
Observable Sharing

for Functional Circuit Description

Koen Claessen and David Sands

Department of Computing Sciences,
Chalmers University of Technology and Göteborg University, Sweden.

www.cs.chalmers.se/∼{koen,dave}

Abstract. Pure functional programming languages have been proposed
as a vehicle to describe, simulate and manipulate circuit specifications.
We propose an extension to Haskell to solve a standard problem when
manipulating data types representing circuits in a lazy functional lan-
guage. The problem is that circuits are finite graphs – but viewing them
as an algebraic (lazy) datatype makes them indistinguishable from po-
tentially infinite regular trees. However, implementations of Haskell do
indeed represent cyclic structures by graphs. The problem is that the
sharing of nodes that creates such cycles is not observable by any func-
tion which traverses such a structure. In this paper we propose an ex-
tension to call-by-need languages which makes graph sharing observable.
The extension is based on non updatable reference cells and an equality
test (sharing detection) on this type. We show that this simple and prac-
tical extension has well-behaved semantic properties, which means that
many typical source-to-source program transformations, such as might
be performed by a compiler, are still valid in the presence of this exten-
sion.

1 Introduction

In this paper we investigate a particular problem of embedding a hardware de-
scription language in a lazy functional language – in this case Haskell. The
“embedded language” approach to domain-specific languages typically involves
the designing a set of combinators (higher-order reusable programs) for an ap-
plication area, and by constructing individual applications by combining and co-
ordinating individual combinators. See [Hud96] for examples of domain-specific
languages embedded in Haskell. In the case of hardware design the objects con-
structed are descriptions of circuits; by providing different interpretations of
these objects one can, for example, simulate, test, model-check or compile cir-
cuits to a lower-level description. For this application (and other embedded de-
scription languages) we motivate an extension to Haskell with a feature which we
call observable sharing, that allows us to detect and manipulate cycles in data-
structures – a particularly useful feature when describing circuits containing
feedback. Observable sharing is added to the language by providing immutable
reference cells, together with a reference equality test. In the first part of the
paper we present the problem and motivate the addition of observable sharing.

P.S. Thiagarajan, R. Yap (Eds.): ASIAN’99, LNCS 1742, pp. 62–73, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Observable Sharing for Functional Circuit Description 63

A problem with observable sharing is that it is not a conservative extension of
a pure functional language. It is a “side effect” – albeit in a limited form – for
which the semantic implications are not immediately apparent. This means that
the addition of such a feature risks the loss of many of the desirable semantic
features of the host language. O’Donnell [O’D93] considered a form of observable
sharing (Lisp-style pointer equality eq) in precisely the same context (i.e., the
manipulation of hardware descriptions) and dismissed the idea thus:

“ This 〈pointer equality predicate〉 is a hack that breaks referential trans-
parency, destroying much of the advantages of using a functional lan-
guage in the first place.”

But how much is actually “destroyed” by this construct? In the second part of
this paper we show – for our more constrained version of pointer equality – that
in practice almost nothing is lost.

We formally define the semantics of the language extensions and investigate their
semantic implications. The semantics is an extension to a call-by-need abstract
machine which faithfully reflects the amount of sharing in typical Haskell imple-
mentations.

Not all the laws of pure functional programming are sound in this extension.
The classic law of beta-reduction for lazy functional programs, which we could
represent as: let {x = M} in N = N [M/x] (x 6∈ M) does not hold in the theory.
However, since this law could duplicate an arbitrary amount of computation (via
the duplication of the sub-expression M , it has been proposed that this law is
not appropriate for a language like Haskell [AFM+95], and that more restrictive
laws should be adopted. Indeed most Haskell compilers (and most Haskell pro-
grammers?) do not apply such arbitrary transformations – for efficiency reasons
they are careful not to change the amount of sharing (the internal graph struc-
ture) in programs. This is because all Haskell implemetations use a call-by-need
parameter passing mechanism, whereby the argument to a function in a given
call is evaluated at most once.

We develop the theory of operational equivalence for our language, and demon-
strate that the extended language has a rich equational theory, containing, for
example, all the laws of Ariola et al’s call-by-need lambda calculus [AFM+95].

