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Section 1

Introduction
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Hardware design

Hardware design is very complex and very expensive:

I Mistakes discovered after sales are much more serious
� No such thing as an “update” to a chip

I Thus the need for extensive simulation
� Using specific and expensive systems

I The downfall of Moore’s Law doesn’t help either
� More need for parallelism, fault-tolerance, etc.
� Design even more error-prone and validation even more

complex
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Hardware design

I The level of abstraction has been lifted already. . .
� Verilog and VHDL in the 1980s
� Popular, de facto industry standards

I Functional hardware design languages, also since the 1980s
� Expressive type systems, equational reasoning, etc.
� First, languages designed from scratch
� Then, embedded in general-purpose functional languages

� Prominently, in Haskell
� Several of them available nowadays
� Each with its own strengths and weaknesses
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Goals of this project

Compare exisiting functional Embedded Domain-Specific
Languages (EDSLs) for hardware description.

I A representative sample of EDSLs

I Analyze a well-defined set of criteria

I Practical analysis, with a set of circuits as case studies

Detect possible improvements as future work

Let’s first review our object of study
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Domain-Specific Languages

A computer language (turing-complete or not) targeting a
specific application domain.
Example DSLs:

I SQL (database queries)

I CSS (document formatting)

I MATLAB (Matrix programming)

I VHDL (Hardware description)

A DSL can also be embedded in a general-purpose language.
Example EDSLs:

I Boost.Proto (C++ / parser combinators)

I Diagrams (Haskell / programmatic drawing)

I Parsec (Haskell / parser combinators)
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Example of an EDSL: Parsec

A simple parser for a ”Game of Life”-like input format:

dead, alive :: Parser Bool
dead = fmap (const False) (char ’.’)
alive = fmap (const True) (char ’*’)

line :: Parser [Bool]
line = many1 (dead <|> alive)

board :: Parser [[Bool]]
board = line ‘endBy1‘ newline

parseBoardFromFile :: FilePath -> IO [[Bool]]
parseBoardFromFile filename = do

result <- parseFromFile board filename
return $ either (error . show) id result

I The shallow vs. deep-embedded divide
� Parsec is shallow-embedded
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Hardware EDSLs

An EDSL used for hardware design-related tasks. Can
encompass:

I Modeling / description

I Simulation (validation)

I Formal verification

I Synthesis to other (lower-level) languages

Example of a hardware EDSL (Lava):

halfAdder :: (Signal Bool, Signal Bool)
-> (Signal Bool, Signal Bool)

halfAdder inputs = (xor2 inputs, and2 inputs)
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Section 2

Analyzed EDSLs
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Choice criteria

When choosing which EDSLs to study, our requirements were:

I Hosted on already-known languages

I Covered a wide range over the criteria we defined (variety)

I Originals instead of variants or improvements

I Relatively well-known, frequently cited
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Chosen EDSLs

The languages chosen, with the respective host language, were:

I Lava (Haskell - chalmers-lava variant)

I ForSyDe (Haskell)

I Coquet (Coq interactive theorem prover)
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Evaluation criteria

As orthogonal as possible:

I Simulation (validation)

I (Formal) verification

I Genericity (data, structure)

I Depth of embedding

I Tool integration

I Extensibility
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Section 3

Modeled Circuits
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Choice criteria

I Not too simple, not too complex
I Familiar to any hardware designer

� No signal processing, etc.

I Well-defined, language-agnostic specification
� Results to validate the models against
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Chosen circuits
We cherry-picked circuits from the book “Elements of
Computing Systems”, as they satisfied all of our demands.

Figure: “Elements of Computing Systems” - Nisan, Schocken,
available at http://www.nand2tetris.org.

http://www.nand2tetris.org
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Chosen circuits

Circuit 1 A 2-input, 16-bit-wide, simple ALU

Circuit 2 A 64-word long, 16-bit wide memory bank

Circuit 3 An extremely reduced instruction set CPU, the
Hack CPU.

