAbove` (x <> y)Nest k x <> y = Nest k(x <> y)(x `Union` y) <> z = (x <> z) `Union` (y <> z)Fig. 10. The de�nitions of text, nest, (<>) and ($$).alternative layouts, and if all Unions were
oated to the top level then best wouldhave to reject each one individually. The cost would be prohibitive, and the librarysimply would not work.We still need to implement sep | recall its speci�cationsep xs = �t (foldr1 (<+>) xs) [foldr1 ($$) xsWe can almost use this directly as the implementation, but we must ensure that theUnion is well-formed. Firstly, if the result of �t is ; we must avoid creating a Unionwith an empty operand. Secondly, we must ensure that the �rst line of the resultof the �t is strictly longer than the �rst lines in the second operand. Provided xsconsists of at least two documents this is guaranteed, since the longest �rst line in(x1 $$x2 : : : $$xn) is the longest �rst line in x1, and the horizontal form contains atleast one extra space. But if xs consists of exactly one document then the horizontaland vertical forms are the same, and a Union would be badly formed. So we musttreat this as a special case. Thirdly, we must avoid constructing a Union with nestedoperands: this can only happen if the �rst Doc in the list is of the form Nest k x. Inthat case we factor out the Nest:sep (nest k x : xs) = �t (nest k x <+> foldr1 (<+>)xs)[(nest k x $$ foldr1 ($$)xs)= nest k (�t (x <+> foldr1 (<+>)xs))[nest k (x $$ foldr1 ($$)(map (nest (�k)) xs))= nest k(sep (x : map (nest (�k)) xsThe de�nitions of sep and �t appear in �gure 11. Notice that the datatype invariantlets us de�ne �t of a Union very e�ciently, since we know the layouts in the secondoperand consist of at least two lines.

sep [x] = xsep (Nest k x : xs) = Nest k (sep (x : map (nest (�k)) xs))sep xs = �t (foldr1 (<+>) xs) `u` foldr1 ($$) xswhere Empty `u` y = yx `u` y = x `Union` y�t (Text s) = Text s�t (s `TextAbove`x) = Empty�t (Nest k x) = case �t x ofEmpty! Emptyy ! Nest k y�t (x `Union` y) = �t xFig. 11. The de�nition of sep.To complete the implementation of the library we just need to de�ne a functionmapping Layouts to appropriate strings. Let us de�nelayout :: Int! Doc! Stringsuch that layout k x constructs a string displaying nest k x. A suitable de�nitionappears in �gure 12.layout k (Text s) = indent k slayout k (s `TextAbove`x) = indent k s++layout k xlayout k (Nest k0 x) = layout (k+ k0) xindent k s j k � 8 = `nt' : indent (k� 8) sindent k s j k � 1 = ` ' : indent (k� 1) sindent 0 s = s++\nn"Fig. 12. Mapping layouts to strings.One or two minor optimisations can be made. For example,best w r ((x `Union` y) `Union` z)tests x for niceness twice if it is nice | once to reject y, and once to reject z. Thisis easily avoided, say by rede�ning best to return a pair of the best layout and aboolean indicating whether the �rst line is nice. Such measures can bring a usefulimprovement in performance, but in fact a much more serious problem remains.Consider for examplesep [sep [sep [hello ; a]; b]; c]