2 Functional Hardware Description

We deal with the description of synchronous hardware circuits in which the be-
haviour of a circuit and also its components can be modelled as functions from
streams of inputs to streams of outputs. The description is realised using an
embedded language in the pure functional language Haskell. There are good
motivations in literature for being able to use higher-order functions, polymor-
phism and laziness to describe hardware [She85, O’D96, CLM98, BCSS98].

Describing Circuits The approach of modelling circuits as functions on streams
was taken as early as in the days of µFP [She85], and later modernised in systems

64 Koen Claessen and David Sands

like Hydra [O’D96] and Hawk [CLM98]. The following introduction to functional
circuit description owes much to the description in [O’D93].

Here are some examples of primitive circuit components modelled as functions.
We assume the existence of a datatype Signal, which represents an input, output
or internal wire in a circuit.

inv :: Signal -> Signal and :: Signal -> Signal -> Signal
latch :: Signal -> Signal xor :: Signal -> Signal -> Signal

We can put these components together in the normal way we compose functions;
by abstraction, application, and local naming. Here are two examples of circuits.
One consists of just an and-gate and an xor-gate, which is used as a component
in the other.

halfAdd a b = (xor a b, and a b)
fullAdd a b c = let (s1, c1) = halfAdd a b

(s2, c2) = halfAdd s1 c in (s2, xor c1 c2)

We use local naming of results of subcomponents using a let expression. The
types of these terms are:

halfAdd :: Signal -> Signal -> (Signal, Signal)
fullAdd :: Signal -> Signal -> Signal -> (Signal, Signal)

Here is a third example of a circuit. It consists of an inverter and a latch, put
together with a loop, also called feedback. The result is a circuit that toggles its
output.

toggle :: Signal
toggle = let output = inv (latch output) in output

Note how we express the loop; by naming the wire and using it recursively.

Simulating Circuits By interpreting the type Signal as streams of bits, and
the primitive components as functions on these streams, we can run, or simulate
circuit descriptions with concrete input.

Here is a possible instantiation, where we model streams by Haskell’s lazy lists.

type Signal = [Bool] -- possibly infinite
inv bs = map not bs and as bs = zipWith (&&) as bs
latch bs = False : bs xor as bs = zipWith (/=) as bs

We can simulate a circuit by applying it to inputs. The result of evaluating
fullAdd [False,True] [True,True] [True,True] is [(False,True),(True,
True)], while the result of toggle is [True,False,True,False,True, . . .

As parameters we provide lists or streams of inputs and as result we get a stream
of outputs. Note that the toggle circuit does not take any parameter and results
in an infinite stream of outputs. The ability to both specify and execute (and per-
form other operations) hardware as a functional program is a claimed strength
of the approach.

Generating Netlists Simulating a circuit is not enough. If we want to im-
plement it, for example on an FPGA, or prove properties about it, we need to

Observable Sharing for Functional Circuit Description 65

generate a netlist of the circuit. This is a description of the all components of
the circuit, and how they are connected.

We can reach this goal by symbolic evaluation. This means that we supply vari-
ables as inputs to a circuit rather than concrete values, and construct an ex-
pression representing the circuit. In order to do this, we have to reinterpret the
Signal type and its operations.

A first try might be along the following lines. A signal is either a variable name
(a wire), or the result of a component which has been supplied with its input
signals.
type Signal = Var String | Comp String [Signal]
inv b = Comp "inv" [b] and a b = Comp "and" [a, b]
latch b = Comp "latch" [b] xor a b = Comp "xor" [a, b]

Now, we can for example symbolically evaluate halfAdd (Var "a") (Var "b")

(Comp "xor" [Var "a", Var "b"], Comp "and" [Var "a", Var "b"])

And, similarly a full adder. But what happens when we try to evaluate toggle?

Comp "inv" [Comp "latch" [Comp "inv" [Comp "latch" ...

Since the Signal datatype is essentially a tree, and the toggle circuit contains a
cycle, the result is an infinite structure. This is of course not usable as a symbolic
description in an implementation. We get an infinite data structure representing
a finite circuit.

We encounter a similar problem when we provide inputs to the a circuit which
are themselves output wires of another circuit. The Signal type is a tree, which
means that when a result is used twice, is has to be copied. This shows that
trees are inappropriate for modelling circuits, because physically, circuits have a
richer graph-like structure.

