The Design of a Pretty-printing Library

John Hughes

Chalmers Tekniska Hogskola, Goteborg, Sweden.

1 Introduction

On what does the power of functional programming depend? Why are functional
programs so often a fraction of the size of equivalent programs in other languages?
Why are they so easy to write? I claim: because functional languages support soft-
ware reuse extremely well.

Programs are constructed by putting program components together. When we
discuss reuse, we should ask

— What kind of components can be given a name and reused, rather than recon-
structed at each use?
— How flexibly can each component be used?

Every programming language worthy of the name allows sections of a program with
identical control flow to be shared, by defining and reusing a procedure. But ‘pro-
gramming idioms’ — for example looping over an array — often cannot be defined
as procedures because the repeated part (the loop construct) contains a varying part
(the loop body) which is different at every instance. In a functional language there
is no problem: we can define a higher-order function, in which the varying part is
passed as a function-valued parameter. This ability to name and reuse programming
idioms is at the heart of functional languages’ power.

Other features contribute to making reused components more flexible. Polymor-
phic typing enables us to use the same programming idiom to manipulate data of
different types. Lazy evaluation abstracts away from execution time, and enables us
to reuse the same function with many different behaviours. For example, a lazy list
can behave like an array (a sequence of elements stored at the same time), or like an
imperative variable (a sequence of values stored at different times), or like something
in between (say a buffer in which a bounded number of elements are stored at any
one time). Regardless of behaviour the same functions can be used to manipulate
the list.

Software reuse is plainly visible in functional programs: for example, the Haskell
standard prelude contains many higher-order functions such as map, foldr etc., which
are used intensively in many programs. These standard functions capture very gen-
eral programming idioms that are useful in almost any context. But it is just as
important to define and use application specific idioms.

The functional programmer, then, should approach a new application by seek-
ing to identify the programming idioms common in that application area, and to
define them as (probably higher order) functions. Each particular application pro-
gram should then be built by so far as possible combining these functions, rather
than writing ‘new code’. (Perhaps for this reason, such functions are often called

combinators). The benefits of such an approach are very rapid programming, once
the library of idioms is defined, and very often that application programs are correct
first time, since they are built by assembling correct components.

One example of an application area whose idioms have been thoroughly studied
is parsing: libraries of parsing combinators are described in this volume. Another
good example on a much larger scale is Carlsson and Hallgren’s fudget library, also
described here, which enables graphical user interfaces to be constructed very easily.

The question we address in this chapter is: how should libraries of combinators
be designed? How do we know which operations to provide? Monads, also explained
in this volume, are certainly helpful — but how do we know which monad to use?
Must we rely completely on intuition?

Our goal is to show how we can use formal specification of the combinators, and a
study of their algebraic properties, to guide both the design and the implementation
of a combinator library. Our case study is a library for pretty-printing, which has
gone through many iterations and been much improved by a more formal approach.
But we hope the methods we present are of wider applicability, and we will also
present some smaller examples to justify this claim.

2 A Preview of the Pretty-printing Library

2.1 Why Pretty-printing?

Almost every program which manipulates symbolic data needs to display this data
to the user at some point — whether 1t is a compiler displaying internal structures
for debugging, a proof-editor displaying proofs; or a program transformer writing its
output. The problem of displaying symbolic, and especially tree structured data, is
thus a recurring one.

At the same time, structured data is hard to read unless layout is used to make
the structure visible. Take a simple example: a binary tree of typel.

data Tree = Node String Tree Tree| Leaf

The tree Node "foo” (Node "baz" Leaf Leaf) (Node “foobaz" Leaf Leaf) is much easier
to read if it is presented as

Node “foo” (Node “baz" Leaf Leaf)
(Node “foobaz" Leaf Leaf)

A pretty-printer’s job is to lay out structured data appropriately.

Pretty-printing is complicated because the layout of a node cannot just be in-
ferred from its form. In the example above, Nodes are laid out in two different ways:
some horizontally and some vertically. Moreover the correct indentation of the final
Node depends on the length of the string in the parent node. A pretty-printer must
keep track of much contextual information.

Because of this pretty-printers are hard to write, and there is plenty of scope
for mistakes. Many programmers simply do not bother — they put up with badly
formatted output instead. There is much to be gained by capturing the hard part of
pretty-printing in a library.

1 All examples in this chapter use Haskell syntax

Remark Note that we are considering the problem of displaying internal data-
structures in a readable form, not the harder problem of improving the layout of
an existing text, such as a program. In the latter case we would have to consider
questions such as: should we try to preserve anything of the original layout? How
should we handle comments? Such problems are outside the scope of this chapter.

2.2 A Sketch of the Design

What kind of objects should pretty-printing combinators manipulate? I chose to
work with ‘pretty documents’, of type Doc, which we can think of as documents
which ‘know how to’ lay themselves out prettily. A pretty-printer for a particular
datatype is a function mapping any value to a suitable Doc. The library provides
operations for constructing Docs in various ways, and for converting a Doc to text
at the top level.

We will need to convert literal strings to Docs, and it seems reasonable to provide
operations that combine Docs horizontally and vertically. That suggests we provide
operations

text :: String — Doc
(<>) :: Doc = Doc — Doc [horizontal composition]
($9%) :: Doc — Doc — Doc [vertical composition]

The composition operators (<) and ($$) relieve the user of the need to think about
the correct indentation: for example, the pretty tree layout above can be constructed
as

text "Node "foo” " <> (text "Node "baz" Leaf Leaf" $$
text "Node “foobaz” Leaf Leaf")

and the last Node is automatically indented the right amount.

However, these operations only enable us to construct Docs with a fixed layout.
We also need to construct Docs that choose between alternative layouts depending
on the context. We will therefore define

sep :: [Doc] = Doc

which combines a list of Does horizontally or vertically, depending on the context.
With these operations we can write a pretty-printer for the tree type above:

pp 2 Tree — Doc

pp Leaf = text “Leaf”

pp (Node s 1 r) = text ("Node " 4++s) <> sep [pp’ 1, pp’ 7]
pp’ Leaf = pp Leaf

pp’t=text (" <> ppt<> ")

The context-dependent choice of layout is entirely hidden in the implementation of
the Doc type — the only complication is deciding when to insert brackets.
The library provides one further operation,

nest :: Int — Doc — Doc

which indents a document a given number of spaces. For example,
text "while x>0 do” $$ nest 2 (text “x 1= x-2")
produces the layout

while x>0 do
X 1= X-2

The difference between using nest and inserting spaces is that nest indents only
where 1t is appropriate — so for example,

sep [text “while x>0 do", nest 2 (text "x := x-2")]
will appear as above laid out vertically, but without indentation as
while x>0 do x 1= x-2

if laid out horizontally.

This choice of combinators was made quite early on in the development of the
library, and the first implementation was written from a description more or less like
the one just given. But the description is far from satisfactory: although the intention
of the design is fairly clear, the precise behaviour of the combinators is certainly not.
Not surprisingly, this led to a number of difficulties and strange behaviours.

Later on we will give a precise specification of the combinators’ behaviour, and
use this to derive several alternative implementations. But before we continue with
this larger case study, we’ll present some simpler examples to illustrate the methods
we will be using.

3 Deriving Functional Programs from Specifications

How can we conveniently use a specification to help develop a functional program?
Let us suppose that the specification consists of a signature, containing possibly new
types such as Doc and the names and types of the functions being specified, and
properties that the new functions must satisfy. Our task is to invent representations
of the new types and definitions of the functions so that the properties are satisfied.
We will call functions from the new types to old types observations. Observations are
important: if there are none then we cannot distinguish between values of the new
types, and so we can represent them all by (). We will assume that the specification
determines the value of every possible observation — if not, we must strengthen the
specification until it does.

The implementations which we are trying to derive consist of equations of a re-
stricted form. We will derive implementations by proving their constituent equations
from the specification. By itself this is no guarantee that the implemented functions
satisfy the specification (because we might not have proved enough equations). But
if we also check that the derived definitions are terminating and erhaustive, then
this property is guaranteed.

To see why, consider the case of a single function f. We start from a specification
P(f) and derive implementation equations Q(f), both considered as predicates on f.

By construction P(f) = Q(f). But in general, the implementation equations Q(f)
might be satisfied by many different functions, of which the least is the one that
the equations define. Call this least function fi,,. Now, if the derived definitions
are exhaustive and terminating, then for any argument z, f;n,/2 is a defined value
y and Q(f) = f = = y. In other words Q(f) = f = fimp — the implementation
equations have a unique solution. Now if the specification is satisfied by any f at
all, we know that

and therefore P(fimp) holds — the implementation satisfies the specification.

Since we will use the specification to derive equations, it will be most convenient
if the specification also consists of equations — or laws — that the new functions
are to satisfy.

But before we can start deriving implementations of functions we must choose a
representation for each new type. We will present two different ways of choosing such
a representation. The first is based on representing values by termsin the algebra we
are working with. The second is based on representing values by functions from the
context in which the value 1s placed to the value of the corresponding observation.

4 Designing a Sequence Type

We begin by considering a very simple and familiar example: the design of a repre-
sentation for sequences. Of course we know how to represent sequences — as lists.
The point here is not to discover a new representation, but to see how we could
have arrived at the well-known representation of lists starting from an algebraic
specification.
We take the following signature as our starting point,

nil :: Seq a

unit :: a = Seq a

cat :: Seq a — Seq a — Seq a

list :: Seq a — [a]

where nil, unit, and cat give us ways to build sequences, and list is an observation.
The correspondence with the usual list operations 1s

nil = [
unit = [z]
cat = (H)
These operations are to satisfy the following laws?:
zs ‘cat’ (ys ‘cat’ zs) = (xs ‘cat’ys) ‘cat’zs
nil ‘cat’xzs = s
zs ‘cat‘nil = zs
list nil = []
list (unit x ‘cat‘zs) = x : list xs

2 Haskell allows a binary function to be used as an infix operator if the name is enclosed
in backquotes. Thus a ‘op‘b is the same as op a b

4.1 Term Representation

The most direct way to represent values of sequence type is just as terms of the
albegra, for example using

data Seq a = Nil| Unit a | Seq a ‘Cat‘Seq a

But this trivial representation does not exploit the algebraic laws that we know to
hold, and moreover the list observation will be a little tricky to define (ideally we
would like to implement observations by very simple, non-recursive functions: the
real work should be done in the implementations of the Seq operators themselves).
Instead, we may choose a restricted subset of terms — call them simplified forms?®
— into which every term can be put using the algebraic laws. Then we can represent
sequences using a datatype that represents the syntax of simplified forms.