Let’s take a quick look at each of these circuit’s specification. . .
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Circuit 1: ALU

Some of the circuit’s key characteristics:

I 2 operand inputs and 1 operand output, each 16-bit wide

I 2 output flags
I Can execute 18 different functions, among which:

� Addition, subtraction
� Bitwise AND / OR
� Constant outputs
� Increment / decrement
� Sign inversion
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Circuit 1: block diagram

ALU

zx nx zy ny f no

zr ng

x
16-bits

y
16-bits

out
16-bits

Figure: Input/Output ports of circuit 1, the ALU.
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Circuit 1: specification

The behaviour of the ALU is specified by the values of the
control bits and flags:

zx and zy Zeroes the “x” and “y” inputs, respectively

nx and ny bitwise negation on the “x” and “y” inputs

f Selects the function to be applied:
“f” = 1 for addition, “f” = 0 for bitwise AND

no bitwise negation on the output ALU output

zr and ng The output flag “zr” = 1 iff the ALU output is
zero. “ng” = 1 iff the output is negative.

Formal definition and test cases in the book.
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Circuit 2: RAM64

Some of the circuit’s key characteristics:

I Sequential circuit, with clock input

I 64 memory words stored, each 16-bit wide

I Address port has width log2 64 = 6 bit



Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

22

Circuit 2: block diagram

RAM64

load

16 bits

in

log2 64
bits

address 16 bits

out

Figure: Input/Output ports of circuit 2, the RAM64 block.
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Circuit 2: specification

I The output “out” holds the value at the memory line
indicated by “address”.

I Iff “load” = 1, then the value at input “in” will be loaded
into memory line “address”.

I The loaded value will be emitted on “out” at the next
clock cycle.
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Circuit 3: Hack CPU

I A very reduced instruction set CPU
� Only 2 instructions: “C” and “A”

I Follows the Harvard architecture
� Separate data and instruction memory blocks

I Instructions are 16-bits wide
� As well as the memory input and output

I Two internal registers: “D” and “A”
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Circuit 3: block diagram

C
P
U

inM

instruction

reset

outM

writeM

addressM

pc

to data
memory

to instruction
memory

from
data

memory

from
instruction

memory

Figure: Input/Output ports of circuit 3, the Hack CPU.
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Circuit 3: specification

Circuit 3 runs “A” and “C” instructions, according to the Hack
assembly specification.

I The “A” instruction: sets the “A” register.

v v v0 v v v v v v v v v v v v
Instruction code

value

I The value in “A” can be used:
� As operand for a subsequent computation
� As address for jumps
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Circuit 3: specification

Circuit 3 runs “A” and “C” instructions, according to the Hack
assembly specification.

I The “C” instruction: sets the “C” register, performs
computation or jumps.

Instruction code

1 x x a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

comp dest jump

I Some peculiarities:
� Bits “c1” to “c6” control the ALU
� conditional or unconditional jumps
� destination of the computation result: “A”, “D”, “M”
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Circuit 3: specification (parts)

Figure: Parts used to build the Hack CPU, and their interconnection.
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Section 4

Analysis of the EDSLs
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Lava

I Developed at Chalmers University of Technology, Sweden
� Initially by Koen Claessen and Mary Sheeran
� Later also Per Bjesse and David Sands

I Has several dialects
� chalmers-lava, xilinx-lava, kansas-lava, etc.
� We focus on the “canonical” chalmers-lava
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Lava’s key characteristics

I Deep-embedded
I Observable sharing

� “Type-safe pointer equality” to detect sharing and recursion
� Advantages and disadvantages clearer with examples

I Capable of simulation, verification and synthesis
� Generates flat VHDL
� External tools for verification

I Very “functional” style of hardware description
� Will become clearer with examples
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Lava: Adders

type SB = Signal Bool

halfAdder :: (SB, SB) -> (SB, SB)
halfAdder inputs = (xor2 inputs, and2 inputs)

fullAdder :: (SB, (SB, SB)) -> (SB, SB)
fullAdder (cin, (a, b)) = (s, cout)

where
(ab, c1) = halfAdder (a, b)
(s, c2) = halfAdder (ab, cin)
cout = or2 (c1, c2)

rippleCarryAdder :: [(SB, SB)] -> [SB]
rippleCarryAdder ab = s

where (s, _) = row fullAdder (low, ab)