2.1 Previous Solutions

One possible solution, proposed by O’Donnell [O’D93], is to give every use of
component a unique tag, explicitly. The signal datatype is then still a tree, but
when we then traverse that tree, we can keep track of what tags we have already
encountered, and thus avoid cycles and detect sharing.

In order to do this, we have to change the signal datatype slightly by adding a
tag to every use of a component, for example as follows.
data Signal = Var String | Comp Tag String [Signal]

When we define a circuit, we have to explicitly label every component with a
unique tag. O’Donnell then introduces some syntactic sugar for making it easier
for the programmer to do this.

Though presented as “the first real solution to the problem of generating netlists
from executable circuit specifications [...] in a functional language”, it is awk-
ward to use. A particular weakness of the abstraction is that it does not enforce
that two components with the same tag are actually identical; there is nothing

66 Koen Claessen and David Sands

to stop the programmer from mistakenly introducing the same tag on different
components.

But if explicit tagging is not the desired solution, why not let some underly-
ing machinery guarantee that all the tags are unique? Monads are a standard
approach for such problems (see e.g., [Wad92]). In functional programming, a
monad is a data structure that can abstract from an underlying computation
model. A very common monad is the state monad, which threads a changing
piece of state through a computation. We can use such a state monad to gener-
ate fresh tags for the signal datatype. This monadic approach is taken in Lava
[BCSS98].

Introducing a monad implies that the types of the primitive components and cir-
cuit descriptions become monadic, that is, their result type becomes monadic. A
big disadvantage of this approach is not only that we must change the types, but
also the syntax. We can no longer use normal function abstraction, local naming
and recursion anymore, we have to express this using monadic operators. All
this turns out to be very inconvenient for the programmer.

What we are looking for is a solution that does not require a change in the nat-
ural circuit description style of using local naming and recursion, but allows us
to detect sharing and loops in a description from within the language.

3 Proposed Solution

The core of the problem is: a description of a circuit is basically a graph, but we
cannot observe the sharing of the nodes from within the program. The solution
we propose is to make the graph structure of a program observable, by adding a
new language construct.

Objects with Identity The idea is that we want the weakest extension that
is still powerful enough to observe if two given objects have actually previously
been created as one and the same object.

The reason for wanting as weak an extension as possible is that we want to retain
as many semantic properties from the original language as possible. This is not
just for the benefit of the programmer – it is important because compilers make
use of semantic properties of programs to perform program transformations, and
because we do not want to write our own compiler to implement this extension.

Since we know in advance what kind of objects we will compare in this way, we
choose to be explicit about this at creation time of the object that we might end
up comparing. In fact, one can view the objects as non-updatable references. We
can create them, compare them for equality, and dereference them.

Here is the interface we provide to the references. We introduce an abstract type
Ref, with the following operators:

type Ref a = ... ref :: a -> Ref a
(<=>) :: Ref a -> Ref a -> Bool deref :: Ref a -> a

Observable Sharing for Functional Circuit Description 67

The following two examples show how we can use the new constructs to detect
sharing: (i) let x = undefined in (let r = ref x in r <=> r)

(ii) let x = undefined in ref x <=> ref x

In (i) we create one reference, and compare it with itself, which yields True. In
(ii), we create two different references to the same variable, and so the comparison
yields False.

Thus, we have made a non conservative extension to the language; previously
it was not possible to distinguish between a shared expression and two different
instances of the same expression. We call the extension observable sharing. We
give a formal description of the semantics in section 4.

3.1 Back to Circuits

How can we use this extension to help us to symbolically evaluate circuits? Let
us take a look at the following two circuits.

circ1 = let output = latch output in output
circ2 = let output = latch (latch output) in output

In Haskell’s denotational semantics, these two circuits are identified, since circ2
is just a recursive unfolding of circ1. But we would like these descriptions to
represent different circuits; circ1 has one latch and a loop, where as circ2 has
two latches and a loop. If the signal type includes a reference, we could compare
the identities of the latch components and conclude that in circ1 all latches are
identical, where as in circ2 we have two different latches.