In this case, there 1s an obvious candidate for simplified forms: terms of the form
nil and unit @ ‘cat’ zs, where zs is also in simplified form. Simplified forms can be
represented using the type

data Seq a = Nil|a ‘UnitCat‘Seq a
with the interpretation®
Nil = nil
z ‘UnitCat‘zs = unit x ‘cat‘zs
We choose this representation because a definition of list is now very simple to derive:
list Nil = list nal
=]
list (x ‘UnitCat‘xs) = list (unit x ‘cat’xs)
= : list zs

We can also derive implementations of the three operators of the algebra by simply
applying the algebraic laws:

nil= Nil [defn. Nil]

unit x = unit x ‘cat’ nil

z ‘UnitCat*Nil [defn. UnitCal]

Nil ‘eat‘ ys = nil ‘cat‘ys
= ys
(z ‘UnitCat‘xs) ‘cat’ys = (unit x ‘cat’zs) ‘cat’ys

= unit x ‘cat’(zs ‘cat’ ys) [associativity]
=z ‘UnitCat*(xs ‘cat’ys) [defn. UnitCaf]

data Seqa = Nil|a ‘UnitCat‘Seq a
nil = Nil

Nil ‘cat‘ys = ys
(z ‘UnitCat‘zs) ‘cat‘ys = x ‘UnitCat’(xs ‘cat’ys)

list Nil =[]
list (z ‘UnitCat‘zs) = x : list xs

Fig. 1. Term representation of sequences.

Collecting the results we obtain the definitions in figure 1. Termination of each
function is obvious.

How do we know that every Seq term can be expressed as a simplified form? The
definitions we have derived are a proof! Since each function maps simplified argu-
ments to simplified results (and always terminates), we can construct a simplified
form equal to any term just by evaluating it with these definitions. In more compli-
cated algebras this observation i1s valuable: when we’re choosing a simplified form
we need not worry whether all terms can be put into it — we simply try to derive
terminating definitions for the operations, and if we succeed, the result follows.

So far we’ve just derived the usual implementation of lists — Nil and UnitCat
correspond to [] and (:). But notice that it isn’t without its problems: the implemen-
tation of cat is linear in its first argument, and we run into the well known problem
that an expression such as

(... (unit @1 ‘cat‘unit xs) ... ‘cat‘unit x,_1) ‘cat’ unit x,

takes quadratic time to evaluate. Using the associative law n times we can obtain
the equivalent expression

unit &1 ‘cat’ (unit xo ‘cat’ ... (unit xp_1 ‘cat’ unit x,))

which runs in linear time. We might hope to exploit the associative law in an im-
proved implementation that achieves the better complexity in the first case also.
We could try to derive an implementation of cat that recognises cat in its left ar-
gument, and applies the associative law before continuing. But alas, if we are to
recognise applications of cat then they must be simplified forms, which means that
the cat operation can do nothing; we are forced back to the trivial representation we
started with. In the next section we look at a different approach which can exploit
assoclativity in this case.

® We avoid the term ‘canonical form’ because in general there’s no reason why a term need
have a unique simplified form.

* Here we really mean the semantics of Nil and UnitCat, and by equality we mean equality
in the algebra we are implementing — not necessarily Haskell’s equality. Perhaps it would
be more conventional to write [Né] and [UnitCaf] here, but we prefer to identify syntax
and semantics in the interests of lightening the notation.

4.2 Context Passing Representation

If we can’t apply the associative law by making the outer cat recognise that its left
argument is a cat, perhaps we can make the inner cat recognise that it is called in
a cat context. This idea motivates a representation of sequences as functions from
their context to the observation being made.

A context is just an expression with a hole, written [e]. For example, [e] ‘cat’ys
is a context. If C'[e] is a context and e is an expression, we write Cle] for the result
of replacing the hole with e. In this case ([e] ‘cat‘ys)[zs] is s ‘cat‘ys.

We can describe the contexts we are interested in by a grammar. For example,
the following grammar describes all possible contexts of type list for expressions of
type Seq .

Cle] ::= list [e]
| Cl[e] ‘cat*E]
| C[E ‘cat‘[e]]

where F is an expression of Seq type. And just as with terms, we can represent
contexts by a corresponding Haskell datatype:

data Crzt a = List| CatLeft (Seq a) (Crt a) | CatRight (Seq a) (Crt a)
where
List = list [e]
CatLeft E C' = C[[o] ‘cat’E)
CatRight E C = C[E ‘cat‘[o]]
Notice that the representation of, say, a CatLeft context contains the representation
of the enclosing context; contexts resemble therefore a stack. Notice also that the
context type must be parameterised on a because it refers to Seq a.
In fact, just as we used the laws to work with a restricted set of terms, we shall use

the laws to work with a restricted set of contexts. For our purposes in this example,
we will only need to consider contexts of the form

Cle] ::= list [o] | list ([e] ‘cat’ E)
represented by the following datatype:
data Crzt a = List| ListCat (Seq a)

Now we can represent sequence values by functions from contexts to lists: the
value e is represented by the function ACTe].C[e]. (So contexts are like continuations
whose internal structure can be inspected). For example,

nil = AC'e].C[ni]

where again we make no notational distinction between the nil on the left, which
is a representation, and the nil on the right, which is a semantic object. When we
apply this representation to a context, we derive for example

nil (ListCat zs) = nil (list ([8] ‘catzs)) [defn. ListCaf]
= list (nil ‘cat” zs) [defn. nil]

In future we will switch backwards and forwards between the first and last form in
one step, and without comment. We can derive definitions of the operators using the
laws of the algebra as before:

nil List = list nil
=

nil (ListCat zs) = list (nil ‘cat’ zs)
= list zs
= zs List

unit x List = list (unit x)
= list (unit x ‘cat’nil)
=z : list nil

= [4]

unit x (ListCat zs) = list (unit x ‘cat” zs)
=z : list zs
=x:zs List

(xs ‘cat‘ys) List = list (s ‘cat’ys)
= xs (ListCat ys)

(xs ‘cat’ys) (ListCat zs) = list ((xs ‘cat’ys) ‘cat’zs)
= list (zs ‘cat’(ys ‘cat‘zs)) [assocl!]
= xs (ListCat (ys ‘cat’zs))

Notice that the derived definition of cat recognises an enclosing cat and applies the
associative law — just the optimisation we wanted to capture. Gathering the results
together, we obtain the implementation shown in figure 2.

We can show that these definitions terminate, and moreover derive their complex-
ity, by considering a suitable cost measure on terms. We construct the cost measure
so that every reduction strictly reduces cost.

Start by observing that terms not containing cat or ListCat are reduced to a
normal form in one step. We’'ll give such terms a cost of zero. Now notice that the
second equations defining nil and unit eliminate a ListCat. If ListCal is assigned a
cost of one, then these reductions reduce cost. Looking at the definition of cat, we
see that the first equation converts a cat to a ListCat. If we assign cat a cost of two,
then this reduction also reduces cost. The tricky case is the second equation for cat,
since 1t neither reduces the number of occurrences of cat nor of ListCat.

We can obtain a cost reduction in this case also by assigning different costs to
the occurrences of cat on the left and right hand side. We assign cat a cost of two in
a ‘cheap’ context, and a cost of three in other contexts. Cheap contexts are defined
by the following grammar:

Cheaple] ::= [e] List
| ListCat [e]
| CheaplE ‘cat[e]]

data Czt a = List| ListCat (Seq a)
type Seq a = Czxt a — [q]

nil List =[]
nil (ListCat zs) = zs List

unit x List = [z]
unit x (ListCat z8) = x : zs List

(zs‘cat‘ys) List = xs (ListCat ys)
(zs‘cat‘ys) (ListCat zs) = zs (ListCat (ys‘cat'zs))

list xs = xs List

Fig. 2. The context passing implementation of sequences.

Now it is easy to verify that the cat on the right in the last equation is in a cheap
context, while that on the left is not. We also have to check that in every equation,
bound variables appear in a cheap context on the left hand side iff they appear
in a cheap context on the right hand side — otherwise our implicit assumption
that a bound variable contributes the same cost at each occurrence would be false.
Having done so, we know that the number of reductions needed to evaluate a term
1s bounded by its cost. And this is linear in the size of the term.

We have therefore cured the quadratic behaviour that motivated us to consider
a context-passing implementation.

4.3 Changing the Representation of Contexts

If we examine the definitions in figure 2, we can see that the zs component of
ListCat zs 1s only used by applying it to List. That is, we are not interested in
the value of zs itself, only in the value of list zs. This suggests that we try changing
the representation of contexts to store the latter rather than the former.

The new context datatype will therefore be

data Crt a = List| ListCat [d]
with the interpretation
List = list [e]
ListCat (list zs) = list ([8] ‘cat’zs)
Now if we let zs = list zs, we can derive

nil (ListCat zs) = list (nil ‘cat’ zs)
= list zs
= 25

unit x (ListCat Zs) = list (unit x ‘cat” zs)
=z : list zs
=x:zs

(xs ‘cat‘ys) (ListCat zs) = list ((xs ‘cat‘ys) ‘catzs)

= list (zs ‘cat’ (ys ‘cat’zs))
zs(ListCat (list (ys ‘cat’zs))
= xs(ListCat (ys(ListCat (list zs))))
zs(ListCat (ys(ListCat 2s)))

Notice how each time we introduce a ListCat, the accompanying application of list
enables a further simplification.

In each case we have succeeded in maneouvering the right hand side into a form
in which zs does not appear — only zs. We can therefore take the derived equations
as definitions, with a formal parameter zs. Provided, of course, that contexts of the
form ListCat zs always satisfy the invariant 3zs.zs = list zs, which is easily verified.

In this case we can go a little further still. Noting that

list xs = list (zs ‘cat’nil)
= zs(ListCat (list nil))
zs(ListCat [])

we can redefine list and do without List contexts altogether. Now since only one form
of context remains we can drop the ListCat constructor also, and represent contexts
just by lists. The resulting definitions appear in figure 3.

type Cxt a = [q]

type Seqa = Czxta — [a]
nil 2s = Zs

unit x s =x : 48

(s ‘cat‘ys) 2s = zs (ys 4s)
list x5 = xs []

Fig. 3. Optimised context passing representation of sequences

FErercise 1. Could we have used a similar trick to eliminate List contexts and the
ListCat constructor in the previous section?

