Wired: Wire-Aware Circuit Design

Emil Axelsson, Koen Claessen, and Mary Sheeran

Chalmers University of Technology
{emax, koen, ms}@cs.chalmers.se

Abstract. Routing wires are dominant performance stoppers in deep
sub-micron technologies, and there is an urgent need to take them into
account already at higher levels of abstraction. However, the normal
design flow gives the designer only limited control over the details of
the lower levels, risking the quality of the final result. We propose a
language, called Wired, which lets the designer express circuit function
together with layout, in order to get more precise control over the re-
sult. The complexity of larger designs is managed by using parameterised
connection patterns. The resulting circuit descriptions are compact, and
yet capture detailed layout, including the size and positions of wires.
We are able to analyse non-functional properties of these descriptions,
by “running” them using non-standard versions of the wire and gate
primitives. The language is relational, which means that we can build
forwards, backwards and bi-directional analyses. Here, we show the de-
scription and analysis of various parallel prefix circuits, including a novel
structure with small depth and low fanout.

1 Introduction

In deep sub-micron processes, the effects of wires dominate circuit behaviour and
performance. We are investigating an approach to circuit generation in which
wires are treated as first class citizens, just as components are. To successfully
design high-performance circuits, we must reach convergence not only on func-
tionality, but also simultaneously on other properties such as timing, area, power
consumption and manufacturability. This demands that we mix what have earlier
been separate concerns, and that we find ways to allow non-functional properties
to influence design earlier in the flow. We must broaden our notion of correct-
ness to include not only functionality but also performance in a broad sense. For
example, we might like to do high-level floor-planning that takes account of the
effects of the wires joining the top-level blocks, or to quickly explore the detailed
timing behaviour of a number of proposed architectures for a given arithmetic
block, without having to resort to full-custom layout. The Wired system is de-
signed to solve both of these problems, though our initial work has concentrated
on the latter: easing the design and analysis of data-paths.

Ever since the eighties, there has been much work on module generation. For
example, Becker et al explored the specification and generation of circuits based
on a calculus of nets [1]. As in uFP [8], the design notation took into account

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 5-19, 2005.
© IFIP International Federation for Information Processing 2005

6 E. Axelsson, K. Claessen, and M. Sheeran

geometric and topological information. However, the designer viewed wires as
”simple lines”, and did not consider their exact position (although the associ-
ated synthesis tool produced real layout using sophisticated algorithms). The
Wired user works at a lower level of abstraction and is in full control of the lay-
out, including the exact positions of wires. Our own work with Singh at Xilinx
on the use of Lava to give the designer fine control over the resources on the
FPGA indicated that for regular circuits such as data-paths, mixing structure
and behaviour in a single description gives good results [4]. Wired takes these
ideas a step further. It is primarily aimed at giving the designer full control in
standard-cell design. In both Lava and uFP, circuit behaviour is described as a
function from input to output, and combinators capture common connection pat-
terns. This use of functions can lead to a proliferation of connection patterns [8],
whereas a relational approach, such as that in Ruby [6], abstracts from direction
of data-flow and so avoids this problem. In Wired, the connection patterns pro-
vide a simple tiling, and the resulting behaviour is constructed by composing the
relations corresponding to the tiles or sub-circuits. Thus, ideas from Ruby are
reappearing. A major difference, though, is that Wired is embedded in Haskell,
a powerful functional programming language, which eases the writing of circuit
generators. As we shall see when we consider RC-delay estimation, the relational
approach lends itself to circuit analysis by non-standard interpretation.

Typically, we start in Lava, and step down to the Wired level when it becomes
necessary to consider effects that are captured only at that level. We have found
that programming idioms used in Lava (that is the net-list generator level) trans-
late surprisingly well into the lower Wired level. You might say that we aim to
make circuit description and design exploration at the detailed wire-aware level
as easy as it was at the higher net-list generator level — without losing the link
to functional verification. In a standard flow, an application might be in the gen-
eration of modules that adapt to their context (for example to the delay profile
of the inputs). The ideas are also compatible with recent work at Intel on the
IDV system (Integrating Design and Verification [12]), which gives the designer
full control in a setting based on refinement and a functional language. Our aim
is to develop a practical approach to power-aware design in such a setting.