We can now modify the signal datatype in such a way that the creation of
identities happens transparently to the programmer.

data Signal = Var String | Comp (Ref (String, [Signal]))
comp name args = Comp (ref (name, args))

inv b = comp "inv" [b] and a b = comp "and" [a, b]
latch b = comp "latch" [b] xor a b = comp "xor" [a, b]

In this way, a circuit like toggle still creates a cyclic structure, but it is now pos-
sible to define a function which observes this cyclicity and therefore terminates
when generating a netlist for the circuit.

3.2 Other Possible Solutions

We briefly discuss two other solutions, both of which more or less well known
extensions to functional programming languages.

Pointer Equality The language is extended with an operator (>=<) :: a ->
a -> Bool that investigates if two expressions are pointer equal, that is, they
refer to the same bindings.

In our extension, we basically provide pointer equality in a more controlled way;
you can only perform it on references, not on expressions of any type. This means

68 Koen Claessen and David Sands

we can implement our references using a certain kind of pointer equality. The
other way around is not possible however, which shows that our extension is
weaker.

Gensym The language is extended with a new type Sym of abstract symbols
with equality, and an operator that generates fresh such symbols, gensym. It is
possible to define gensym in terms of our Refs, and also the other way around.
With the reference approach however, by get an important law by definition,
which is: r1 <=> r2 = True ⇒ deref r1 = deref r2

4 The Semantic Theory

In this section we formally define the operational semantics of observable shar-
ing, and study the induced notion of operational equivalence. For the technical
development we work with a de-sugared core language based on an untyped
lambda calculus with recursive lets and structured data.

The language of terms, Λref is given by the following grammar1:

L, M, N ::= x | λx.M | M x | let {→x =
→
M} in N | ref x | deref M | M
 N

Note that we work with a restricted syntax in which the arguments in func-
tion applications and the arguments to constructors are always variables (c.f,
[PJPS96, PJS98, Lau93, Ses97]. It is trivial to translate programs into this syn-
tax by the introduction of let bindings for all non-variable arguments.

The set of values, Val ⊆ Λref , ranged over by V and W are the lambda-
expressions λx.M . We will write let {→x =

→
M} in N as a shorthand for let {x1 =

M1, . . . , xn = Mn} in N where the →x are distinct, the order of bindings is not
syntactically significant, and the →x are considered bound in N and the

→
M (i.e.,

all lets are potentially recursive).

The only kind of substitution that we consider is variable for variable, with σ
ranging over such substitutions. The simultaneous substitution of one vector of
variables for another will be written M [

→
y/→x], where the →x are assumed to be

distinct (but the
→
y need not be).

4.1 The Abstract Machine

The semantics for the standard part of the language presented in this section
is essentially Sestoft’s “mark 1” abstract machine for laziness [Ses97]. Following
[MS99], we believe an abstract machine semantics is well suited as the basis for
studying operational equivalence.

Transitions in this machine are defined over configurations consisting of (i) a
heap, containing a set of bindings, (ii) the expression currently being evaluated,

1 In the full version of the paper we also include constructors and a case expression,
as well as a strict sequential composition operator.

Observable Sharing for Functional Circuit Description 69

and (iii) a stack, representing the actions that will be performed on the result of
the current expression.

There are a number of possible ways to represent references in such a machine.
One straightforward possibility is to use a global reference-environment, in which
evaluation of the ref operation creates a fresh reference to its argument. We
present an equivalent but syntactically more economical version. Instead of ref-
erence environment, references are represented by a new (abstract) constructor
(i.e. a constructor which is not part of Λref), which we denote by ref .

Let Λref
def= Λref ∪ {ref x | x ∈ Var}, and Valref

def= Val ∪ {ref x | x ∈ Var}. We
write 〈Γ, M, S 〉 for the abstract machine configuration with heap Γ , expres-
sion M ∈ Λref , and stack S. A heap is a set of bindings from variables to terms
of Λref ; we denote the empty heap by ∅, and the addition of a group of bindings
→
x =

→
M to a heap Γ by juxtaposition: Γ{→x =

→
M}.

A stack is a list of stack elements. The stack written b : S will denote the a
stack S with b pushed on the top. The empty stack is denoted by ε, and the
concatenation of two stacks S and T by ST (where S is on top of T). Stack
elements are either:

– a variable x, representing the argument to a function,
– an update marker #x, indicating that the result of the current computation

should be bound to the variable x in the heap,
– a pending reference equality-test of the form (
M), or (ref x
),
– a dereference deref , indicating that the reference which is produced by the

current computation should be dereferenced.