I Straightforward Haskell constructs

I “and2”, “xor2”, etc. are Lava’s atomic circuits
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Lava: Simulation and verification

I A taste of simulation in Lava:
type SB = Signal Bool
testHalfAdder :: [(SB, SB)]
testHalfAdder = map (simulate halfAdder) input

where input = [ (low,low), (low,high)
, (high,low), (high,high)]

� Cannot be easily automated: equality of Signal is
non-trivial

I And verification. . .
prop_FullAdderCommutative :: (SB, (SB, SB)) -> SB
prop_FullAdderCommutative (c, (a, b)) =

fullAdder (c, (a, b)) <==> fullAdder (c, (b, a))

-- satzoo prop_FullAdderCommutative

� Advantage: Fully automated (external SAT solver)
� Disadvantage: Only verifies instances of specific size
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Lava: ALU

type ALUControlBits = (SB, SB, SB, SB, SB, SB)

alu :: ([SB], [SB], ALUControlBits) -> ([SB], SB, SB)
alu (x, y, (zx, nx, zy, ny, f, no)) = (out’, zr, ng)

where x’ = mux (zx, (x, replicate (length x) low))
x’’ = mux (nx, (x’, map inv x’))
y’ = mux (zy, (y, replicate (length x) low))
y’’ = mux (ny, (y’, map inv y’))
out = let xy’’ = zip x’’ y’’

in mux (f, (andl xy’’, adder xy’’))
out’ = mux (no, (out, map inv out))
zr = foldl (curry and2) low out’
ng = equalBool high (last out’)
adder = rippleCarryAdder
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Remarks

I Cannot introduce new, meaningful datatypes
� Only Signal Bool is synthesizable
� Or tuples/lists thereof

I Input/Output types have to be uncurried
I Weak type-safety over the inputs/outputs

� Working with tuples is tiresome and has limitations
� Lists don’t enforce size constraints
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Lava: RAM64

reg :: (SB, SB) -> SB
reg (input, load) = out

where dff = mux (load, (out, input))
out = delay low dff

regN :: Int -> ([SB], SB) -> [SB]
regN n (input, load) = map reg $ zip input (replicate n load)

ram64Rows :: Int -> ([SB], (SB,SB,SB,SB,SB,SB), SB) -> [SB]
ram64Rows n (input, addr, load) = mux64WordN n (addr, regs)

where memLine sel = regN n (input, sel <&> load)
regs = map memLine (decode6To64 addr)
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Remarks

Positive:

I Uses host language for binding (let/where) and recursion

I Uses host language for structural combinators

Negative:
I Again, weak type-safety of lists

� Extra Int parameter controls port sizes
� But not type-safe

I No modularity in the generated VHDL code.
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Lava: Hack CPU (new parts)

programCounter :: Int -> (SB, SB, [SB]) -> [SB]
programCounter n (reset, set, input) = out where

incr = increment out
out = delay (replicate n low) increset
incinput = mux (set, (incr, input))
increset = mux (reset, (incinput, replicate n low))

type Dest = (SB, SB, SB)
type JumpCond = (SB, SB, SB)
type CPUCtrl = (SB, SB, Dest, JumpCond, ALUCtrl)

instructionDecoder :: HackInstruction -> CPUCtrl
instructionDecoder (i0,_,_,i3,i4,i5,i6,i7,i8,i9,...,i15)

= (aFlag, cAM, cDest, cJump, cALU) where
aFlag = i0
cAM = inv i3
cDest = (i10, i11, i12)
cJump = (i13, i14, i15)
cALU = (i4, i5, i6, i7, i8, i9)
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Final remarks

Lava could benefit from:

I Fixed-length vectors
� ForSyDe-style or with type-level naturals in recent GHC.