2 The Wired System

2.1 The Core Language

Wired is built around combinators with both functional and geometrical inter-
pretations. Every description has a surface and a surface relation. A surface is
a structure of contact segments, where each contact may or may not carry a
signal. This structure specifies the interface of the description and keeps track
of different signal properties. When flattened, it can represent the description’s
geometrical appearance. Figure 1(a) shows an example of a simple two-input
and-gate. This is a 2-dimensional circuit, so the surface consists of four ports.
The left- and right-hand ports are i-contacts (contacts without signals) of size 2.
The inputs, on top, are two size 1 s-contacts (contacts with signals). The output,

Wired: Wire-Aware Circuit Design 7

com [s 1,s 1] com [pBl,pB2]
i2 i2 pAl pD2
and2 di d2
s 2 com [pCl,pC2]
(a) (b)

Fig. 1. (a) Two-input and-gate (b) Beside composition, d1*| |*d2

on the bottom, is a size 2 output signal. This gate has a clear signal flow from
input to output, which is not always the case for Wired circuits.

The surface relation relates parts of the surface to each other. It can capture
both structural and functional constraints. A structural relation can, for exam-
ple, specify that the number of inputs is equal to the number of outputs, and a
functional relation could specify that two signals are electrically connected.

Wired is embedded in the functional programming language Haskell. The
data type that is used to represent descriptions internally is defined as:

data Description = Primitive Surface Relation
| Combined Combinator Description Description
| Generic Surface (Surface -> Maybe Description)

A description is either a primitive defined by a surface and a relation, or a com-
bination of two sub-descriptions. We will look more at generic descriptions in
section 2.2. The combinator describes how the two sub-surfaces are combined
into one, and indicates which surface parts are connected where the two blocks
meet. This implicitly defines a new surface and relation for the combined de-
scription. Figure 2 illustrates a combination of two (not necessarily primitive)
2-dimensional circuits with relations R; and Rs.

4 [#] - [&@

Fig. 2. Combination of sub-descriptions

The combinator * | | * (”beside”) places the first block to the left of the second,
while *=x (”below”) places the first block below the second. Figure 1(b) illustrates
dix*||*d2. Note how the resulting top and bottom ports are constructed. The
top ports of the sub-circuits are named pB1 and pB2, and the resulting top
port becomes the pair com [pB1,pB2]. The same holds for the side ports when
using *=*. We will also use variations of these, which have the same geometrical
meaning, but combine the surfaces differently. *| |~ does the ”cons” operation;
if d1 has port pB1 and d2 has port com [pB21,pB22, ...], then the resulting
port becomes com [pB1,pB21,pB22, ...]. ~||* does "cons” at the end of the
list, and ~| |~ and -] | - are two variations of the "append” operation.

8 E. Axelsson, K. Claessen, and M. Sheeran

The surface structure may be partially unknown. For example, a wire (wires
are normal descriptions, just like anything else) may not have a fixed length, but
can be instantiated to whatever length it needs to have. Such instantiation is
done — automatically by the system — by looking at the surrounding context of
each sub-description. The surrounding surfaces form a so-called context surface,
and we require, for all sub-descriptions, that the surface and the context surface
are structurally equal. This means that if, for example, a stretchy wire is placed
next to a block with known geometry, the wire will automatically be instantiated
to the appropriate length. The wire also has a relation that states that its two
sides have the same length. So, if we place yet another wire next to the first one,
size information will be propagated from the block, through the first one and
over to the new wire. In Wired, this circuit is written:

examplel = wireY *||* wireY *||* block3x3

wireY is a thin vertical wire with unknown length, and block3x3 is a pre-defined
block of size 3 x 3 units. Instantiating this description and asking for a picture
(through an interactive menu system) gives the layout in Figure 3(a).

| |D and2 | and2 | and2 | and2 | and2

(a) (b)

Fig. 3. (a) Layout after instantiation of examplel (b) Layout of 5-bit bit-multiplier

In Lava, circuits are constructed by just running their Haskell descriptions,
so most of the instantiation procedure comes for free, from Haskell. Since Wired
is relational, we cannot use the same trick here. Instead we have a separate
instantiation engine, which is implemented in Haskell. This engine works by
fix-point iteration — it traverses the description iteratively, propagating surface
information from contexts to sub-descriptions and instantiating unknown prim-
itive surfaces, until no more information can be gained.