= 8>><>>:hello a b c ; hello a bc ; hello abc ; helloabc 9>>=>>;If this document is displayed on a page of width 5 then the last layout must bechosen, but since each layout has a di�erent �rst line, our implementation must �rstconstruct and reject each of the �rst three. Yet as soon as the length of hello isknown it is clear that the innermost sep, and therefore all the others, must be laidout vertically. We could therefore go immediately to the fourth layout. For largedocuments in which sep may be nested very deep, this optimisation is important.Without it the complexity of prettyprinters is at least O(n2) in the depth of sepnesting, and in practice they pause for an embarrassingly long time at the beginningof pretty-printing, gradually speeding up as more and more sep decisions are resolved.But to incorporate this optimisation we will need to change our representationof documents.9 Optimised Pretty-printing: A Term RepresentationLooking back at the problematic example, we can see that the three �rst layoutshave a common pre�x | \hello a" | and moreover we can tell just from the pre�xthat none of the layouts has a nice �rst line. Our goal will be to factor out thiscommon pre�x, express the union of the three layouts ashello a <> (x [y [z)for suitable x, y and z, and then reject all of them together in favour of the fourth.But to be able to observe this situation, we must introduce text S <> E as asimpli�ed form. At the same time we can replace the simpli�ed forms text S bytext \" and text S $$E by text \" $$E, because the old forms can be expressed interms of the new ones as followstext s = text s <> text \"text s $$ x = text s <> (text \" $$ nest (�length s) x)We will need to allow ; in more places than before, because we intend to use theproperty �t (text s <> x) = text s <> �t xwhere the right hand side is a canonical form with a component (�t x) that mightvery well be empty. We don't want to test for an empty set here, of course, becausethat would make �t hyper-strict with disastrous consequences.Our new simpli�ed forms are therefore given by the grammarE ::= U j nest N EU ::=M j U [U j ;M ::= text \" j text \" $$E j text S <> E

We impose the same condition on unions as before: every layout in the �rst operandmust have a longer �rst line than every layout in the second.These simpli�ed forms can be represented by the datatypedata Doc = Nil �� text \"j NilAbove Doc �� text \" $$ xj String `TextBeside` Doc �� text s <> xj Nest Int Doc �� nest k xj Doc `Union` Doc �� x [yj Empty �� ;And now the key problem is to rederive sep so as to delay introducing a Union untilafter the common pre�x of the two branches of the sep is produced.We need an algebraic law permitting us to draw a pre�x out of a sep. Let us tryto prove one. Assuming xs is non-empty, thensep ((text s <> x) : xs)= �t (text s <> x <+> (foldr1 (<+>) xs))[((text s <> x) $$ foldr1 ($$) xs)= (text s <> �t (text \" <> x <+> foldr1 (<+>) xs))[(text s <> ((text \" <> x) $$ foldr1 ($$) (map (nest (�length s)) xs)= text s <> sep ((text \" <> x) : map (nest (�length s)) xs)This last step holds because nest can be either cancelled or introduced freely in thehorizontal alternative. We have already seen that we can move a Nest out of a sep,and indeed we can even move a Union out of sep's �rst argument without splittingthe sep into two branches which must be explored separately. In fact the only timethat we have to do this is when the �rst argument is Nil | and by that point thehorizontal and vertical alternatives di�er at the very next character, so there is reallyno alternative. The derived de�nition of sep is given in �gure 13. We have used anauxiliary function speci�ed bysep0 x k ys = sep (x : map (nest k)ys)to avoid repeated applications of nest to the remaining arguments.Implementations of the other four operators can be derived in the usual way |this time we skip the details. The resulting de�nitions are presented in �gure 14.Once again we leave it to the reader to check that the datatype invariant is satis�ed.In fact, these are not quite the implemented de�nitions. Heap pro�ling revealedthat the derived de�nition of ($$) leaks space: unevaluated calls of ($$) and nestcollect on the heap. These are introduced in the 3rd and 4th equations for ($$),and unfortunately passed to a recursive call of ($$) which usually introduces stillmore unevaluated applications. A solution is to avoid constructing these unevaluatedapplications at all by using an auxiliary functionaboveNest x k y = x $$ nest k yinstead. This is of course just the speci�cation of aboveNest; the derived implemen-tation appears in �gure 15. It is important that aboveNests second parameter is