5 Implementing Monads

The 1deas in the previous section are applicable when we want to implement a
datatype specified by a signature and some equations that the operations in the
signature should satisfy. One very interesting class of datatypes specified in this

way are monads. At its simplest, a monad is a parameterised type M and a pair of
operations

unit a— M a
bind:: Ma—(a—= Mb)y—-> Mb

satisfying the laws

unit @ ‘bind‘ f = f x
m ‘bind‘ unit = m

m ‘bind‘ e — (f © ‘bind‘g) = (m ‘bind‘ Az = fr) ‘bind‘g

See the chapter by Wadler in this volume for an exposition of the uses of monads in
functional programming.

With no further operations a monad is rather uninteresting. In reality, we always
extend the signature with some additional operations. In particular, there must be
some way to observe a monad value — otherwise we could implement the monad by

type M a= ()
unit x = ()
m ‘bind‘ f = ()

which satisfies the monad laws.
We will consider the simplest interesting monad: that with one additional oper-
ation

value = M a — a
satisfying the law
value (unit ©) = x

We'll look at implementations based on simplified terms and on context passing.

5.1 The Term Representation of a Simple Monad
Suppose we try to represent monad values directly by terms:
data M a = Unit a| M b ‘Bind‘(b = M a)

Notice that the type variable b does not occur on the left hand side of this definition!
It is an existentially quantified type variable: one may construct an M a by applying
Bind at any type b°. With this representation value can be defined by

value :: M a — a
value (Unit) = x
value (m ‘Bind* f) = value (f (value m))

® Such existential type definitions were proposed by Laufer[2] and are not part of standard
Haskell, but are accepted by hbc.

which uses polymorphic recursion: the inner recursive call of value is at a different
type from the enclosing one®.

However, we can avoid these complications by using a representation based on
simplified terms instead. In fact, we can simplify every term to the form wunit x.

Dropping the Bind constructor from the monad type, we obtain

unit © = Unit z
(Unit) ‘bind f = f x
value (Unit z) = x
where the only property of unit and bind we need to derive these definitions is the

first monad law. And now, since Unit is the only constructor in the monad type we
can drop it too, represent M a just by a, and obtain the standard identity monad.

5.2 The Context-passing Representation of a Simple Monad

Suppose we instead derive a context-passing implementation. We are interested in
contexts which make an observation by applying value, and using the monad laws
we will be able to put every such context into the form value ([o] ‘bind k), because
value [o] = value ([o] ‘bind‘ unit)
value (([8] ‘bind‘ f) ‘bind‘k) = value ([o] ‘bind‘Ax — (f = ‘bind‘k))
Notice here that if the hole 1s of type M a, the final value computed may be of
some other type — call it ans. We must therefore represent contexts by a type
parameterised on both a and ans. Consequently we are also obliged to represent

monad values by a type parameterised on both a and ans. For example, we can

define

data Crzt a ans = ValueBind (a = M ans ans)
type M a ans = Czt a ans — ans

where
ValueBind k = value ([o] ‘bind k)

However, it isn’t hard to guess that uses of & will all take the form value (k x)
for some xz. We therefore optimise the representation of contexts to

data Crt a ans = ValueBind (a — ans)
where

ValueBind (Ax.value (k x)) = value ([o] ‘bind‘k)

(TIf our guess proves to be wrong no harm will be done, we will simply be unable to
derive definitions for the monad operations).
Now letting k& = Az.value (k x), we can derive

5 Again this is not standard Haskell, but is accepted by hbc provided the type of value is
explicitly given.

unit x (ValueBind l;') = value (unit x ‘bind‘k)
= value (k x) [1st monad law]

=kz

(m ‘bind‘ f) (ValueBind l;')
= value ((m ‘bind‘ f) ‘bind‘k)

= value (m ‘bind‘ Az — (f = ‘bind‘k)) [3rd monad law]
=m (ValueBind (Ax — value (f © ‘bind‘k))) [prop. ValueBind]
= m (ValueBind (Ax — f = (ValueBind k))) [again]
value m = value (m ‘bind‘ unit) [2nd monad law]
= m (ValueBind (Ax — value (unit x))) [prop. ValueBind]
=m (ValueBind (Ax — z)) [prop. value]

And now dropping the superfluous constructor ValueBind, we obtain the definitions
in figure 4 — the standard monad of continuations!

type M a ans= (Czt a ans) — ans
type Czxta ans=a — ans
unitz k =k »

(m ‘bind‘f) k=m Az = fo]AC)

value m = m (Az —)

Fig. 4. The Optimised Context-passing Monad.

6 Monads for Backtracking

We’ve seen how we can derive both the identity monad and the monad of continu-
ations from the ‘vanilla’ monad specification. But in reality we wish to add further
operations to the signature — that 1s the raison d’étre of monads. As an example,
we’ll consider operations for backtracking:

fail :: M a
orelse: Ma—Ma—>Ma

The new operations form a monoid,

fail ‘orelse‘x = x
x ‘orelse’ fail = x

(z ‘orelse‘y) ‘orelse’z = x ‘orelse‘(y ‘orelse‘z)

and we must also specify their interaction with the monad operations”:

fail ‘bind‘ f = fail
(z ‘orelse‘y) ‘bind‘ f = (x ‘bind‘ f) ‘orelse‘(y ‘bind‘ f)
Finally, 1t is no longer appropriate to give value the type
value :: M a — a
because there 1s no sensible behaviour for value fail. Instead, we give it the type
value :: M a — Maybe a

where
data Maybe a = Yes a | No
satisfying the laws
value fail = No
value (unit x ‘orelse‘m) = Yes x
So we can observe whether a backtracking computation succeeds or fails, and if

1t succeeds we observe the first answer. Let us apply the same methods to derive
implementations of this monad.

6.1 The Term Representation of the Backtracking Monad

Rather than start from scratch to develop a term representation for backtracking,
observe that if we replace M by Seq, fail by nil, and orelse by cat, then these op-
erations together with wunit satisfy exactly the same axioms as in section 4. That
suggests that we try to use the same kind of simplified terms as in section 4.1,
namely fail and unit = ‘orelse’m. So let us define

data M a = Fuail| a ‘UnitOrElse‘ M a

reuse the previously derived definitions for un:t, fail and orelse, and see if we can
derive implementations of the remaining operators.
In the case of bind, we derive
Fail ‘bind* f = fail ‘bind‘ f
= fail
= Fail
(z ‘UnitOrFElse‘m) ‘bind* f = (unit x ‘orelse‘m) ‘bind‘ f
= (unit x ‘bind‘ f) ‘orelse‘(m ‘bind" f)
= f « ‘orelse‘(m ‘bind‘ f)
(which is a terminating definition because the recursive call of bind has a smaller

first argument), and in the case of value, we find directly that

value Fail = No
value (xz ‘UnitOrElse‘m) = Yes »

So as we expected, we can implement the backtracking monad using lists.

T Tt is the second equation here which distinguishes backtracking from exception handling.

6.2 Context-passing Implementation of Backtracking

When we develop a context-passing implementation of backtracking we have to con-
sider more complex forms of context than in section 5.2, since of course the new
operations fail and orelse may occur in the context too. But just as we used the
monad laws then to express all contexts with a single bind, so here we can use the
monoidal properties of fail and orelse to express all contexts with a single orelse.
Furthermore, we need not consider contexts with orelse nested inside bind, because

([o] ‘orelse‘d) ‘bind‘k = ([o] ‘bind‘k) ‘orelse’(b ‘bind k)
It 1s therefore sufficient to consider contexts of the form
value (([8] ‘bind k) ‘orelse‘b)

(Remember that this choice isn’t critical. If we make a mistake at this point, we will
discover it when we are unable to complete the derivations of the operators.)

Moreover, we may reasonably guess (or discover by doing the derivations) that
uses of k£ will be in the context value (k x ‘orelse‘b) for some 2 and b, and uses of b
will be in the context value b. We will therefore represent contexts by the type

data Crzt a ans = VBO (a — Maybe ans — Maybe ans) (Maybe ans)

where

(Va, Yk (value b') = value (k z ‘orelse‘d’))

= VBO k (value b) = value (([o] ‘bind‘k) ‘orelse*b)
The antecedent says that uses of k of the form we expect can be represented by
applying k. Since we plan to store only the value of b and b’ 1t is natural to require
that k& need only the value. The conclusion says that in that case, the contexts we
are interested in can be represented using VBO.

Now assuming that k has the property in the antecedent and that b = value b,
we can derive

unit x (VBO k 13) = value ((unit ‘bind‘k) ‘orelse‘b)

= value (k © ‘orelse‘b) [1st monad law]
=k z (value b) [prop. k]
=kab [prop. b]

fail (VBO k I;) = value ((fail ‘bind‘k) ‘orelse‘b)
= value (fail ‘orelse‘b)
= value b

=5

The derivation of bind is a little more complicated because of the more complex
property that k satisfies. We begin in the usual way,

(m ‘bind* f) (VBO k b)

= value (((m ‘bind* f) ‘bind‘k) ‘orelse‘b)

= value ((m ‘bind‘(Ax — [« ‘bind‘k)) ‘orelse‘b) [3rd monad law]
=m (VBO k' b)

provided k' satisfies
Kz (value b') = value ((f = ‘bind‘k) ‘orelse‘d’)

But the right hand side of this equation is equal to

fx (VBO]% (value V"))
and so we can satisfy the condition by taking

l{?’xl;’:fx(VBOl%bA’)
So completing the derivation,

(m ‘bind* f) (VBO k b) = m (VBO (Az b’ — f x (VBO k ")) b)

The derivation of orelse is straightforward:

(m ‘orelse*n) (VBO k b)

= value (((m ‘orelse‘n) ‘bind‘k) ‘orelse‘b)

= value (((m ‘bind‘k) ‘orelse‘(n ‘bind‘k)) ‘orelse‘b)

= value ((m ‘bind‘k) ‘orelse‘((n ‘bind‘k) ‘orelse‘b)) [associativity]
=m (VBO k (value ((n ‘bind*k) ‘orelse‘b))) [prop. VBO]
m (VBO k (n (VBO k (value b)))) [prop. VBO]
m (VBO k (n (VBO k b)))

Finally, we derive value:

value m = value (m ‘orelse’ fail)
= value ((m ‘bind‘ unit) ‘orelse’ fail)
=m (VBO 1% (value fail))
=m (VBO k' No)

provided

k oz (value b') = value (unit x ‘orelse*b’)

But the right hand side here is equal to Yes z, so we take k' = Az b — Yes z to

complete the derivation.