I Slicing operators over vectors

I Synthesizable user-defined datatypes

I Better way of providing observable sharing
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ForSyDe

I Based on the “Formal System Design” approach
� Royal Institute of Technology - KTH, Stockholm

I Available for Haskell and SystemC
I Has BOTH shallow and deep-embedded “versions”

� Same library, subtle distinction
� Will become clearer with examples

I Template Haskell to express circuits with Haskell syntax
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ForSyDe’s key concepts

I Models of Computation (MoCs)
� We focus on the synchronous MoC

I Processes
� Basic unit of computation
� A process belongs to a MoC
� Built with a process constructor

I Signals
� Connections among processes
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ForSyDe’s key concepts

+ + =

Process Constructor Functions Initial Values Process

Signal Domain Interface

MoC A

MoC B

Leaf
Process

Composite
Process

Figure: Key concepts of the ForSyDe EDSL
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ForSyDe: ALU (non-synth)

type S = Signal
type Word = Int16

data ALUOp = ALUSum | ALUAnd
deriving (Typeable, Data, Show)

$(deriveLift1 ’’ALUOp)

type ALUCtrl = (Bit, Bit, Bit, Bit, ALUOp, Bit)
type ALUFlag = (Bit, Bit)

bo, bb :: Bit -> Bool
bo = bitToBool
bb = boolToBit
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ForSyDe: ALU (non-synth)

aluFunc :: ProcFunc (ALUCtrl -> Word -> Word -> (Word,ALUFlag))
aluFunc = $(newProcFun [d|

aluFunc’ (zx,nx,zy,ny,f,no) x y =
( out, (bb (out == 0), bb (out < 0)) )

where
zf z w = if bo z then 0 else w
nf n w = if bo n then complement w else w
(xn, yn) = (nf nx $ zf zx $ x, nf ny $ zf zy $ y)
out = nf no $ case f of

ALUSum -> xn + yn
ALUAnd -> xn .&. yn |] )

aluProc :: S ALUCtrl -> S Word -> S Word -> S (Word,ALUFlag)
aluProc = zipWith3SY "aluProc" aluFunc
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ForSyDe: synthesis restrictions

Restrictions imposed on a model by ForSyDe so that it can be
translated to VHDL:

I ProcFun-related:
� Limited argument types (instances of ProcType)
� Int, Int8, . . . , Bool, Bit
� Enumerated types (deriving Data and Lift)
� Tuples and FSVec’s

I VHDL engine-related:
� No point-free notation
� Single clause / no pattern matching
� No where or let bindings
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ForSyDe: ALU (synthesizable)

zProc :: ProcId -> S Bit -> S Word -> S Word
zProc name = zipWithSY name $(newProcFun [d|

f :: Bit -> Word -> Word
f z w = if z == H then 0 else w |])

nProc :: ProcId -> S Bit -> S Word -> S Word
nProc name = zipWithSY name $(newProcFun [d|

f :: Bit -> Word -> Word
f n w = if n == H then negate w else w |])

compProc :: S Bit -> S Word -> S Word -> S Word
compProc = zipWith3SY "compProc" $(newProcFun [d|

f :: Bit -> Word -> Word -> Word
f o x y = if o == H then x + y else x .&. y |])

tzProc :: S Word -> S Bit ...
tnProc :: S Word -> S Bit ...
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ForSyDe: ALU (synthesizable)

type ALUCtrl = (Bit, Bit, Bit, Bit, Bit, Bit)
type ALUFlag = (Bit, Bit)

aluProc :: S ALUCtrl -> S Word -> S Word -> S (Word, ALUFlag)
aluProc c x y =

zipSY "aluProc" out (zipSY "flagsProc"
(tzProc out) (tnProc out))

where
(zx,nx,zy,ny,f,no) = unzip6SY "ctrlProc" c
out = nProc "no" no comp
comp = compProc f (nProc "nx" nx $ zProc "zx" zx $ x)