2.2 Generic Descriptions and Connection Patterns

In examplel we saw wires that adapted to the size of their context. This is
very useful since the designer doesn’t have to give all wire sizes explicitly when
writing the code. Sometimes we want to have sub-blocks whose entire content
adapts to the context. For this we use the final constructor in the definition of
descriptions (section 2.1) — Generic. A generic description is defined by a surface
and an instantiation function. As the type (Surface -> Maybe Description)
indicates, this function reads its current surface and may choose, depending on
that information, to instantiate to a completely new description. Since this is a
normal function on the Haskell level, it is possible to make clever choices here.

Wired: Wire-Aware Circuit Design 9

For example, in the context of non-functional analysis (section 3), we can choose
between two different implementations depending on some estimated value.

The most common use for generic descriptions is in defining connection pat-
terns which capture commonly used regular structures. The simplest connection
pattern is the row, which places a number of copies of the same component next
to each other. We can use it to define a bit multiplier circuit, for example:

bitMult = row and_bitM
where and_bitM = and2 *=x (cro *||* crTO)

The primitives used are: and2, an and-gate with the surface from figure 1(a), cro,
two wires crossing without connection and crT0, a T-shaped wire connection.
Figure 3(b) shows the layout of this circuit instantiated for 5 bits.

We define row as follows:

row d = generic "row" xpSurf (row_inst d)

row_inst d surf = do len <- lengthX surf
case len of N O -> newInst thinEmptyY
N _ -> newInst (d *||~ row d)
-> nolnst

The pattern is parameterised by a description d, and has unknown initial surface
(xpSurf) and instantiation function row_inst (also parameterised by d). The
instantiation function looks at the current surface and does a case analysis on its
horizontal length. If the length is known to be 0 (the constructor N means known),
the row becomes a thin empty block. This is the base-case in the recursive
definition of row. For lengths greater than 0, we place one copy of d beside
another row, using the x| |~ combinator. If the length of the context has not yet
been resolved (the last case), we do not instantiate.
A simpler alternative to the above definition of row is

rowN O _ = thinEmptyY
rowN nd=4d *||~ rowN (n-1) d

This definition takes an extra length parameter n, and does the whole unrolling
on the Haskell level instead, before instantiation. This is both simpler and runs
faster, but has the down-side that the length has to be known in advance. In the
normal row, instantiation automatically resolves this length.

Generic descriptions or partially unknown surfaces are only present during
circuit instantiation. After instantiation, when we want to view the layout or
extract a net-list, we require all surfaces to be complete, and that all generic
parts have been instantiated away.

2.3 Signal Interpretation

Surfaces are structures of contact segments. A contact is a piece of area that may
or may not carry a signal. However, it is possible to have more information here.
The signal can, for example, be decorated with information about whether it is

10 E. Axelsson, K. Claessen, and M. Sheeran

an input or an output, and about its estimated delay. This allows an analysis
that checks that two outputs are never connected, and a way to compute the
circuit’s delay from input to output. We want to separate the description from
the interpretation that we will later give to it, so that the same description
can be used with different interpretations. This is done by abstracting the signal
information on the Haskell type level. That is, we parameterise the Description
type by the signal type s. This type variable can be kept abstract as long as
we want, but before we instantiate the description, s must be given a particular
type.
At the moment, possible signal types are:

NoInfo No information, just a structural placeholder
Direction Signal direction (in/out)
UnitTime Delay estimation under unit delay model

Resistance Output driving resistance
Capacitance Input load capacitance
Time Accurate RC-delay estimation