We will refer to the set of variables bound by Γ as dom Γ , and to the set of
variables marked for update in a stack S as dom S. Update markers should
be thought of as binding occurrences of variables. Since we cannot have more
than one binding occurrence of a variable, a configuration is deemed well-formed
if domΓ and domS are disjoint. We write dom(Γ, S) for their union. For a
configuration 〈Γ, M, S 〉 to be closed, any free variables in Γ , M , and S must
be contained in dom(Γ, S).

For sets of variables P and Q we will write P ⊥ Q to mean that P and Q are
disjoint, i.e., P ∩Q = ∅. The free variables of a term M will be denoted FV (M);
for a vector of terms

→
M , we will write FV (

→
M). The abstract machine semantics

is presented in figure 4.1; we implicitly restrict the definition to well-formed
configurations. The first collection of rules are standard. The second collection
of rules concern observable sharing. Rule (RefEq) first forces the evaluation of the
left argument, and (Ref1) switches evaluation to the right argument; once both
have been evaluated to ref constructors, variable-equality is used to implement
the pointer-equality test.

4.2 Convergence, Approximation, and Equivalence

Two terms will be considered equal if they exhibit the same behaviours when
used in any program context. The behaviour that we use as our test of equiv-

70 Koen Claessen and David Sands

〈Γ{x = M}, x, S 〉 → 〈Γ, M, #x : S 〉 (Lookup)

〈Γ, V, #x : S 〉 → 〈Γ{x = V }, V, S 〉 (Update)

〈Γ, M x, S 〉 → 〈Γ, M, x : S 〉 (Unwind)

〈Γ, λx.M, y : S 〉 → 〈Γ, M [y/x], S 〉 (Subst)

〈Γ, let f
→
x =

→
Mg in N, S 〉 → 〈Γ{→x =

→
M}, N, S 〉 →

x ⊥ dom(Γ, S) (Letrec)

〈Γ, ref M, S 〉 → 〈Γ{x = M}, ref x, S 〉 x 6∈ dom(Γ, S) (Ref)

〈Γ, deref M, S 〉 → 〈Γ, M, deref : S 〉 (Deref1)

〈Γ, ref x, deref : S 〉 → 〈Γ, x, S 〉 (Deref2)

〈Γ, M
 N, S 〉 → 〈Γ, M, (
 N) : S 〉 (RefEq)

〈Γ, ref x, (
 N) : S 〉 → 〈Γ, N, (ref x
) : S 〉 (Ref1)

〈Γ, ref y, (ref x
) : S 〉 → 〈Γ, b, S 〉 b =

(
true if x = y

false otherwise
(Ref2)

Fig. 1. Abstract machine semantics

alence is simply termination. Termination behaviour is formalised by a conver-
gence predicate:

Definition 4.1 (Convergence) A closed configuration 〈Γ, M, S 〉 converges,
written 〈Γ, M, S 〉⇓, if there exists heap ∆ and value V such that

〈Γ, M, S 〉 →∗ 〈∆, V, ε 〉.

We will also write M⇓, identifying closed M with the initial configuration
〈 ∅, M, ε 〉. Closed configurations which do not converge are of four types: they
either (i) reduce indefinitely, or get stuck because of (ii) a type error, (iii) a
case expression with an incomplete set of alternatives, or (iv) a black-hole (a
self-dependent expression as in let x = x in x). All non-converging closed con-
figurations will be semantically identified.

Let C , D range over contexts – terms containing zero or more occurrences of a
hole, [·] in the place where an arbitrary subterm might occur. Let C [M] denote
the result of filling all the holes in C with the term M , possibly causing free
variables in M to become bound.

Definition 4.2 (Operational Approximation) We say that M operationally
approximates N , written M @∼ N , if for all C such that C [M] and C [N] are
closed, C [M]⇓ implies C [N]⇓ .

We say that M and N are operationally equivalent, written M ∼= N , when
M @∼ N and N @∼ M . Note that equivalence is a non-trivial equivalence relation.
Below we present a sample of basic laws of equivalence. In the statement of all

Observable Sharing for Functional Circuit Description 71

laws, we follow the standard convention that all bound variables in the statement
of a law are distinct, and that they are disjoint from the free variables.