sep [x] = xsep (x : ys) = sep0 x 0 yssep0 Nil k ys = �t (foldl (<+>) Nil ys) `Union` vertical Nil k yssep0 (NilAbove x) k ys = vertical (NilAbove x) k yssep0 (s `TextBeside`x) k ys = s `TextBeside` sep0 (Nil <> x) (k � length s) yssep0 (Nest n x) k ys = Nest n (sep0 x (k � n) ys)sep0 (x `Union` y) k ys = sep0 x k ys `Union` vertical y k yssep0 Empty k ys = Emptyvertical x k ys = x $$ nest k (foldr1 ($$) ys)Fig. 13. sep optimised to delay Union.text s = s `TextBeside`Nilnest k x = Nest k xNil <> (Nest k x) = Nil<> xNil <> x = xNilAbove x <> y = NilAbove (x <> y)(s `TextBeside`x) <> y = s `TextBeside` (x <> y)Nest k x <> y = Nest k (x <> y)(x `Union` y) <> z = (x <> z) `Union` (y <> z)Empty <> z = EmptyNil $$ x = NilAbove xNilAbove x $$ y = NilAbove (x $$ y)(s `TextBeside`x) $$ y = s `TextBeside` ((Nil <> x) $$ nest (�length s)y)Nest k x $$ y = Nest k (x $$ nest (�k) y)(x `Union` y) $$ z = (x $$ z) `Union` (y $$ z)Empty $$ y = EmptyFig. 14. Implementations of text, nest, (<>) and ($$).evaluated strictly | otherwise the heap would �ll up with unevaluated subtractionsinstead. We can arrange this using hbc's standard function seq a b, which evaluatesa and returns the value of b.And now we must derive an implementation of best.The trickiest case is best w r (text s <> x). We know that this must be equal totext s <> y for some y | but what is y? It clearly depends on both x and s, becausethe length of s a�ects the width of `ribbon' available to the �rst line of x. Let usintroduce a new function best' , whose de�ning property isbest w r (text s <> x) = text s <> best0 w r s xWe can derive a de�nition for best' using the algebra; we present the details this

x $$ y = aboveNest x 0 yaboveNest Nil k y = NilAbove (nest k y)aboveNest (NilAbove x) k y = NilAbove (aboveNest x k y)aboveNest (s `TextBeside`x) k y = seq k0 (s `TextBeside`aboveNest (Nil <> x) k0 y)where k0 = k� length saboveNest (Nest k0 x) k y = seq k00 (Nest k0 (aboveNest x k00 y))where k00 = k � k0aboveNest (x `Union` y) k z = aboveNest x k z `Union` aboveNest y k zaboveNest Empty k z = EmptyFig. 15. De�ning $$ without a space leak.time. text s <> best0 w r s Nil = best w r (text s <> text \")= best w r (text s)= text s= text s <> Nilso we can take best0 w r s Nil = Nil.text s <> best0 w r s (NilAbove s)= best w r (text s <> (text \" $$ x))= best w r (text s $$ nest (length s) x)= text s $$ nest (length s)(best (w � length s) r x)= text s <> (text \" $$ best (w � length s) r x)so we can takebest0 w r s (NilAbove x) = NilAbove (best (w � length s) r x)For the TextBeside case,text s <> best0 w r s (t `TextBeside` x)= best w r (text s <> text s <> x)= text s <> text t <> best0 w r (s ++t) xso we can takebest0 w r s (t `TextBeside` x) = t `TextBeside` best0 w r (s ++t) xThe Nest case is very simple:text s <> best0 w r s (Nest k x) = best w r (text s <> nest k x)= best w r (text s <> x)= text s <> best0 w r s xso best0 w r s (Nest k x) = best0 w r s x. Finally,