(nProc "ny" ny $ zProc "zy" zy $ y)
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ForSyDe: RAM64

reg :: S Word -> S Bit -> S Word
reg input load = out where

out = delaySY "delay" (0 :: WordType) dff
dff = (instantiate "mux2" mux2SysDef) load out input

ram64 :: S Word -> S (FSVec D6 Bit) -> S Bit -> S Word
ram64 input addr load = mux’ addr (zipxSY "zipRows" rs) where

mux’ = instantiate "mux" mux64SysDef
decoder’ = instantiate "decoder" decode6To64SysDef
reg’ l = instantiate l regSysDef
and’ l = instantiate l andSysDef
r (s,l) = (reg’ l) input ((and’ (l ++ ":and")) load s)
rs’ = unzipxSY "unzipAddr" $ decoder’ addr
rs = V.map r $ V.zip rs’ (V.map (\n -> "r" ++ show n)

(V.unsafeVector d64 [0..63]))

ram64SysDef = newSysDef ram64 "ram64" ["i","a","l"] ["o"]
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Remarks

I Component instantiation
� Introduces hierarchy in the design
� Influences generated VHDL

I Manual name management
� Error-prone
� Every process must have a unique identifier
� Already was a (lesser) issue with the muxes
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ForSyDe: Hack CPU (part)

type HackInstruction = FSVec D16 Bit
type Dest = (Bit, Bit, Bit)
type Jump = (Bit, Bit, Bit)

instructionDecoder :: S HackInstruction
-> S (Bit, Bit, Dest, Jump, ALUCtrl)

instructionDecoder = mapSY "mapSYdecoder" decoderFun where
decoderFun = $(newProcFun [d|
f :: HackInstruction -> (Bit, Bit, Dest, Jump, ALUCtrl)
f i = ( i!d0

, not (i!d3)
, (i!d10, i!d11, i!d12)
, (i!d13, i!d14, i!d15)
, (i!d4, i!d5, i!d6, i!d7, i!d8, i!d9)
) |])
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Coquet

I Developed by Thomas Braibant (INRIA, France)
� Seminal paper published in 2011

I Library embedded in the Coq proof assistant
� Deep-embedded
� Models the architecture of circuits

I Allows for correctness proofs of circuits
� According to a given specification
� Provides tactics to help with these proofs
� More powerful, inductive proofs
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Coquet: The Circuit type

Context {tech : Techno}
Inductive Circuit : Type -> Type -> Type :=
| Atom : forall {n m : Type} {Hfn : Fin n} {Hfm : Fin m},

techno n m -> Circuit n m

| Plug : forall {n m : Type} {Hfn : Fin n} {Hfm : Fin m}
(f : m -> n), Circuit n m

| Ser : forall {n m p : Type},
Circuit n m -> Circuit m p -> Circuit n p

| Par : forall {n m p q : Type},
Circuit n p -> Circuit m q
-> Circuit (n + m) (p + q)

| Loop : forall {n m p : Type},
Circuit (n + p) (n + p) -> Circuit n m
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Features from the Circuit type

I Circuit structure as constructors of the datatype
� Explicit loops (recursion) as constructor

I Parameterized by one type of fundamental gate (Atom)
� For example, NOR or NAND

I Circuit I/O ports are defined by finite types
� Instances of the “Fin” typeclass
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Coquet: circuit example

Definition HADD a b s c: circuit ([:a]+[:b]) ([:s]+[:c]) :=
Fork2 ([:a] + [:b]) |> (XOR a b s & AND a b c).

Program Definition FADD a b cin sum cout :
circuit ([:cin] + ([:a] + [:b])) ([:sum] + [:cout]) :=

(ONE [: cin] & HADD a b "s" "co1")
|> Rewire (* (a, (b,c)) => ((a,b), c) *)
|> (HADD cin "s" sum "co2" & ONE [: "co1"])
|> Rewire (* ((a,b), c) => (a, (b,c)) *)
|> (ONE [:sum] & OR "co2" "co1" cout).