We can simplify the definitions slightly further by dropping the VBO constructor
and replacing every context argument by two arguments, & and b. Putting the results

together, we obtain the definitions in figure 5, a continuation passing implementation

of backtracking.

Ezercise 2. Consider the state monad, with additional operations

fetch . M St
store :: St — M ()
run:Ma— St—a

type M a ans = (a — Maybe ans — Maybe ans) — Maybe ans — Maybe ans
unitz kb=Fkzb
(m ‘bz’nd‘f)fcl;:m (Az bA’—>fxlA€bA’)lA)

failk b=5
(m ‘orelse‘n) b=mk (n k IA))
z b — Yes z) No

k
value m = m (A

Fig.5. A Context-passing Implementation of Backtracking.

satisfying

fetch ‘bind‘ As — store s = unit ()
store s ‘bind‘ A() — fetch = store s ‘bind‘A() — unit s
store s ‘bind‘\() — store s' = store s’
run (unit) s = x
run (fetch ‘bind‘f) s = run (f s) s
run (store s ‘bind* f) s’ = run (f ()) s

Derive term and context passing implementations of these operations.

7 Specifying Pretty-printing

Now we shall return to our case study: pretty-printing. Before we can start to derive
implementations of the pretty-printing combinators we must develop a specification.
But in this case, it 1sn’t intuitively obvious what laws the pretty-printing combinators
should satisfy! We need some way to guide our intuition, to lead us to write down
the right laws for the combinators.

In mathematics, we often guide our intuition with the help of an example. If we
are formulating hypothesis about certain topological spaces, we might think about
the reals. It is even more important when formulating a new concept, such as a group,
to have a concrete model in mind. We are trying to formulate a theory of pretty-
printing, but as yet we have no model to guide us. So we shall start off by looking
for an abstract model of documents, on which we can agree what the behaviour
of the combinators should be. Our model will not be — and is not intended to be
— a reasonable implementation, but it can be thought of as a kind of ‘denotational
semantics’ for the combinators. Using the model we can establish algebraic properties
which the combinators should satisfy — in any implementation. And then once these
properties are established, we can use them as in the previous sections to derive
implementations.

7.1 Abstract Layouts

We’ll begin by looking for an abstract model of a pretty-printer’s output — that is,
prettily indented text. We could say that the output is just a string, but a string has

so little structure that we can derive no intuition from it. Let us say instead, that a
layout is a sequence of indented lines, which we can model as

type Layout = [(Int, String)]*

Notice that we shall allow indentations to be negative: later on this will contribute
to a nicer algebra, just as integers have a nicer algebra than natural numbers. But
notice also that we restrict layouts to be non-empty (we use [—]|* for the type of
non-empty lists). We’ll return to this point below.

We can now specify text, nest and ($$) very easily:

text s = [(0, s)]
nest k1 =1[(i+k,s)|(i,s) <]
11 8%, =1 1,

The right definition of horizontal composition (<>) is not so obvious. The desired
behaviour is clear enough when text s is placed beside text ¢, but what if both layouts
are indented? What if the arguments occupy more than one line each?

Our choice is guided by the following principles:

— The two dimensional structure of each argument should be preserved; that is,
the appearance of z <> y on the page should consist of some combination of a
translation of x and a translation of y.

— QOur intention is that a layout is just a pretty way of displaying a string. What
string? We define

string :: Layout — String
string | = foldrl @) (map sndl)
where s@®t=s+H"" +Hi
(We interpret a line break as white space — equivalent to a single space). Then
we expect that string (x <> y) = string ® ++string y. This property enables
the programmer to predict the string that & <> y represents, without thinking
about how # and y are laid out.
— Indentation cannot appear in the middle of a line — since our abstract model

(fortunately) cannot represent this.

There is really only one choice for (<) that meets these three criteria: to translate
the second operand so that its first character abuts against the last character of the
first operand. Formally,

(x +[(1,9)]) < (5, 0)] Hy) = @ +[(E s +1)] Hnest (i + length s — j) y

To see that the definition is reasonable, consider the following two examples:

<> two | |one: two
three| three

while x>0 do - EI while x>0 do
X 1= X-2 X 1= X-2;

So at least in cases where one of the operands is a single line, the result is reasonable
and useful.

Now look again at the formal definition of (<>). Tt is only defined for non-empty
arguments! This is the reason for the restriction to non-empty layouts that we made
above: there is simply no sensible definition of (<) for empty arguments. The re-
striction is unfortunate: the empty layout would be a unit for $$, so improving
the combinator algebra, and moreover would be useful in practice. But if we allow
empty layouts and simply make some arbitrary choice for the value of <> in these
cases, many algebraic laws involving <> cease to hold. A way out of the dilemma
would be to allow empty layouts, and define <> to be a partial operator. But since
this would complicate the development we have not done so.

7.2 The Algebra of Layouts

Now that we have formal definitions of the layout operators we can study their
algebra. The laws in figure 6 are easily proved, although the proofs are not included
here.

(z<>y)<>z=12<(y<>2)
(z$3y)$S2z=28$ (y$$2)
r <> text " =x
nestk (z 3% y) = nest k = $$ nest k y
nestk (x <> y) =nestk x <>y
r<>nestky=x <>y
nest k (nest k' z) = nest (k+ k') x
nest0 v =«
(z88y) <>2=28%(y <> 2)
text s <> ((text " <> y) $% z) = (text s <> y) $$ nest (length s) z
text s <> text t = text (s ++t)

Fig. 6. Algebraic laws for layout operations.

G

First, both <> and $$ are associative, and <> has text " as a right unit. However,
<> has no left unit because the indentation of the second operand is always lost.
For example,

Since we excluded empty layouts, $$ has no units at all.

The indentation combinator nest distributes over $$, and distributes over <>
on the left. We do not need to indent the right operand of <> here, because 1t is
translated to abut against the left operand and so its indentation is lost. For the
same reason nest can be cancelled to the right of <. Of course consecutive nests
can be combined, and nesting by zero is the identity operation.

Moreover $$ and < are related to one another by a kind of associative law: we
may say they ‘associate with’ one another. For example,

@%@OZEZZQ%@O

On the other hand,
(z<>y)$$2£2<> (y$%2)

Here the indentation of z is different in the two cases: for example,

@B sE-1¢ 2 - EsD

It is the failure of this law to hold that makes the pretty-printing algebra interesting!
We have to have some way to transform expressions of the form » <> (y $$ 2),
and we can in the special case when we know the position where x ends, and the
indentation of the first line of y. For example, when = 1s just a text, and y is of the

form text " <> y'. The following law is sufficient:

text s <> ((text ™" <> y) $8 z) = (text s <> y) $$ nest (length s) z

One might say that the difficult part of pretty-printing is transforming expressions
so that this law is applicable.

Finally there is a simple law relating <> and text.

In a sense these laws completely specify the bahaviour of the layout operators:
any two closed terms which denote the same layout can be proved equal using these
laws.

Ezercise 3. Prove this remark, by choosing a canonical form for layout expressions
such that every layout is denoted by a unique canonical form, and by deriving im-
plementations of the operators that map canonical forms to canonical forms.

Remark on the benefits of a formal approach: This formal specification of the lay-
out operators is an after-the-fact reconstruction. The first implementation was con-
structed using seat-of-the-pants intuition, and the combinators’ behaviour was very
subtly different. The nest combinator inserted spaces ‘in a vertical context’: that 1s,
when used as an operand of $$ or at the top level.

As a consequence the law

nestkx <>y=x<y

held in the implementation — the context here i1s ‘horizontal’. But since the be-
haviour of a layout depended on its context, we could not give a simple abstract
model such as that in the previous section. Moreover, of the eleven laws in figure 6,
four did not hold (which four?) Both the user and the developer of the library were
deprived of a useful algebra.

For the user (that is the author of a pretty-printer) each law means one less
worry: there is no need to think about whether to write the left or the right hand

side. For the developer, each law simplifies optimisation: the original library was very
hard to optimise without changing its behaviour. The program we are following now,
of deriving implementations from the algebra, would have been extremely difficult
to follow.

And all these problems stemmed from a very subtle error that was only revealed
by writing a formal specification. . .

7.3 Abstract Documents

The layout operations enable us to construct individual layouts, but a pretty-printer
must of course choose between many alternative layouts. We make a design decision:
to separate the construction of alternatives from the choice of the prettiest layout.
We represent a collection of alternatives by a set:

type Doc = P(Layout)

We will require that every layout in a Doc represent the same string, so that the
programmer knows which string is being pretty-printed.
The choice of a particular layout will be made by a function

best :: Doc — Layout

Thus the author of a pretty-printer need only construct a set of alternatives; the
hard work of selecting the best alternative is done just by reusing the function best.

Since Docs are just sets of layouts, there is a natural way to promote the layout
operations to work on Docs too. We just apply the operation to the elements of the
operand sets and form a set of the results — for example,

dy <> dy = {11 < lz|ll € dl}
The promoted operations distribute over U and preserve (§ — for example,

(zUy)<>z=(r<2)U(y < 2)
h<>z=90

Moreover, since the laws of the layout algebra are all linear in the sense that no
variable appears more than once on either the left or right hand side, then they hold
for documents also. So all the laws in figure 6 remain true for Docs.