text s <> best0 w r s (x `Union` y)= best w r (text s <> (x [y))= best w r (text s <> x)rwr best w r (text s <> y)= (text s <> best0 w r s x)rwr (text s <> best0 w r s y)= text s <> (best0 w r s xrwr 0(s) best0 w r s y)where we have introduced a new operator whose de�ning property is thattext s <> (xrwr 0(s) y) = (text s <> x)rwr (text s <> y)But recall that because of the invariant that Unions satisfy, rwr chooses its leftargument if and only if its �rst line is nice. But if s is already longer than (w `min`r),then no text s <> x can have a nice �rst line. So in this case rwr 0(s) can chooseits right argument without looking at either one! This is the optimisation we havebeen trying to capture: just by looking at the common pre�x we can select the rightbranch, and thereby the vertical form for the sep from which the Union came. Thecomplete de�nition of best appears in �gure 16.best w r Nil = Nilbest w r (NilAbove x) = NilAbove (best w r x)best w r (s `TextBeside`x) = s `TextBeside` best0 w r s xbest w r (Nest k x) = Nest k (best (w� k) r x)best w r (x `Union` y) = nicest w r (best w r x) (best w r y)best w r Empty =1best0 w r s Nil = Nilbest0 w r s (NilAbove x) = NilAbove (best (w� length s) r x)best0 w r s (t `TextBeside`x) = t `TextBeside` best0 w r (s++t)xbest0 w r s (Nest k x) = best0 w r s xbest0 w r s (x `Union` y) = nicest0 w r s (best0 w r s x) (best0 w r s y)best0 w r s Empty =1nicest w r x y = nicest0 w r \" x ynicest0 w r s x y = if �ts (w `min` r) (length s) x then x else y�ts n k x = if n < k then false elsecase x ofNil ! trueNilAbove y ! truet `TextBeside`y ! �ts n (k + length t) y1 ! falseFig. 16. The optimised de�nition of best.Once again minor improvements can be made to the implementation. Quite asubstantial speed-up is obtained by storing strings with their length| that is, stringsare represented within the library by a pair of their length and their characters.

String concatenation is used heavily in the library and is performed in constanttime: it consists of addition of the lengths and composition of the characters, whichare represented by a function as in section 4.2.This implementation of the library is a major improvement on the previous ones.There are no `embarrassing pauses'. While the cost of pretty-printing seems to growslightly faster than linearly, the library is able to produce large outputs (>200K)in little space and reasonable time. On a SPARC ELC a benchmark program withdeeply nested seps evaluated between 500 and 1000 seps per second. Performanceis quite acceptable, and far superior to both the earlier term-based implementation(sometimes O(n2)) and the seat-of-the-pants implementation (which was actuallysometimes exponential).10 A Context-passing Pretty-printerThe key observation in the development of the e�cient combinators in the lastsection was thatsep ((text s <> x) : xs) = text s <> sep ((text \" <> x) : map (nest (�length s)) xs)and so we can `factor out' all the text in the �rst element of a sep before splittingthe computation into a Union of two alternatives. We exploited the observation bymaking text s <> x into a simpli�ed form, and testing for it in sep. But we couldequally well have derived a context-passing implementation, in which text tests forthe presence of an enclosing sep. Indeed, it seems natural to think of a Doc as afunction that chooses a layout depending on the context, and this is how the very�rst implementation of the combinators was constructed.What kind of contexts should we consider? Certainly observations of the formbest w r [�] | that is, we should be able to lay out a document with a given pageand ribbon width. We will also need to lay out documents with a given indentation,that is consider contexts of the form best w r (nest k [�]). If we take k = 0 then thisform subsumes the �rst.Now imagine that a union appears in such a context. We can simplify as follows:best w r (nest k (x [y)) = best w r (nest k x)rwr best w r (nest k y)We expect to continue working on x, so we must be able to represent contexts ofthe form best w r (nest k [�])rwr b also. We can think of b as the layout to choose ifwe are forced to backtrack. Once again, the conditions on unions will enable us todecide which of x and b to choose purely on the basis of the value of x.Of course, in order to apply the key optimisation we must be able to recognisewhen a document is the �rst element of an enclosing sep. We shall therefore needcontexts of the form C[sep [[�]; y1 : : : yn]]. Moreover, the optimisation applies to doc-uments of the form text s <> x. But when such a document appears at the top level,we shall need to evaluate best w r (nest k (text s <> x))