The operator :+: combines signal types. Such combinations are needed since it
makes no sense to talk about delays if there is no notion of direction, for example.
To increase readability, we define some useful type macros. For example,

type Desc_RCDelay = Description (Direction :+: Resistance :+: Capacitance :+: Time)

3 Non-functional Analysis

3.1 Direction and Unit-Delay

Wired is a relational language, and is thereby not bound to any specific direction
of signal flow. Still, most circuits that we describe are functional, so we need to
be able to check that a description has a consistent flow from input to output.
Here we use the signal interpretation with direction. While it is usually known
for gates which signals are inputs and outputs, wire junctions normally have
undefined directions initially. However, we know that if one signal in a junction
is an input (seen from inside the junction), all the others must be outputs,
in order to avoid the risk of short-circuit. This constraint propagation can be
baked into the circuit relation, and this is enough to help the instantiation engine
resolve all directions (or report error). Figure 4 shows an example of a gate cell
and a wire junction. Signal s;; of the junction is indirectly connected to gate
output s45. If we assume that directions are propagated correctly through the
intermediate wires, the context will eventually constrain s; 1 to be an input, and
by direction propagation, s;2 and s; 3 will be constrained to outputs.

The simplest model for circuit delay estimation is the unit-delay model, in
which each stage just adds a constant unit to the input delay — independent of
electrical properties, such as signal drive strength and load. This gives a rather
rough estimate of circuit delay.

Wired: Wire-Aware Circuit Design 11

Fig. 4. Gate and wire junction

As with directions, unit-delay can be resolved by the instantiation engine,
provided that delays are propagated correctly through gates and wires. The gate
in the above example has intrinsic unit-delay D;,: (and an accurate time delay
Tint, which will be used in the next section). Dy, refers to the unit-delay of signal
sk. As instantiation proceeds, delay estimates of the input signals will become
available. Delay propagation can then set the constraints

Dy 4= Dgy5 =max[Dg1,Dg2, Dy 3|+ Dint

The model can easily be extended so that different input-output paths have
different delays.

For the wire junction, we want to capture the fact that longer wires have
more delay. This dependency is hidden in the function conv, which converts
distance to unit-delay. By choosing different definitions for conv, we can adjust
the importance of wire delays compared to gate delays. Once the delay of s; 1
becomes available, the following propagation can be performed:

Dj = Dj1+ conv(ly + 1) for k € [2,3]

These two propagation methods work for all wires and gates, independent of
number of signals and logical function, and they are part of the relations of all
wire and gate primitives. Since information is only propagated from inputs to
outputs, this is a forwards analysis. In the next section, we will use a combination
of forwards and backwards analysis.

3.2 RC-Delay

For a more accurate timing analysis, we use the model in Figure 5. A gate output
is a voltage source with intrinsic delay Tj,; and output resistance R,. A wire
is a distributed RC-stage with 7 and c as resistance and capacitance per length
unit respectively. Gate input is a single capacitance Cj,.

1 I=

Fig. 5. Circuit stage from output to input

A signal change on an output gives rise to a signal slope on connected inputs.
This slope is characterised by a time constant, 7. For output stages with equal

12 E. Axelsson, K. Claessen, and M. Sheeran

rise and fall times (which is normally the case), it is standard to define wire
delay as the time from an output change until the input slope reaches 50% of its
final value. For a simple RC-stage, see Figure 6(a), the time constant is given by
7 = RC. The delay from the left terminal to the capacitor is then approximately
equal to 0.697. For a distributed RC-stage (Figure 6(b)) with total resistance
R = rL and capacitance C' = cL, it can be shown that 74;5: =~ RC/2.