Of course, if we confine ourselves to the layout operations we can only construct
Docs with a single element. We must add an operation with multiple possible layouts.
Since we require that all layouts in a document represent the same string, union is
not an appropriate operator to provide — rather we should define an operation that
forms the union of two Docs that are guaranteed to represent the same string. Noting
that

string (x $$ y) = string x H" " +Hstring y
it 1s tempting to define

won

T <> y==z < lext <y

and define an operator that forms the union of z $$ y and = <> v.
However, this isn’t quite enough. Sometimes we want to make several choices
consistently: for example, we may want to allow

<> |then sl| <> |e|se 52| = |if e then sl else 52|

if e
$$|then sl|$$|e|se 52|: then sl
else s2
as alternatives, without also allowing
if e then sl

<> (|then sl|$$|e|se 52|) =

else s2

. if e
$$|then 51| <> |e|se 52|: then sl else s2

We therefore define an n-ary operation, which makes n — 1 choices consistently:

sep :: [Doc]t — Doc
sep xs = foldrl (<4>) xsU foldr! ($9) xs

We'll revise this definition slightly below, but first let us observe a pleasing interac-
tion between sep and nest. Consider for example,

sep []while x>0 do|, nest 2 |x = x—2ﬂ

The alternative layouts here are

<4> nest 2 |x = x—2| = |whi|e x>0 do| <+> |x = x—2|

= |whi|e x>0 do x := x—2|

and

- while x>0 do
while x>0 do|$$ nest 2 : e 2D

In the horizontal form no unwanted extra indentation appears, because nest can be
cancelled on the right of (<>).

Now let us consider an example which motivates a slight refinement to the def-
inition of sep. Suppose we wish to pretty-print pairs of statements separated by a
semicolon, choosing between horizontal and vertical layouts. We might define

semic x y = sep [x <> text)", y]

Now for example,

in which both horizontal and vertical layouts look fine. But consider

. |while x>2 do||while y>2 do
semic

x:=x-2 y:=y-2
while x>2 do Wh)l(le_))((—ZQ2 do
- x:=x-2; wh)l/l.e_))//_ZQ2 ol yhile y=2 do
: y:=y-2

In cases such as this, the horizontal layout is ugly or even misleading. We therefore
redefine
sep xs = fit (foldrl (<) xs) U foldrl ($%) s
where fit d ={l € d|lengthl =1}

which restricts the horizontal form of a sep to fit on one line.
The algebraic properties of fit are very simply stated — see figure 7. The sep
operator has fewer useful properties, and we will develop them as we need them.

fit (text s) = text s
fit (nest k z) = nest k (fit x)
fit(z<>y)=fitz <> fity

fit (z8%y)=10
fit (5 Uy) = fit o U fit y
fith=0

Fig. 7. The fit laws.

Ezercise 4. Define a type of abstract syntax trees for a simple imperative language,
with assignment statements, if-then—else, while-do, and begin—end. Use the com-
binators to write a pretty-printer for this type.

7.4 Choosing a Pretty Layout

Now that we have designed combinators for constructing documents with many
possible layouts, it is time to discuss choosing among those alternatives. Many pretty-
printers aim simply to avoid exceeding a given page width. However, we found that
using this criterion alone tends to produce layouts such as

|for i =1 to 100 do for j = 1 to 100 do for k = 1 to 100 do a[i,j,k] := 0|

which fits on a page, but cannot be described as pretty. We therefore impose an
additional constraint limiting the number of characters on each line (excluding in-
dentation) to a smaller number. The idea is to avoid placing too much information

on a line — even a line that begins at the left margin. Under this constraint the
example above might instead be laid out as

fori =1 to 100 do
for j = 1 to 100 do
for k = 1 to 100 do afi,j k] := 0

In general a pretty layout will consist of a ribbon of text snaking across the page.
To see that this is reasonable, ask yourself: ‘is the prettiest layout on an infinitely
wide page really to place everything on one line?’

We will say that a line that meets both constraints i1s nice, and define

nice, (i,s) <= i+ length s <w Alength s <r

where w is the page width and 7 is the width of the ribbon.

We might be tempted to specify that the pretty-printer choose a layout all of
whose lines are nice, but we must be careful: some documents have no such layout
at all. For example, text “13 characters” cannot be made to fit within a pagewidth of
12. Even in such cases we want the pretty-printer to produce something, and rather
than adopt an ad hoc solution we accept that the niceness criteria will not always
be met.

Moreover, even if a nice layout exists we may not want the pretty-printer to
choose it! Consider for example the document

1
sep [lEHE[I < 999
13 characters
abl El
?29 X . 999
characters 13 characters

This document has a nice layout on a page of width 14 characters — the second one.
But it would be unreasonably inefficient for a pretty-printer to decide whether or
not to split the first line of a document on the basis of the contents of the last. An
efficient pretty-printer should need only a limited look-ahead, and so we must expect
the first layout to be chosen despite the trouble ahead®. The question of which layout
a pretty-printer chooses is thus trickier than it at first appears. Of course, it could
never have been sufficient to say simply that a nice layout is chosen, since even if
all layouts are nice, some will be preferable to others. We must instead define an
ordering on layouts and choose the best.

We begin by defining an ordering >/ on individual lines. Our guiding principles
are

& A different design decision is possible: we might choose to ‘play safe’ and split the first
line unless a limited look-ahead shows that it is definitely unnecessary. We have not
explored this alternative.

— a nice line 1s always better than an overflowing line,
— if one cannot avoid overflowing, it 1s better to overflow by a little than by a lot,
— unnecessary line breaks should be avoided.

We therefore define

(nicey x A —nice) y)
>y <= V (mnicey & A—nicey! y A e < fy)
V (nicey @ A nicey y Atx > fy)

where the length of a line is given by #(¢, s) = ¢ + length s.
If we know that fz > fy then we can test > particularly simply:

nicey, x =z >. y

=y,

w
r
—nice,)
In the first case y must also be nice, but not as nice because it is shorter. In the
second case either y is nice (and therefore nicer than z), or it is not nice, but nicer
than & because it is shorter. We will use this property in the implementations.

Unfortunately an ordering on lines does not extend in a unique way to an ordering
on layouts, and so we must make an arbitrary decision. We choose to order layouts
by the lexicographic extension of the ordering on lines, which we will also write
as >¥. The reason for this choice is simple: lexicographic ordering can be decided
left-to-right, and we hope to pretty-print documents from left to right without much
look-ahead. We define

VY Layout — Layout — Layout
to select the lexicographically nicer of its arguments, and
best :: Int — Int — Doc — Layout

such that best w r selects the lexicographically nicest layout in the set. It’s also
convenient to introduce a unit co for V', representing a layout uglier than any
other.

The careful reader will have noticed that > is only a partial order — if z and y
are both lines of equal length, then neither z > y nor y > « holds, even though z
and y need not be equal. Consequently both V} and best are partial operations. But
this will not trouble us, because all the document operations construct sets which are
totally ordered by >. This will become evident when we derive implementations of
the library. Consider this: our task is to define when one layout is nicer than another
layout of the same document; we have no need to (and indeed, we cannot) define
when a layout is nicer than a layout of an unrelated document.

Let us now investigate the properties of >}V, V¥ and best. Since the ordering on
layouts is lexicographic,

2882 >Y 288y
ey y= | AN z>¥ys$$:z
A eSSty

Moreover,

x>y = nest k x >YF nest k y

and therefore
nest k (xV¥y) = nest k aV¥ nest k y

Finally, we can reformulate the observation about a simple test for ¥ as follows:
length s < w ‘mun‘r = text s > text

length length t = N , "

ength & > teng (A length s > w ‘min‘r = text T > text 5)

From these properties, and from the fact that best chooses the nicest element
from a set, we can derive the laws in figure 8 for best.

bestwr ($%y) =bestwr x8$ best wr y
best w r (nest k) = nest k (best w—k z)
best w r (text s) = text s
bestwr (zUy) =bestwr zV, bestwry

bestw r) = oo

Fig. 8. The best laws.

8 Implementing Pretty-printing: A Term Representation

Now that we have developed a collection of algebraic properties of the pretty-printing
operators, we can apply the methods presented in the earlier sections of the chapter
to construct implementations.

(The reader may be wondering why we can’t just use the abstract representation
of documents as an implementation, say representing a Doc as a list of the possible
Layouts. Consider for a moment a medium sized syntax tree for an imperative lan-
guage, which contains 100 occurrences of if-then—else, each pretty-printed using
sep. Ignoring the fact that nesting may force some seps to make related choices,
such a Doc has 2190 alternative layouts, and so would be represented by a list with
this many elements. There is no reason to expect the best layout to be near the
beginning, and so it should be clear that searching for it in such a list 1s a hopeless
exercise.)

We will begin by deriving an implementation based on a term representation of
Docs. We choose simplified terms to which the best laws are easily applicable, which
suggests

E:=text S|nest N E|ESSE|EUFE|D

However, we also want to be sure that we can apply our simplified test for >, and
so we will restrict the form of unions further. We can define a class of documents
with a ‘manifest’ first line by

M = text S| text S$S E

The simplified test is easily applicable to documents of this form provided one has
a longer first line than the other. We will therefore only permit unions of the form

Usw=M|UUU

and moreover we shall impose an invariant that the first line of every layout in the
left operand of U must be strictly longer than the first line of every layout in the right
operand. Since both operands represent the same string it follows that all layouts in
the right operand consist of at least two lines.

Now we can define simplified terms by

E:=Ul|nest N E
We allow (§ only at the top level of the result of fit,
EO:=FE |0

With these restrictions best of a union is easily determined.
We can represent Docs by the type

data Doc = Text String — text s
| String ‘TextAbove‘ Doc — text s $% «
| Doc ‘Union* Doc —zUy
| Empty — 0
| Nest Int Doc — nest k x

although we must be careful only to construct documents of the form described
above.

We can use the same type to represent Layouts: a Doc not involving Union or
Empty represents a Layout.

The definition of best is now easy to derive by applying the best laws — see figure
9. We'll discuss only the Union case. We know from the best laws that

best w r (x ‘Union‘y) = best wr aV best wry

But since best must choose one of the layouts in its argument, the datatype in-
variant implies that if best w r z is either text s or text s $$ ', and best w r y is
text t $%3 13/, then length s > length t. So the simplified niceness comparison is appli-
cable. If nice) (text s) then text s Y text t, and by the lexicographic properties it
follows that text s > textt $$y and tert s $$ =’ > text t $% y'. So in this case
V¥ chooses its left operand. If —nice? (text s) then the opposite holds. So we can
implement V}¥ in this case by the function nicest, which simply inspects the first
line of 1ts first operand.