To do so we must be able to evaluate x, and we therefore need to be able to representits context in this expression. We shall add contexts of the form C[text s <> [�]] tocover this case.When we lay out x <> y and x $$ y, we shall start by laying out x. We thereforehave to represent the contexts C[[�] <> y] and C[[�] $$ y]. And when we expand asep into a union of two alternatives, the horizontal alternative appears inside �t. Wemust therefore represent contexts of the form C[�t [�]] also.So we choose contexts of the formsC[�] ::= best N N (nest N [�])j best N N (nest N [�])rwr Ej C[text s <> [�]]j C[sep [[�]; E : : :E]]j C[�t [�]]j C[[�] <> E]j C[[�] $$E]where N represents integer expressions, and E represents document expressions.Contexts can be represented by the following Haskell datatype:data Cxt = BestNest Int Int Intj BestNestOr Int Int Int Docj TextBeside String Cxtj Sep [Doc] Cxtj Fit Cxtj Beside Doc Cxtj Above Doc CxtMust we consider such complex contexts, or can we apply the laws of the pretty-printing algebra to simplify them? Unfortunately, we have been unable to eliminateany of the forms of context given above. Certainly, some context simpli�cations arepossible. In particular, we can always move TextBeside up to the top level | thisis after all the observation that the key optimisation is based on. But we cannotusefully combine TextBeside with the enclosing BestNest or BestNestOr, becausethere would then be no way to express a BestNest without a TextBeside: no instanceof best w r (nest k (text s <> [�]))is equal to best w r (nest k [�])because text \" <> x 6= x in general.We can also use the facts�t (x $$ y) = ;sep ((x $$ y) : zs) = x $$ y $$ foldr1 ($$)zs(x $$ y) $$ z = x $$ (y $$ z)(x $$ y) <> z = x $$ (y <> z)

to simplify contexts in which Above occurs inside Fit, Sep, Above or Beside. If wecould always move Above to the top level, we could applybest w r (nest k (x $$ y)) = best w r (nest k x) $$ best w r (nest k y)But alas, we cannot simplify text s <> (x $$ y) without knowing more about x.In fact there is no form of context which can always be simpli�ed away, and wemust just work with this rather complex set.Now that the contexts have been chosen, the actual derivation of an implemen-tation follows exactly the same method as in earlier sections. We will not go throughthe details. We simply remark that, just as in the previous section, the implemen-tation has a space leak. `Pending' applications of nest �ll up the heap. And to avoidthis, just as in the previous section, we combine an application of nest with otheroperators. In this case we de�ne two forms of context with a `built-in' nest:AboveNest k y C = C[[�] $$ nest k y]SepNest k ys C = C[sep ([�] : map (nest k) ys)]In the derived implementation, when we exploitsep ((text s <> x) : xs) = text s <> sep ((text \" <> x) : map (nest (�length s)) xs)and the corresponding property for ($$), we just have to change a number in x'scontext, instead of building applications of nest.Evaluation of the Context-passing Combinators This version of the pretty-printinglibrary is de�nitely more complex than the term-based versions, as a consequence ofthe rather complex forms of context we were forced to work with. It is also harderto modify: in particular, a change to the way the best layout is chosen would havefar reaching e�ects. In the term-based libraries, best is a separate function and maybe replaced with another without altering the rest of the library. But in the context-passing library, every combinator knows how to behave in a BestNest context: thecriterion for selecting the best layout is distributed throughout the code.This could be a fair price to pay for better performance. But at least in myimplementation, the context passing library is (a little) slower than the term basedone, and uses (a little) more space. Its only advantage seems to be that it does notrequire lazy evaluation, as the term based library does (to make traversing one paththrough an enormous tree e�cient). If one were to reimplement the pretty-printinglibrary in a strict functional language such as ML, the context passing version mightprove more e�cient than simulating laziness with references and nullary functions.Relationship to the Original Implementation The �rst implementation of the pretty-printing combinators was indeed based on context-passing, with contexts representedby a �ve-tuple containing the page width, ribbon width, length of text to the left (c.f.C[text s <> [�]]), a boolean forcing a one-line layout (c.f. C[�t [�]], and a booleanindicating whether the surrounding context was horizontal or vertical. Such a designseems natural, if one intuitively expects a pretty-printer just to maintain a little state(the context) to guide layout choices. But as we have seen, this context information