Figure 6(c) shows a fanout composition of n RC-stages. Based on Elmore’s
formula [7], the delay from the left terminal to capacitor C; can be approximated
by a simple RC-stage with the time constant

Tl,i:R1'|: > Cl:|+(R1+Ri)Ci:Tl+R1'[Z Cz]+Ti (1)
le[l..n]\i le[2..n]

This formula also holds for distributed stages — R; and C; are then the total resis-
tance and capacitance of stage ¢ — or for combinations of simple and distributed
stages. Note that the local time constants 71 and 7; are computed separately and
added, much as unit-delays of different stages were added. What is different here
is the extra fanout term, where R; is multiplied by the whole load capacitance.
It is generally the case that the stages on the right-hand side are themselves
compound; the RC-stage is merely an approximation of their timing behaviour.
Therefore, load capacitance needs to be propagated backwards from the load,
through the stages and to the junction we are currently considering. So, for RC-
delay analysis, we need a combination of forwards and backwards analysis. This
is, however, a simple matter in a relational system like Wired.

Fig. 6. (a) RC- and (b) distributed RC-stage (c) Composition of RC-stages

We describe gate and wire propagation from the example in Figure 4. Gates
always have known output resistances and input capacitances, so no such prop-
agation is needed. Therefore RC-delay propagation through gates behaves just
like for unit-delay. Propagation through wire junctions is more tricky. We use
Ry, C, and 7, to refer to the resistance, capacitance and RC-delay of the signal
sk. We also define Ry, C; and 7}, as the local resistance, capacitance and time
constant of the piece of wire going from s to the junction. R}, and Cj, can be
computed directly from the corresponding length i, and 7, = R, C} /2. The
drive resistance and time constant of s;1, and the load capacitance of s;2 and
54,3 will be resolved from the context.

Wired: Wire-Aware Circuit Design 13

The total load capacitance at the junction is given by Cjyne = Cj2 +Cj3 +
C']’472 + C§73. Backwards capacitance propagation can then be done directly by
the constraint

Cj,l = Cjunc + Ci
From (1) we get the time constant at the junction as

_ Rj71C§,1 / /
Tjune = Tj,1 + T + Ti1 + (Rj71 + Rj,l) . Cjunc

Finally, forwards resistance and RC-delay propagation is done as
Rji = R;-’k and Tj g = Tjunc + T]/»’k for k € [2,3]

Now, to perform an RC-analysis of a circuit, say bitMult from section 2.2,
we first select the appropriate signal interpretation:

bitMultRC = bitMult :: Desc_RCDelay

This description is then instantiated in a context surface that specifies resistance,
capacitance and delay on the inputs or outputs of the circuit.

4 Parallel Prefix Circuits

A modern microprocessor contains many parallel prefix circuits. The best known
use of parallel prefix circuits is in the computation of the carries in fast binary
addition circuits; another common application is in priority encoders. There are
a variety of well known parallel prefix networks, including Sklansky [11] and
Brent-Kung [2]. There are also many papers in the field of circuit design that
try to systematically figure out which topology is best for practical circuits. We
have been inspired by previous work on investigating the effect of wire delay
on the performance of parallel prefix circuits [5]. Our aim has been to perform
a similar analysis, not by writing a specialised simulator, but by describing the
circuits in Wired and using the instantiation engine to run RC-delay estimations.

4.1 The Parallel Prefix Problem

Given n inputs, x1, T2, - . ., Tn, the problem is to design a circuit that takes these
inputs and produces the n outputs y; = x1, y2 = 1 0 T2, Y3 = 1 © Tg O T3,
... Yn = T10...0x,, where o is an arbitrary associative (but not necessarily
commutative) binary operator. One possible solution is the serial prefix circuit
shown schematically in Figure 7(a). Input nodes are on the top of the circuit,
with the least significant input (z1) being on the left. Data flows from top to
bottom, and we also count the stages or levels of the circuit in this direction,
starting with level zero on the top. An operation node, represented by a small
circle, performs the o operations on its two inputs. One of the inputs comes
along the diagonal line above and to the left of the node, and the other along
the vertical line from the top. A node always produces an output to the bottom

14 E. Axelsson, K. Claessen, and M. Sheeran

X X, level 0
pl
p2
level 7
Vi n T T T T
(a) Serial prefix (b) Composition

Fig. 7.

along the vertical line. It may also produce an output along a diagonal line
below and to the right of the node. Here, at level zero, there is a diagonal line
leaving a vertical wire in the absence of a node. This is a fork. The serial prefiz
circuit shown contains 7 nodes, and so is said to be of size 7. Its lowest level
in the picture is level 7, so the circuit has depth 7. The fanout of a node is its
out-degree. In this example, all but the rightmost node have fanout 2, so the
whole circuit is said to have fanout 2. Examining Figure 7(a), we see that at each
non-zero level only one of the vertical lines contains a node. We aim to design
parallel prefix circuits, in which there can be more than one node per level.