Haskell’s lazy evaluation is exploited here, in two ways. Firstly, shorter xs n is
defined to test whether length zs < n without evaluating all of zs if it is not. Since

best w r (Text s) = Teat s
s ‘TextAbove‘w) = s ‘TextAbove‘best w r x
Nest k x) = Nest k (best (w —k) r x)

z ‘Union‘y) = nicest w r (best w r x) (best w r y)

best w r
best w r
best w r

e =

nicest w r x y = if shorter (firstline z) (w ‘min‘r) then z else y
shorter £s n = null (drop n zs)

firstline (Text s) =
firstline (s ‘TextAbove‘z) = s

Fig. 9. The definition of best.

some layouts may have very long first lines — for example, the layout produced when
all seps adopt a horizontal form — this is an important optimisation. Secondly, since
nicest makes its decision on the basis of the first line of each argument only, then
when we select the best layout from a Union the layout of the unsuccessful branch
is evaluated only as far as the first line. Although the Doc we apply best to may be
a large tree, we follow (and therefore evaluate) only a single path through it.

Definitions of text, nest, (<>) and ($$) are obtained by simple algebraic manipu-
lation. To take just two examples,

(Nest k 2)$$y = (nest k z) $$ y
= (nest k z) $$ (nest k (nest (=k) y))
= nest k (z 3% nest (—k) y)
= Nest k (z $$ Nest (—k) y)

Text s <> (t ‘TextAbove‘xr) = text s <> (text t $$ x)
= text s <> ((text " <> text t) $$ x)
= (text s <> text t) $$ nest (length s) x [<>/ $$ law]
= text (s Ht) $% nest (length s) x
= (s Ht) ‘TextAbove‘ Nest (length s) »

The remaining equations are derived similarly; the complete definitions appear in
figure 10. It is easy to verify that the definitions terminate. We leave 1t to the reader
to check that if the datatype invariant holds for the arguments, it also holds for the
result of each these operators.

It is interesting to look at the way Unions are treated in these definitions. In
almost every case Unions in arguments are ‘floated upwards’ to give a Union in the
result. The exception is a Union in the right argument of ($$): we do not use the
property

z$$ (yUz)=(¢$$y) U (288 2)

One good reason is that to do so would violate the datatype invariant: the operands
of the union on the right hand side have the same first lines. Another good reason
is efficiency: the Doc form we have chosen groups together all layouts with the same
first line in a value of the form s “TextAbove‘ x. The best function can then reject
all these layouts in one go, if s is not nice. Here z may represent many billions of

text s = Text s
nestk x = Nestk =

Text s $% y = s “TextAbove‘y

(s ‘TextAbove‘z) $$ y = s ‘TeaxtAbove (x $$ y)
(Nest k x) 3% y = Nest k (z $8 Nest (—k) y)
(z ‘Union‘y) $$ 2z = (x $$ 2) ‘Union‘(y $$ 2)

Text s <> Text t = Text (s ++t)

Text s <> (t ‘TextAbove w) = (s Ht) ‘TextAbove‘Nest (length s) x
Text s <> (Nestk z) = Text s <>z

Text s <> (z ‘Union‘y) = (Text s <> x) ‘Union‘(Text s <> y)

(s ‘TextAbove‘z) <>y = s ‘TextAbove‘(x <> y)

Nestk x <>y = Nest k(z <> y)

(z ‘Union‘y) <>z = (z <> z) ‘Union‘(y <> z)

Fig. 10. The definitions of text, nest, (<>) and ($$).

alternative layouts, and if all Unions were floated to the top level then best would
have to reject each one individually. The cost would be prohibitive, and the library
simply would not work.

We still need to implement sep — recall its specification

sep xs = fit (foldrl (<) xs) U foldrl ($%) s

We can almost use this directly as the implementation, but we must ensure that the
Union is well-formed. Firstly, if the result of fit is # we must avoid creating a Union
with an empty operand. Secondly, we must ensure that the first line of the result
of the fit is strictly longer than the first lines in the second operand. Provided zs
consists of at least two documents this is guaranteed, since the longest first line in
(21 9% 22... $% 2,) is the longest first line in 2, and the horizontal form contains at
least one extra space. But if zs consists of exactly one document then the horizontal
and vertical forms are the same, and a Union would be badly formed. So we must
treat this as a special case. Thirdly, we must avoid constructing a Union with nested
operands: this can only happen if the first Doc in the list is of the form Nest k z. In
that case we factor out the Nest:

sep (nest k x : zs) = fit (nest k & <> foldrl (<4>)zs)U
(nest k x $$ foldr1 ($%)xs)
= nest k (fit (z <> foldrl (<>)zs))U
nest k (x 83 foldrl ($8)(map (nest (—k)) zs))
= nest k(sep (x : map (nest (—k)) xs

The definitions of sep and fit appear in figure 11. Notice that the datatype invariant
lets us define fit of a Union very efficiently, since we know the layouts in the second
operand consist of at least two lines.

sep [z] ==
sep (Nestk © : 2s) = Nest k (sep (x : map (nest (—=k)) zs))
sep s = fit (foldrl (<4>) zs) ‘u’ foldr1 (3%) xs
where Fmpty ‘u'y =y
x ‘u‘y=ux ‘Union‘y

fit (Text s) = Teat s
fit (s ‘TextAbove ‘s) = Empty
fit (Nest k z) = case fit z of
Empty — Fmpty
y — Nestk y
fit (z ‘Union‘y) = fit x

Fig. 11. The definition of sep.

To complete the implementation of the library we just need to define a function
mapping Layouts to appropriate strings. Let us define

layout :: Int — Doc — String

such that layout k = constructs a string displaying nest k . A suitable definition
appears in figure 12.

layout k (Text s) = indent k s
layout k (s ‘TextAbove‘z) = indent k s Hlayout k =
layout k (Nest k' x) = layout (k + k') =

indentk s |k > 8=\t": indent (k —8) s

indentk s|k>1="*":indent (k—1) s
indent 0 s = s +“\n”

Fig. 12. Mapping layouts to strings.

One or two minor optimisations can be made. For example,
best w r ((x ‘Union‘y) ‘Union‘z)

tests x for niceness twice if it is nice — once to reject y, and once to reject z. This

is easily avoided, say by redefining best to return a pair of the best layout and a

boolean indicating whether the first line is nice. Such measures can bring a useful

improvement in performance, but in fact a much more serious problem remains.
Consider for example

sep [sep [sep [[hello][a],[b],[c]

hello
hello a b hello a a
= < |hello a b ¢|, ||b '
c b
c
c

If this document is displayed on a page of width 5 then the last layout must be
chosen, but since each layout has a different first line, our implementation must first
construct and reject each of the first three. Yet as soon as the length of is
known it 1s clear that the innermost sep, and therefore all the others, must be laid
out vertically. We could therefore go immediately to the fourth layout. For large
documents in which sep may be nested very deep, this optimisation is important.
Without it the complexity of prettyprinters is at least O(n?) in the depth of sep
nesting, and in practice they pause for an embarrassingly long time at the beginning
of pretty-printing, gradually speeding up as more and more sep decisions are resolved.

But to incorporate this optimisation we will need to change our representation
of documents.

9 Optimised Pretty-printing: A Term Representation

Looking back at the problematic example, we can see that the three first layouts
have a common prefix — “hello a” — and moreover we can tell just from the prefix
that none of the layouts has a nice first line. Our goal will be to factor out this
common prefix, express the union of the three layouts as

hello a| <> (x Uy U 2)

for suitable z, y and z, and then reject all of them together in favour of the fourth.

But to be able to observe this situation, we must introduce text S <> F as a
simplified form. At the same time we can replace the simplified forms text S by
text " and tert S $$ E by text " $$ F, because the old forms can be expressed in
terms of the new ones as follows

G

lext s = text s <> text
text s $$ x = text s <> (text " $9 nest (—length s) z)

We will need to allow # in more places than before, because we intend to use the
property
fit (text s <> x) = text s <> fit »
where the right hand side is a canonical form with a component (fit #) that might
very well be empty. We don’t want to test for an empty set here, of course, because
that would make fit hyper-strict with disastrous consequences.
Our new simplified forms are therefore given by the grammar

E:=U|nest N FE
Us=M|UUUI|D
M = text ™ |text " $S E | text S <> E

We impose the same condition on unions as before: every layout in the first operand
must have a longer first line than every layout in the second.
These simplified forms can be represented by the datatype

data Doc = Nil — text ™
| NilAbove Doc —— text " $S
| String ‘TextBeside‘ Doc — text s <> x
| Nest Int Doc — nest k x
| Doc ‘Union* Doc —zUy
| Empty — 0

And now the key problem is to rederive sep so as to delay introducing a Unzon until
after the common prefix of the two branches of the sep is produced.

We need an algebraic law permitting us to draw a prefix out of a sep. Let us try
to prove one. Assuming zs is non-empty, then

sep ((text s <> x) : xs)

= fit (text s <> & <> (foldrl (<4>) xs))U

((text s <> x) $$ foldrl ($%) xs)

(text s <> fit (text ™" <> x <> foldrl (<) zs))U

(text s < ((text " <> x) $$ foldrl ($33%) (map (nest (—length s)) ws)

G

= text s <> sep ((text ™' <> x) : map (nest (—length s)) xs)

This last step holds because nest can be either cancelled or introduced freely in the
horizontal alternative. We have already seen that we can move a Nest out of a sep,
and indeed we can even move a Union out of sep’s first argument without splitting
the sep into two branches which must be explored separately. In fact the only time
that we have to do this is when the first argument is N« — and by that point the
horizontal and vertical alternatives differ at the very next character, so there is really
no alternative. The derived definition of sep is given in figure 13. We have used an
auxiliary function specified by

sep’ x k ys= sep (x : map (nest k)ys)

to avoid repeated applications of nest to the remaining arguments.
Implementations of the other four operators can be derived in the usual way —

this time we skip the details. The resulting definitions are presented in figure 14.

Once again we leave it to the reader to check that the datatype invariant is satisfied.