is not su�cient to implement the correct behaviour of the combinators | which wasan obstacle to the discovery of the simple speci�cation they now satisfy.Moreover the performance of the combinators was poor, at �rst exponential in thedepth of sep-nesting, later improved to square. Further optimisations were hard to�nd, because of the lack of a good algebra, and no doubt also because of the necessarycomplexity of the solution | the e�cient context-passing library described in thissection is nothing one would stumble on by accident.The �rst implementation was developed rapidly, and its usefulness was certainlyan inspiration to develop the solutions presented in this chapter. But in retrospect,the seemingly natural choice of a context-passing implementation was unfortunate.Abandoning that choice, and working with a more abstract speci�cation and sys-tematic program development, led both to better behaviour and much more e�cientimplementations.11 A Comparison with Oppen's Pretty-printerThe classic work in `language independent pretty-printing' is Oppen's pretty-printer[3]. He de�ned a small language for expressing documents, and an interpreter for thelanguage which generates a pretty layout. The output of a user's pretty-printer isthus intended to be piped through the interpreter. The interpreter is written in animperative language, and its space requirements are small.The similarity between Oppen's language and my pretty-printing combinatorsis striking. Oppen provides equivalents of text, sep, and nest, and his language canalso express (<>), although well-formed documents should not contain it. Oppenalso provides a variant of sep which places as many elements as will �t on one line,then places more on the next line, and so on. An equivalent combinator could veryusefully be added to my pretty-printing library.On the other hand, Oppen's interpreter is quite large and hard to understand. Hispaper describes its behaviour for `well-formed' inputs, but the interpreter acceptsa wider class of inputs, and its behaviour on the others is hard to predict. Theinterpreter de�nes the meaning of every program, but in a monolithic way | thereis no way to describe the meaning of one construct in isolation.Moreover it isn't clearwhich of the possible layouts the interpreter actually chooses. One way to regard thepretty-printing combinators is as a candidate for a denotational semantics of Oppen'slanguage.Oppen's interpreter is probably more e�cient than our combinators, but on theother hand our libraries are probably easier to modify. For example, to make thepretty-printer look ahead a few lines and avoid imminent line over
ows by breakinglines earlier, rather than making decisions only on the basis of the current line, wewould just need to rede�ne the best function. At least with the �rst two implemen-tations we described, the other combinators could be reused as they are. It is not atall clear what changes would need to be made to Oppen's interpreter to achieve thesame e�ect.Exercise 5. Specify and implement Oppen's sep-variant, which allows several ele-ments per line in a vertical layout. Warning this is a substantial exercise!

12 ConclusionsIn this chapter we have considered the design of combinator libraries. We saw howstudying the algebraic properties of the combinators desired can both help to suggestnatural choices of representation, and guide the implementation of the operators. Wesaw several examples | lists, monads, and a pretty-printing library. For this kindof program development we need a language with higher-order functions and lazyevaluation, for which equational reasoning is valid; in other words, Haskell is ideallysuited.In the case of pretty-printing, studying the algebra led to the correction of asubtle error in the combinators' behaviour, and to the development of much moree�cient implementations. The pretty-printing algebra is just too intricate to rely onintuition alone: working informally I could not see how to implement the optimisationconsidered in section 9, nor could I invent the representation used there. The formalapproach has been invaluable.The pretty-printing library itself has proved useable, despite its simplicity. In-deed, versions of it have seen quite extensive use, in program transformation tools,proof assistants, and compilers. All the pretty-printers in both the Chalmers andthe Glasgow Haskell compilers are written using variants of this design.References1. Lennart Augustsson, Haskell B. user's manual, available over WWW fromhttp://www.cs.chalmers.se:80/pub/haskell/chalmers/.2. Konstantin L�aufer,Combining Type Classes and Existential Types, Proc. Latin AmericanInformatics Conference (PANEL), ITESM-CEM, Mexico, September 1994.3. Derek C. Oppen, Pretty-printing, in ACM Transactions on Programming Languages andSystems, Vol. 2, No. 4, October 1980.