For two inputs, there is only one reasonable way to construct a prefix circuit,
using one copy of the operator. Parallel prefix circuits can also be formed by com-
posing two smaller such circuits, as shown in Figure 7(b). Repeated application
of this pattern (and the base case) produces the serial prefix circuit.

For 2™ 4+ 1 inputs, one can use so-called forwards and backwards trees, as
shown in Figure 8(a). We call a parallel prefix circuit of this form a slice. At
the expense of a little extra fanout at a single level in the middle of the circuit,
one can slide the (lower) backwards tree up one level, as shown in Figure 8(b).
Composing increasing sized slices gives the well-known Brent-Kung construction
[2] shown in Figure 9(a). A shallower n-input parallel prefix circuit can be ob-

/0
4
4
[
27

((
[

/]
)
/]
)
J
)

(a) (b)

Fig. 8. (a) Parallel prefix construction using a forwards and a backwards tree (b) The
same construction with the lower tree slid back by one level

tained by using the recursive Sklansky construction, which combines the results
of two separate n/2-input parallel prefix circuits [11], as shown in Figure 9(b).
We have studied new ways to combine slices like those used to build Brent-
Kung. By allowing the constrained use of fanout greater than 2, we have found
a way to make slices in which the forward and backwards trees have different

Wired: Wire-Aware Circuit Design 15

MU MU MU MR TR
NEER! T mER. T N
T HHARR N
N
H NS
Nl N N N
B RNEENERY NRERN
™ ™ ™ ™
NN NN NNY

(a) (b)

AL

/)

Fig. 9. (a) Brent Kung for 32 inputs (b) Sklansky for 32 inputs, with fanout 17

N NN NN N

Fig. 10. A new arrangement of composed slices, with 67 inputs, depth 8 and fanout 4

depths, and this leads to parallel prefix structures that combine small depth with
low fanout. An example of such a structure is shown in Figure 10.

4.2 Wired Descriptions

All of our parallel prefix circuits can be built from the primitives in Figure 11(a).
d is the operator with inputs on the left and top ports, and output on the bottom.
Its companion d2 additionally feeds the left input over to the output on the right-
hand side. Although d2 is a primitive, it behaves as if there were a horizontal
wire crossing on top of it. wl, w2 and w3 are unit-size wire cells, and w4 is a
wire with adaptive length. Instead of hard-coding these into the descriptions, we
will supply them as parameters, which allows us to use the same pattern with a
different set of parameter blocks.

Just like for the row in section 2.2, we can choose between unrolling the
structure during instantiation, or in advance on the Haskell level. Here we choose
the latter, since it gives us more readable descriptions.

As shown in figure Figure 9(b), Sklansky consists of two smaller recursive
calls, and something on the bottom to join their results. This leads to the fol-
lowing description in Wired:

sklansky 0 = thinEmptyX1
sklansky dep = join *=" (sklansky (dep-1) ~||~ sklansky (dep-1))
where
join = (row wil ~||* w3) -||- (row d2 ~|[|* d)

where (d,d2,wl,_,w3,_) = params

The parameter blocks are taken from the global variable params. The local
parameter dep determines the depth of the circuit. For each recursive call, this
parameter is decreased by one. Figure 12 shows this structure instantiated for
16 inputs, both for bits and for pairs of bits. The distinction between the two
cases is simply made by choosing parameter blocks from Figure 11(a) or (b).