(λx.M) y ∼= M [y/x]

let {x = V,
→
y =

→
D [x]} in C [x] ∼= let {x = V,

→
y =

→
D [V]} in C [V]

let {x = z,
→
y =

→
D [x]} in C [x] ∼= let {x = z,

→
y =

→
D [z]} in C [z]

let {x = z,
→
y =

→
M} in N ∼= let {x = z,

→
y =

→
M [z/x]} in N [z/x]

let {→x =
→
M} in N ∼= N, if →x ⊥ FV (N)

C [let {→y =
→
V } in M] ∼= let {→y =

→
V } in C [M]

M
 N ∼= N
M

Remark: The fact that the reference constructor ref is abstract (not available
directly in the language) is crucial to the variable-inlining properties. For exam-
ple a (derivable) law like let {x = z} in N ∼= N [z/x] would fail if terms could
contain ref . This failure could be disastrous in some implementations, because
in effect a configuration-level analogy of this law is applied by some garbage
collectors.

4.3 Proof Techniques for Equivalence

We have presented a collection of laws for approximation and equivalence –
but how are they established? The definition of operational equivalence suffers
from the standard problem: to prove that two terms are related requires one to
examine their behaviour in all contexts. For this reason, it is common to seek to
prove a context lemma [Mil77] for an operational semantics: one tries to show
that to prove M operationally approximates N , one only need compare their
immediate behaviour. The following context lemma simplifies the proof of many
laws:

Lemma 1 (Context Lemma). For all terms M and N , M @∼ N if and only
if for all Γ , S and substitutions σ, 〈Γ, Mσ, S 〉⇓ implies 〈Γ, Nσ, S 〉⇓
It says that we need only consider configuration contexts of the form 〈Γ, [·], S 〉
where the hole [·] appears only once. The substitution σ from variables to vari-
ables is necessary here, but since laws are typically closed under such substitu-
tions, so there is no noticeable proof burden.

The proof of the context lemma follows the same lines as the corresponding
proof for the improvement theory for call-by-need [MS99], and it involves uni-
form computation arguments which are similar to the proofs of related properties
for call-by-value languages with state [MT91].

In the full paper we present some key technical properties and a proof that the
compiler optimisation performed after so-called strictness analysis is still sound
in the presence of observable sharing.

72 Koen Claessen and David Sands

4.4 Relation to Other Calculi

Similar languages have been considered by Odersky [Ode94] (call-by-name se-
mantics) and Pitts and Stark [PS93] (call-by-value semantics). A reduction-
calculus approach to call-by-need was introduced in [AFM+95], and extended
to deal with mutable state in recent work of Ariola and Sabry [AS98]. The
reduction-calculi approach in general has been pioneered by Felleisen et al (e.g.
[FH92]), and its advantage is that it builds on the idea of a core calculus of
equivalences (generated by a confluent rewriting relation on terms); each lan-
guage extension is presented as a conservative extension of the core theory. The
price paid for this modularity is that the theory of equality is rather limited.
The approach we have taken – studying operational equivalence – is exemplified
by Mason and Talcott’s work on call-by-value lambda calculi and state [MT91].
An advantage of the operational-equivalence approach is that it is a much richer
theory, in which induction principles may be derived that are inexpressible in re-
duction calculi. Our starting point has been the call-by-need improvement theory
introduced by Moran and Sands [MS99]. In improvement theory, the definition
of operational equivalences includes an observation of the number of reduction
steps to convergence. This makes sharing observable – although slightly more
indirectly.

We have only scratched the surface of the existing theory. Induction principles
would be useful – and also seem straightforward to adapt from [MS99]. For
techniques more specific to the subtleties of references, work on parametricity
properties of local names e.g., [Pit96], is likely to be relevant.

5 Conclusions

We have motivated a small extension to Haskell which provides a practical so-
lution to a common problem when manipulating data structures representing
circuits. We have presented a precise operational semantics for this extension,
and investigated laws of operational approximation. We have shown that the
extended language has a rich equational theory, which means that the semantics
is robust with respect to program transformations which respect sharing prop-
erties.