A The Optimised Pretty-printing Librarymodule NewPP(Doc,(<>),($$),text,sep,nest,pretty) whereimport Seqinfixl <>infixl $$data Doc = Nil -- text ""| NilAbove Doc -- text "" $$ x| Str `TextBeside` Doc-- text s <> x| Nest Int Doc -- nest k x| Doc `Union` Doc -- x U y| Empty -- {}deriving (Text)type Str = (Int,String->String)-- optimised rep of strings: fast length, fast concat.len (i,_) = i(i,s) `cat` (j,t) = (i+j,s.t)str s = (length s,(s++))string (i,s) = s []text s = str s `TextBeside` Nilnest k x = Nest k xx $$ y = aboveNest x 0 yaboveNest Nil k y = NilAbove (nest k y)aboveNest (NilAbove x) k y = NilAbove (aboveNest x k y)aboveNest (s `TextBeside` x) k y =seq k'(s `TextBeside` (aboveNest (Nil<>x) k' y))where k' = k-len saboveNest (Nest k' x) k y =seq k'' (Nest k' (aboveNest x k'' y))where k'' = k-k'aboveNest (x `Union` y) k z =aboveNest x k z `Union` aboveNest y k zaboveNest Empty k x = Empty

Nil <> (Nest k x) = Nil <> xNil <> x = xNilAbove x <> y = NilAbove (x <> y)(s `TextBeside` x) <> y = s `TextBeside` (x <> y)Nest k x <> y = Nest k (x <> y)Empty <> y = Empty(x `Union` y) <> z = (x <> z) `Union` (y <> z)sep [x] = xsep (x:ys) = sep' x 0 yssep' Nil k ys = fit (foldl (<+>) Nil ys)`Union` vertical Nil k yssep' (NilAbove x) k ys = vertical (NilAbove x) k yssep' (s `TextBeside` x) k ys =s `TextBeside` sep' (Nil <> x) (k-len s) yssep' (Nest n x) k ys = Nest n (sep' x (k-n) ys)sep' (x `Union` y) k ys = sep' x k ys `Union` vertical y k yssep' Empty k ys = Emptyvertical x k ys = x $$ nest k (foldr1 ($$) ys)x <+> y = x <> text " " <> yfit Nil = Nilfit (NilAbove x) = Emptyfit (s `TextBeside` x) = s `TextBeside` (fit x)fit (Nest n x) = Nest n (fit x)fit (x `Union` y) = fit xfit Empty = Emptybest w r Nil = Nilbest w r (NilAbove x) = NilAbove (best w r x)best w r (s `TextBeside` x) = s `TextBeside` best' w r s xbest w r (Nest k x) = Nest k (best (w-k) r x)best w r (x `Union` y) = nicest w r (best w r x) (best w r y)best w r Empty = Emptybest' w r s Nil = Nilbest' w r s (NilAbove x) = NilAbove (best (w-len s) r x)best' w r s (t `TextBeside` x) =t `TextBeside` best' w r (s `cat` t) xbest' w r s (Nest k x) = best' w r s xbest' w r s (x `Union` y) =nicest' w r s (best' w r s x) (best' w r s y)best' w r s Empty = Empty

nicest w r x y = nicest' w r (str "") x ynicest' w r s x y = if fits (w `min` r) (len s) x then x else yfits n k x = if n<k then False elsecase x ofNil -> TrueNilAbove y -> Truet `TextBeside` y -> fits n (k+len t) yEmpty -> Falselayout k (Nest k' x) = layout (k+k') xlayout k x = [' ' | i<-[1..k]] ++ layout' k xlayout' k Nil = "\n"layout' k (NilAbove x) = "\n" ++ layout k xlayout' k (s `TextBeside` x) = string s ++ layout' (k+len s) xpretty w r d = layout 0 (best w r d)

This article was processed using the LATEX macro package with LLNCS style