16 E. Axelsson, K. Claessen, and M. Sheeran

ae 1+ | LB WH

(a) (b)

Fig. 11. Parameters d, d2, wl, w2, w3 and w4 for (a) 1-bit, and (b) 2-bit computations

“I’ _W—[’ T‘t_"[' __H"—
e e it S 5
(a) (b)

Fig. 12. 16-bit Sklansky: (a) For single bits (b) For pairs of bits

Brent-Kung consists of a sequence of the slices from Figure 8(b). Each slice
contains a forwards and a backwards tree. The forwards tree is:

fwdTree 1 = thinEmptyX1
fwdTree dep = join *=" (fwdTree (dep-1) ~||~ fwdTree (dep-1))
where
join = (row wi “||* w3) -||- (row w2 ~||* &)

where (d,d2,wl,w2,w3,_) = params

Note the similarity to the definition of sklansky. Only a parameter to the second

occurrence of row has changed.
backTree shares the same structure, but with extra control to take care of

the slide-back (Figure 8(b)). Brent-Kung is then defined as

(d,_,wl,_,w3,wd) = params

bk True 1 = colN 1 $ w3 *|[|*x d
bk _ 1 = rowN 2 w4 "=" ((wl *|[|* w3) *=x (w3 *|[|* d))
bk first dep = wFill ~=" bk False (dep-1)
“I1~ (backTree first True dep ~=" fwdTree dep)
where
wFill = if depth==2 then thinEmptyX
else row w4 “=" (row wd ~||* (w3 *=* w3))

The recursive case places a smaller Brent-Kung next to a slice consisting of a
forwards and backwards tree. The rest of the code is a bit messy due to the fact
that slide-back destroys the regularity around the base case.

The new structure in Figure 10 is also based on slices, and can be described
in Wired without introducing any new ideas. Its Wired layout is shown in Fig-

ure 13.

Wired: Wire-Aware Circuit Design 17

AN AT Tt
; [Tl
RARREINGS AL INRREaRE TN

Fig. 13. Wired layout of the new design

4.3 Results

The parameters used in our estimations are (see also Figure 5):

Tint R, Cy r c
50.1ps | 23.4k$2 | 0.072{F 0.02299//\ 1.43aF/)\

We analyse for a 100nm process (A = 50nm, half the technology feature size),
following a similar analysis by Huang and Ercegovac [5]. This is not a normal
process node, but rather a speculative process derived from NTRS’97 [10]. The
gate parameters refer to a min. size gate, but in the analyses, the output re-
sistance is that of a 5x min. size device, while input capacitance is 1.5x min.
size. Wiring parameters r and ¢ are obtained by assuming a wire width of 4\
(see formula(4) in [5]). The operator cells are square, with a side length of
160\.

The delays in nanoseconds resulting from the analsysis for Sklansky, Brent-
Kung and the new structure for 64 bits are (starting from the least significant
output):

Sklansky 0.010, 0.058, 0.10, 0.11, ... 0.42, 0.42, 0.42, 0.42
Brent-Kung 0.015, 0.066, 0.11, 0.12, ... 0.51, 0.51, 0.55, 0.36
New 0.012, 0.062, 0.11, 0.11, ... 0.40, 0.44, 0.44, 0.40

The result for Sklansky is very closely in line with those in [5], and the results
for the new structure are promising.

5 Discussion

We have shown how the Wired system allows the user to describe and anal-
yse circuits at a level of detail that captures not only the size and position of
wires and components but also the overall behaviour. The descriptions are pa-
rameterised on the building blocks (such as gates, wires and junctions) used
in the construction, and these blocks can also model non-functional aspects of
circuit behaviour. This permits detailed circuit analyses such as the RC-delay
estimation shown here. The instantiation engine that is used to propagate size
information through the circuit based on information both from the circuit and
its context is also used to perform these analyses. Circuit behaviour, whether
functional or non-functional, is captured as a relation that is the composition
of the relations for the sub-circuits. Thus, the analyses can be relational in na-
ture (as the RC-delay estimation is), involving the flow of data in more than

18 E. Axelsson, K. Claessen, and M. Sheeran

one direction, and multiple iterations before a fixed point is reached. Compared
to a purely functional approach such as that used in Lava, this gives a strict
increase in the range of analyses that can be performed by non-standard inter-
pretation. Once the non-functional behaviour of the lowest level building blocks
has been modelled, it becomes easy to explore the properties of a variety of dif-
ferent circuits to implement the same function. The fact that the descriptions are
compact and quick to write is important here, and this has been demonstrated
in our exploration of both standard and new parallel prefix circuits.