The extension we propose is small, and turns out to be easy to add to existing
Haskell compilers/interpreters in the form of an abstract data-type (a module
with hidden data constructors). In fact similar functionality is already hidden
away in the nonstandard libraries of many implementations.2 A simple imple-
mentation using the Hugs-GHC library extensions is given in the full version of
the paper.

The feature is likely to be useful for other embedded description languages, and
we briefly consider two such applications in the full paper: writing parsers for
left-recursive grammars, and an optimised representation of decision trees.
2 www.haskell.org/implementations/

Observable Sharing for Functional Circuit Description 73

References

[AFM+95] Z. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call-by-
need lambda calculus. In Proc. POPL’95, ACM Press, 1995.

[AS98] Z. M. Ariola and A. Sabry. Correctness of monadic state: An imperative
call-by-need calculus. In Proc. POPL’98, pages 62–74. ACM Press, 1998.

[BCSS98] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design
in Haskell. In ICFP’98. ACM Press, 1998.

[CLM98] B. Cook, J. Launchbury, and J. Matthews. Specifying superscalar micro-
processors in Hawk. In Formal Techniques for Hardware and Hardware-like
Systems. Marstrand, Sweden, 1998.

[FH92] Matthias Felleisen and Robert Hieb. The revised report on the syntactic
theories of sequential control and state. TCS, 103:235–271, 1992.

[Hud96] Paul Hudak. Building domain-specific embedded languages. ACM Com-
puting Surveys, 28(4):196, December 1996.

[Lau93] J. Launchbury. A natural semantics for lazy evaluation. In Proc. POPL’93,
pages 144–154. ACM Press, 1993.

[Mil77] R. Milner. Fully abstract models of the typed λ-calculus. TCS 4:1–22,
1977.

[MS99] Andrew Moran and David Sands. Improvement in a lazy context: An
operational theory for call-by-need. In Proc. POPL’99, ACM Press, 1999.

[MT91] I. Mason and C. Talcott. Equivalence in functional languages with effects.
Journal of Functional Programming, 1(3):287–327, July 1991.

[O’D93] J. O’Donnell. Generating netlists from executable circuit specifications in
a pure functional language. In Functional Programming Glasgow, Springer-
Verlag Workshops in Computing, pages 178–194, 1993.

[O’D96] J. O’Donnell. From transistors to computer architecture: Teaching func-
tional circuit specification in Hydra. In Functional Programming Lan-
guagues in Education, LNCS vol 1125, pages 221–234. Springer Verlag,
1996.

[Ode94] Martin Odersky. A functional theory of local names. In POPL’94, pages
48–59, ACM Press, 1994.

[Pit96] A. M. Pitts. Reasoning about local variables with operationally-based log-
ical relations. In 11th Annual Symposium on Logic in Computer Science,
pages 152–163. IEEE Computer Society Press, 1996.

[PJPS96] S. Peyton Jones, W. Partain, and A. Santos. Let-floating: moving bindings
to give faster programs. In Proc. ICFP’96, pages 1–12. ACM Press, 1996.

[PJS98] S. Peyton Jones and A. Santos. A transformation-based optimiser for
Haskell. Science of Computer Programming, 32(1–3):3–47, 1998.

[PS93] A. M. Pitts and I. D. B. Stark. Observable properties of higher order
functions that create local names, or: What’s new? In MFCS’93, LNCS
vol 711, pages 122–141, Springer-Verlag, 1993.

[Ses97] P. Sestoft. Deriving a lazy abstract machine. Journal of Functional Pro-
gramming, 7(3):231–264, May 1997.

[She85] M. Sheeran. Designing regular array architectures using higher order func-
tions. In FPCS’95, LNCS vol 201, Springer Verlag, 1985.

[Wad92] P. Wadler. Monads for Functional Programming. In Lecture notes for
Marktoberdorf Summer School on Program Design Calculi, NATO ASI
Series F: Computer and systems sciences. Springer Verlag, August 1992.

	Introduction
	Functional Hardware Description
	Previous Solutions

	Proposed Solution
	Back to Circuits
	Other Possible Solutions

	The Semantic Theory
	The Abstract Machine
	Convergence, Approximation, and Equivalence
	Proof Techniques for Equivalence
	Relation to Other Calculi

	Conclusions