In fact, these are not quite the implemented definitions. Heap profiling revealed
that the derived definition of ($$) leaks space: unevaluated calls of ($%) and nest
collect on the heap. These are introduced in the 3rd and 4th equations for ($$),
and unfortunately passed to a recursive call of ($$) which usually introduces still
more unevaluated applications. A solution is to avoid constructing these unevaluated
applications at all by using an auxiliary function

aboveNest v k y=x$$S nest k y

instead. This is of course just the specification of aboveNest; the derived implemen-
tation appears in figure 15. It is important that aboveNests second parameter is

sep [z] ==
sep (z: ys) = sep’ © 0 ys

sep’ Nilk ys = fit (foldl (<4>) Nil ys) ‘Union‘vertical Nil k ys

sep’ (NilAbove x) k ys = vertical (NilAbove x) k ys

sep' (s ‘TextBeside‘zx) k ys = s ‘TextBeside sep’ (Nil <> x) (k — length s) ys
sep' (Nestn z) k ys= Nest n (sep’ x (k —n) ys)

sep’ (z ‘Union‘y) k ys = sep’ x k ys ‘Union‘vertical y k ys

sep’ Empty k ys = Empty

vertical v k ys = © $8 nest k (foldr1 ($9) ys)
Fig. 13. sep optimised to delay Union.

text s = s ‘TextBeside‘ Nil
nestk x = Nestk

Nil <> (Nestk) = Nil<> z

Nil<>zr=v

NilAbove v <> y = NilAbove (v <> y)

(s ‘TextBeside‘z) <>y = s ‘TextBeside‘(z <> y)
Nestk x <>y = Nestk (v <> y)

(z ‘Union‘y) <>z = (z <> z) ‘Union‘(y <> z)
Empty <> z = Empty

Nil$$ z = NiAbove x

NilAbove z $$ y = NilAbove (z $$ y)

(s ‘TextBeside‘z) $$ y = s ‘TextBeside((
Nestk x 8%y = Nest k (x $$ nest (—=k) y)
(z ‘Union‘y) $$ 2z = (z $$ 2) ‘Union‘(y $$ 2)
Empty $$ y = Empty

Nil <>) $8 nest (—length s)y)

Fig. 14. Implementations of text, nest, (<>) and ($$).

evaluated strictly — otherwise the heap would fill up with unevaluated subtractions
instead. We can arrange this using hbc’s standard function seq a b, which evaluates
a and returns the value of &.

And now we must derive an implementation of best.

The trickiest case is best w r (text s <> x). We know that this must be equal to
text s <> y for some y — but what is y? It clearly depends on both z and s, because
the length of s affects the width of ‘ribbon’ available to the first line of x. Let us
introduce a new function best’ , whose defining property is

best wr (text s <> x) = tewt s <> best wr s

We can derive a definition for best” using the algebra; we present the details this

x 3% y = aboveNestz 0 y

aboveNest Nil k y = NilAbove (nest k y)
aboveNest (NilAbove x) k y = NilAbove (aboveNest z k y)
aboveNest (s ‘TextBeside‘s) k y = seq k' (s ‘TextBeside‘aboveNest (Nil <> x) k' y)
where k' = k — length s
aboveNest (Nest k') k y = seq k" (Nest k' (aboveNest z k" y))
where k"' =k — k'’
aboveNest (z ‘Union‘y) k z = aboveNest x k z ‘Union‘aboveNest y k z
aboveNest Empty k = = Empty

Fig. 15. Defining $$ without a space leak.

time.

text s <> best' w r s Nil = best w r (text s <> tewt ")
= best w r (text s)
= text s
= text s <> Nil

so we can take best’ w r s Nil = Nil.

text s <> best' w r s (NilAbove s)

= best w r (text s <> (text ' $$ z))

= best w r (text s $$ nest (length s) x)

= text s $% nest (length s)(best (w — length s) v x)
= text s <> (text " $9 best (w — length s) r x)

so we can take
best' w r s (NilAbove x) = NilAbove (best (w — length s) r x)
For the TextBeside case,

text s <> best wr s (t ‘TextBeside‘x)
= best w r (text s <> text s <> 1)
= text s <> text t <> best’ wr (s ++t) z

so we can take
best w r s (t ‘“TextBeside‘r) = t ‘TextBeside‘best’ w r (s ++1)
The Nest case is very simple:

text s <> best' w r s (Nest k) = best w r (text s <> nest k x)
= best w r (text s <>)
= text s <> best wr sz

so best w r s (Nest k z) = best’ w r s z. Finally,

text s <> best' w r s (z ‘Union‘y)

= best w r (text s <> (2 Uy))

= best w r (text s <> x)V¥best w r (text s <> y)

= (text s <> best' wr s) VY (text s <> best' w r s y)
= text s <> (best' wr s @ V¥ (s) best' wr s y)

where we have introduced a new operator whose defining property is that
text s <> (x VY'(s) y) = (text s <> z)VY(tert s <> y)

But recall that because of the invariant that Unions satisfy, V)Y chooses its left
argument if and only if its first line is nice. But if s is already longer than (w ‘min ‘r),
then no fert s <> x can have a nice first line. So in this case V¥'(s) can choose
its right argument without looking at either one! This is the optimisation we have
been trying to capture: just by looking at the common prefix we can select the right
branch, and thereby the vertical form for the sep from which the Union came. The
complete definition of best appears in figure 16.

best w r Nil = Nil
best w r (NilAbove z) = NilAbove (best w r)

best w r (s ‘TextBeside‘s) = s ‘TextBeside‘best' wr s

best w r (Nest k) = Nest k (best (w — k) r z)

best w r (z ‘Union‘y) = nicest w r (best w r x) (best w r y)

best w r Empty = oo

best wr s Nil= Nil

best' w r s (NilAbove) = NilAbove (best (w — length s) r x)

best' w r s (t ‘TextBeside‘x) =t ‘TextBeside best w r (s ++t)z

best' wr s (Nestk) =best wr sx

best' w r s (x ‘Union‘y) = nicest’ w r s (best’ wr s x) (best' wr sy)
best' w r s Empty = co

G

nicest w r & y = nicest’ w r Ty
nicest wr s xy=1f fits (w ‘min‘r) (length s) x then z else y

fits n k x = if n < k then false else
case x of
Nil — true
NilAbove y — true
t ‘TextBeside‘y — fits n (k + length t) y
o0 — false

Fig. 16. The optimised definition of best.

Once again minor improvements can be made to the implementation. Quite a
substantial speed-up is obtained by storing strings with their length — that is, strings
are represented within the library by a pair of their length and their characters.

String concatenation is used heavily in the library and is performed in constant
time: 1t consists of addition of the lengths and composition of the characters, which
are represented by a function as in section 4.2.

This implementation of the library is a major improvement on the previous ones.
There are no ‘embarrassing pauses’. While the cost of pretty-printing seems to grow
slightly faster than linearly, the library is able to produce large outputs (>200K)
in little space and reasonable time. On a SPARC ELC a benchmark program with
deeply nested seps evaluated between 500 and 1000 seps per second. Performance
1s quite acceptable, and far superior to both the earlier term-based implementation
(sometimes O(n?)) and the seat-of-the-pants implementation (which was actually
sometimes exponential).

10 A Context-passing Pretty-printer

The key observation in the development of the efficient combinators in the last
section was that

G

sep ((text s <> x) : ws) = text s <> sep ((text ™" <> x) : map (nest (—length s)) xs)
and so we can ‘factor out’ all the text in the first element of a sep before splitting
the computation into a Union of two alternatives. We exploited the observation by
making text s <> x into a simplified form, and testing for it in sep. But we could
equally well have derived a context-passing implementation, in which text tests for
the presence of an enclosing sep. Indeed, it seems natural to think of a Doc as a
function that chooses a layout depending on the context, and this is how the very
first implementation of the combinators was constructed.

What kind of contexts should we consider? Certainly observations of the form
best w r [¢] — that is, we should be able to lay out a document with a given page
and ribbon width. We will also need to lay out documents with a given indentation,
that is consider contexts of the form best w r (nest k [o]). If we take k = 0 then this
form subsumes the first.

Now imagine that a union appears in such a context. We can simplify as follows:

best w r (nest k (x Uy)) = best w r (nest k)V, best w r (nest k y)

We expect to continue working on x, so we must be able to represent contexts of
the form best w r (nest k [¢])V¥b also. We can think of b as the layout to choose if
we are forced to backtrack. Once again, the conditions on unions will enable us to
decide which of x and b to choose purely on the basis of the value of .

Of course, in order to apply the key optimisation we must be able to recognise
when a document is the first element of an enclosing sep. We shall therefore need
contexts of the form C[sep [[e], y1 .. .yn]]. Moreover, the optimisation applies to doc-
uments of the form text s <> . But when such a document appears at the top level,
we shall need to evaluate

best w r (nest k (text s <> x))

To do so we must be able to evaluate x, and we therefore need to be able to represent
its context in this expression. We shall add contexts of the form C[text s <> [o]] to
cover this case.

When we lay out x << y and z $$ y, we shall start by laying out . We therefore
have to represent the contexts C[[e] <> y] and C[[e] $$ y]. And when we expand a
sep into a union of two alternatives, the horizontal alternative appears inside fit. We
must therefore represent contexts of the form C[fit []] also.

So we choose contexts of the forms

Cle] ::= best N N (nest N [o])
| best N N (nest N [¢])V'E
| Cltext s <> [o]]

| Clsep[[e], E...FE]]

|l o]
|

|

where N represents integer expressions, and E represents document expressions.

Contexts can be represented by the following Haskell datatype:
data Crt = BestNest Int Int Int

| BestNestOr Int Int Int Doc

| TextBeside String Crt

| Sep [Doc] Cut

| Fit Cxt

| Beside Doc Cut

| Above Doc Cut

Must we consider such complex contexts, or can we apply the laws of the pretty-
printing algebra to simplify them? Unfortunately, we have been unable to eliminate
any of the forms of context given above. Certainly, some context simplifications are
possible. In particular, we can always move TextBeside up to the top level — this
is after all the observation that the key optimisation is based on. But we cannot
usefully combine TextBeside with the enclosing BestNest or BestNestOr, because
there would then be no way to express a BestNest without a TextBeside: no instance

of
best w r (nest k (text s <> [o]))

1s equal to
best w r (nest k [o])

because text " <> x # x in general.
We can also use the facts

fit (z85y) =

to simplify contexts in which Above occurs inside Fit, Sep, Above or Beside. If we
could always move Above to the top level, we could apply

best w r (nest k (x $$y)) = best w r (nest k) $%$ best w r (nest k y)

But alas, we cannot simplify text s <> (x $$ y) without knowing more about x.

In fact there is no form of context which can always be simplified away, and we
must just work with this rather complex set.