So far, we have only seen descriptions with 2-dimensional surfaces. We call
these hard circuits, since they have a strict geometrical interpretation. Wired also
supports hard 3-dimensional and soft circuits. Hard 3D descriptions are used to
make realistic circuits in processes with several metal layers, but if we only need
to see and analyse a simplified layout, we prefer to use hard 2D descriptions, as
they are much simpler. Soft descriptions do not have the geometrical constraints
that hard descriptions have. They are used to fill in parts of the geometry that we
don’t want to describe exactly. It is possible to convert soft descriptions to hard,
and vice versa. These operations only replace the outer surface of the description
and keep the internal contents unchanged. Using these ideas about soft and hard
circuits, we hope to return to the problem of high-level floor-planning that takes
account of the effects of wires between blocks.

Currently, the only available output format is the kind of postscript picture
shown here. The next step is to produce layout in a format such as GDSII. We
will also, in the style of Lava, perform net-list extraction and produce input
for verification tools. This will allow quick sanity checks during design explo-
ration.

Work on Wired will continue to be driven by case studies. Building on our
work on the generation of reduction trees [9] and on parallel prefix circuits, we
plan to build, using Wired, a fast binary multiplier circuit. This will involve
the study of buffer generation and of methods of folding circuits to improve
layout.

The resulting circuit descriptions are highly parameterised, raising the ques-
tion of how to provide generic verification methods. This is an important ques-
tion, and we have no easy answers. We feel, however, that Hunt’s work on
the DUAL-EVAL language [3] and his current work that builds upon it is the
best available starting point. We hope that others in the community will be
inspired to tackle the problem of how to verify highly parameterised circuit gen-
erators.

Acknowledgements

This work receives Intel-custom funding from the SRC. We acknowledge an
equipment grant from Intel Corporation. Thanks to Ingo Sander for comments
on an earlier draft.

Wired: Wire-Aware Circuit Design 19

References

1.

10.
11.

12.

B. Becker, G. Hotz, R. Kolla, P. Molitor, and H.-G. Osthof. Hierarchical design
based on a calculus of nets. In DAC ’87: Proceedings of the 24th ACM/IEEE
conference on Design automation, pages 649-653. ACM Press, 1987.

R.P. Brent and H.T. Kung. A regular layout for parallel adders. IEEE Transactions
on Computers, C-31, 1982.

B. Brock and W.A. Hunt Jr. The DUAL-EVAL Hardware Description Language
and Its Use in the Formal Specification and Verification of the FM9001 Micropro-
cessor. Formal Methods in System Design, 11(1), 1997.

K. Claessen, M. Sheeran, and S. Singh. The Design and Verification of a Sorter
Core. In CHARME, volume 2144 of LNCS. Springer, 2001.

Z. Huang and M. Ercegovac. Effect of Wire Delay on the Design of Prefix Adders
in Deep-Submicron Technology. In Proc. 34th Asilomar Conf. IEEE, 2000.

G. Jones and M. Sheeran. Circuit design in Ruby. In J. Staunstrup, editor, Formal
Methods for VLSI Design. North-Holland, 1990.

J.M. Rabaey et al. Digital Integrated Circuits. Prentice Hall, 2003.

M. Sheeran. wpFP, an algebraic VLSI design language, D.Phil. Thesis. Oxford
University, 1983.

M. Sheeran. Generating fast multipliers using clever circuits. In Formal Methods
in Computer-Aided Design (FMCAD), volume 3312 of LNCS. Springer, 2004.
SIA. National Technology Roadmap for Semiconductors. 1997.

J. Sklansky. Conditional-sum addition logic. IRE Trans. Electron. Comput., EC-9,
1960.

G. Spirakis. Opportunities and challenges in building silicon products at 65nm and
beyond. In Design and Test in Europe (DATE). IEEE, 2004.