Next Obligation. revert H; plug_def. Defined.
Next Obligation. plug_auto. Defined.
Next Obligation. revert H; plug_def. Defined.
Next Obligation. plug_auto.Defined.
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Features from the example

I Circuit I/O types (finite types)
� Parameterized by strings: tagged units
� Default “Fin” instances for sums, units

I Serial/Parallel composition
I Associativity plugs (reordering) automatically defined

� With help of proof search
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Coquet: How to prove correctness

To understand Coquet proofs, we need 2 concepts:
I Meaning relation

� Circuit → Prop

I Behavioural specification
� What should a circuit do with its inputs

Let’s take a look at the definition for each of these concepts. . .
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Coquet: Meaning relation

Inductive Sem : forall {n} {m},
C n m -> (n -> Data) -> (m -> Data) -> Prop :=

| KAtom: forall n m {Hfn: Fin n} {Hfm: Fin m}
(t: techno n m) i o, spec t i o -> Sem (Atom t) i o

| KSer: forall n m p (x: C n m) (y: C m p) i mid o,
Sem x i mid -> Sem y mid o -> Sem (Ser x y) i o

| KPar: forall n m p q (x: C n p) (y: C m q) i o,
Sem x (select_left i) (select_left o)

-> Sem y (select_right i) (select_right o)
-> Sem (Par x y) i o

| KPlug: forall n m {Hfn: Fin n} {Hfm: Fin m} (f: m -> n) i,
Sem (Plug f) i (Data.lift f i)

| KLoop: forall n m l (x: C (n + l) (m + l)) i o ret,
Sem x (Data.app i ret) (Data.app o ret)

-> Sem (Loop x) i o
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Coquet: Specification

Context {n m N M : Type}
(Rn : Iso (n -> T) N) (Rm : Iso (m -> T) M).

Class Realise (c : Circuit n m) (R : N -> M -> Prop) :=
realise: forall i o, Semantics c i o -> R (iso i) (iso o)

Class Implement (c : Circuit n m) (f : N -> M) :=
implement: forall i o, Semantics c i o -> iso o = f (iso i)

The semantics of a circuit entails (implies):

I A relation between inputs and outputs

I The application of a function to the inputs

I Up to isomorphisms. . .

Now for a (small) example of correctness proof. . .
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Coquet: Correctness proofs

Instance HADD_Implement {a b s c} :
Implement (HADD a b s c) _ _
(fun (x : bool * bool) =>

match x with (a,b) => (xorb a b, andb a b) end).
Proof.

unfold HADD; intros ins outs H; tac.
Qed.
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Coquet: How to prove correctness

Ltac tac :=
rinvert; (* destruct the circuit *)
realise_all; (* use the hint data-base *)
unreify_all bool; (* unreify *)
destruct_all; (* destruct the booleans *)
intros_all;
clear;
boolean_eq.
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Section 5

Conclusions
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Results

Summary of our findings, by aspect:

I Depth of embedding
� Lava: deep-embedded, recursion and sharing through host
� ForSyDe: both shallow and deep-embedded signals
� Coquet: the deepest of all, circuit structure in the AST

I Simulation
� Lava: straightforward, but not easily automated
� ForSyDe: easy in both embedding depths
� Coquet: one of the example interpretations, not sequential

I Verification
� Lava: safety properties through external SAT solver
� ForSyDe: no capabilities of verification whatsoever
� Coquet: Interactive theorem proving, verifies families of

circuits.
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Results

Summary of our findings, by aspect:

I Genericity
� Lava: families of circuits, with extra arguments
� ForSyDe: weak genericity, monomorphic types in ProcFun’s
� Coquet: similar approach to Lava

I Tool integration
� Lava: flat VHDL code (Signal Bool) and CNF formulas
� ForSyDe: modular VHDL code and GraphML files
� Coquet: no circuit extraction whatsoever

I Extensibility
� Lava: no data extensibility, high structural extensibility
� ForSyDe: possible to use custom enumerated types
� Coquet: flexible approach to data extensibility with

meaning relation
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Future work

I Modelling larger circuits

I Investigate and try to apply recent GHC developments
� Data and type families
� Type-level natural literals and operations
� Datatype promotion and kind polymorphism

I Hardware description in dependently-typed languages
� Coq verifiable synthesis of circuits
� Hardware EDSL in the Agda language



Thank you!

Questions?
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