Now that the contexts have been chosen, the actual derivation of an implemen-
tation follows exactly the same method as in earlier sections. We will not go through
the details. We simply remark that, just as in the previous section, the implemen-
tation has a space leak. ‘Pending’ applications of nest fill up the heap. And to avoid
this, just as in the previous section, we combine an application of nest with other
operators. In this case we define two forms of context with a ‘built-in’ nest:

AboveNest k y C' = C[[o] $9 nest k y]
SepNest k ys C' = C[sep ([o] : map (nest k) ys)]

In the derived implementation, when we exploit

G

sep ((text s <> x) : ws) = text s <> sep ((text ™" <> x) : map (nest (—length s)) xs)

and the corresponding property for ($$), we just have to change a number in z’s
context, instead of building applications of nest.

FEuvaluation of the Context-passing Combinators This version of the pretty-printing
library is definitely more complex than the term-based versions, as a consequence of
the rather complex forms of context we were forced to work with. It is also harder
to modify: in particular, a change to the way the best layout is chosen would have
far reaching effects. In the term-based libraries, best is a separate function and may
be replaced with another without altering the rest of the library. But in the context-
passing library, every combinator knows how to behave in a BestNest context: the
criterion for selecting the best layout is distributed throughout the code.

This could be a fair price to pay for better performance. But at least in my
implementation, the context passing library is (a little) slower than the term based
one, and uses (a little) more space. Its only advantage seems to be that it does not
require lazy evaluation, as the term based library does (to make traversing one path
through an enormous tree efficient). If one were to reimplement the pretty-printing
library in a strict functional language such as ML, the context passing version might
prove more efficient than simulating laziness with references and nullary functions.

Relationship to the Original Implementation The first implementation of the pretty-
printing combinators was indeed based on context-passing, with contexts represented
by a five-tuple containing the page width, ribbon width, length of text to the left (c.f.
Cltext s <> [o]]), a boolean forcing a one-line layout (c.f. C[fit [#]], and a boolean
indicating whether the surrounding context was horizontal or vertical. Such a design
seems natural, if one intuitively expects a pretty-printer just to maintain a little state
(the context) to guide layout choices. But as we have seen, this context information

1s not sufficient to implement the correct behaviour of the combinators — which was
an obstacle to the discovery of the simple specification they now satisfy.

Moreover the performance of the combinators was poor, at first exponential in the
depth of sep-nesting, later improved to square. Further optimisations were hard to
find, because of the lack of a good algebra, and no doubt also because of the necessary
complexity of the solution — the efficient context-passing library described in this
section is nothing one would stumble on by accident.

The first implementation was developed rapidly, and its usefulness was certainly
an inspiration to develop the solutions presented in this chapter. But in retrospect,
the seemingly natural choice of a context-passing implementation was unfortunate.
Abandoning that choice, and working with a more abstract specification and sys-
tematic program development, led both to better behaviour and much more efficient
implementations.

11 A Comparison with Oppen’s Pretty-printer

The classic work in ‘language independent pretty-printing’ is Oppen’s pretty-printer
[3]. He defined a small language for expressing documents, and an interpreter for the
language which generates a pretty layout. The output of a user’s pretty-printer is
thus intended to be piped through the interpreter. The interpreter is written in an
imperative language, and its space requirements are small.

The similarity between Oppen’s language and my pretty-printing combinators
1s striking. Oppen provides equivalents of text, sep, and nest, and his language can
also express (<), although well-formed documents should not contain it. Oppen
also provides a variant of sep which places as many elements as will fit on one line,
then places more on the next line, and so on. An equivalent combinator could very
usefully be added to my pretty-printing library.

On the other hand, Oppen’s interpreter is quite large and hard to understand. His
paper describes its behaviour for ‘well-formed’ inputs, but the interpreter accepts
a wider class of inputs, and its behaviour on the others is hard to predict. The
interpreter defines the meaning of every program, but in a monolithic way — there
1s no way to describe the meaning of one construct in isolation. Moreover it isn’t clear
which of the possible layouts the interpreter actually chooses. One way to regard the
pretty-printing combinators is as a candidate for a denotational semantics of Oppen’s
language.

Oppen’s interpreter is probably more efficient than our combinators, but on the
other hand our libraries are probably easier to modify. For example, to make the
pretty-printer look ahead a few lines and avoid imminent line overflows by breaking
lines earlier, rather than making decisions only on the basis of the current line, we
would just need to redefine the best function. At least with the first two implemen-
tations we described, the other combinators could be reused as they are. It is not at
all clear what changes would need to be made to Oppen’s interpreter to achieve the
same effect.

Ezercise 5. Specify and implement Oppen’s sep-variant, which allows several ele-
ments per line in a vertical layout. Warning this is a substantial exercise!

12 Conclusions

In this chapter we have considered the design of combinator libraries. We saw how
studying the algebraic properties of the combinators desired can both help to suggest
natural choices of representation, and guide the implementation of the operators. We
saw several examples — lists, monads, and a pretty-printing library. For this kind
of program development we need a language with higher-order functions and lazy
evaluation, for which equational reasoning is valid; in other words, Haskell is ideally
suited.

In the case of pretty-printing, studying the algebra led to the correction of a
subtle error in the combinators’ behaviour, and to the development of much more
efficient implementations. The pretty-printing algebra is just too intricate to rely on
intuition alone: working informally I could not see how to implement the optimisation
considered in section 9, nor could I invent the representation used there. The formal
approach has been invaluable.

The pretty-printing library itself has proved useable, despite its simplicity. In-
deed, versions of it have seen quite extensive use, in program transformation tools,
proof assistants, and compilers. All the pretty-printers in both the Chalmers and
the Glasgow Haskell compilers are written using variants of this design.

References

1. Lennart Awugustsson, Haskell B. wuser’s manual, available over WWW from
http://www.cs.chalmers.se:80/pub/haskell/chalmers/.

2. Konstantin Laufer, Combining Type Classes and Existential Types, Proc. Latin American
Informatics Conference (PANEL), ITESM-CEM, Mexico, September 1994.

3. Derek C. Oppen, Pretty-printing,in ACM Transactions on Programming Languages and
Systems, Vol. 2, No. 4, October 1980.

A The Optimised Pretty-printing Library

module NewPP(Doc, (<>),($$),text,sep,nest,pretty) where
import Seq

infixl <>

infixl $$

data Doc = Nil -— text ""
| NilAbove Doc -— text "" $$ x
| Str ‘TextBeside‘ Doc—-- text s <> x
| Nest Int Doc -- nest k x
| Doc ‘Union‘ Doc —x Uy
| Empty -— {

deriving (Text)

type Str = (Int,String->String)
-- optimised rep of strings: fast length, fast concat.
len (i,_) = 1
(i,s) ‘cat‘ (j,t) = (i+j,s.t)
str s = (length s, (s++))
string (i,s) = s []

text s = str s ‘TextBeside‘ Nil

nest k x = Nest k x

x $$ y = aboveNest x 0 y
aboveNest Nil k y = NilAbove (nest k y)
aboveNest (NilAbove x) k y = NilAbove (aboveNest x k y)
aboveNest (s ‘TextBeside‘ x) k y =
seq k’
(s ‘TextBeside‘ (aboveNest (Nil<>x) k’ y))
where k’ = k-len s
aboveNest (Nest k’ x) k y =
seq k’’ (Nest k’> (aboveNest x k’’ y))
where k’’ = k-k’
aboveNest (x ‘Union‘ y) k z =
aboveNest x k z ‘Union‘ aboveNest y k z
aboveNest Empty k x = Empty

Nil <> (Nest k x) = Nil <> x

Nil <> x = x

NilAbove x <> y = NilAbove (x <> y)

(s ‘TextBeside‘ x) <> y = s ‘TextBeside‘ (x <> y)
Nest k x <> y = Nest k (x <> y)

Empty <> y = Empty

(x ‘Union‘ y) <> z = (x <> z) ‘Union‘ (y <> z)

sep [x] = x
sep (x:ys) = sep’ x 0 ys

sep’ Nil k ys = fit (foldl (<+>) Nil ys)
‘Union‘ vertical Nil k ys

sep’ (NilAbove x) k ys = vertical (NilAbove x) k ys
sep’ (s ‘TextBeside‘ x) k ys =

s ‘TextBeside‘ sep’ (Nil <> x) (k-len s) ys
sep’ (Nest n x) k ys = Nest n (sep’ x (k-n) ys)
sep’ (x ‘Union‘ y) k ys = sep’ x k ys ‘Union‘ vertical y k ys
sep’ Empty k ys = Empty

vertical x k ys = x $$ nest k (foldrl ($$) ys)
X <+>y =x<>text" " <>y

fit Nil Nil

fit (NilAbove x) = Empty

fit (s ‘TextBeside‘ x) = s ‘TextBeside‘ (fit x)
fit (Nest n x) = Nest n (fit x)

fit (x ‘Union‘ y) = fit x

fit Empty = Empty

best w r Nil = Nil
best w r (NilAbove x) = NilAbove (best w r x)

best w r (s ‘TextBeside x) = s ‘TextBeside‘ best’ wr s x
best w r (Nest k x) = Nest k (best (w-k) r x)

best w r (x ‘Union‘ y) = nicest w r (best w r x) (best w r y)
best w r Empty = Empty

best’ w r s Nil = Nil
best’ w r s (NilAbove x) = NilAbove (best (w-len s) r x)
best’ w r s (t ‘TextBeside‘ x) =
t ‘TextBeside® best’ wr (s ‘catf t) x
best’ w r s (Nest k x) = best’ wr s x
best’ w r s (x ‘Union‘ y) =
nicest’ wr s (best’ wr s x) (best’ wr s y)
best’ w r s Empty = Empty

nicest w r x y = nicest’ w r (str "") xy
nicest’ wr s x y = if fits (v ‘min‘ r) (len s) x then x else y

fits n k x = if n<k then False else
case x of
Nil -> True
NilAbove y —> True
t ‘TextBeside‘ y -> fits n (k+len t) y
Empty -> False

layout k (Nest k’> x) = layout (k+k’) x
layout k x = [? | i<-[1..k]] ++ layout’ k x

layout’ k Nil = "\n"
layout’ k (NilAbove x) = "\n" ++ layout k x

layout’ k (s ‘TextBeside‘ x) = string s ++ layout’ (k+len s) x

pretty w r d = layout O (best w r d)

This article was processed using the ¥TEX macro package with LLNCS style

