
Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

1

Comparing functional Embedded
Domain-Specific Languages for hardware

description

João Paulo Pizani Flor
Supervised by: dr. Wouter Swierstra

Department of Information and Computing Sciences, Utrecht University

February 13th, 2014

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

2

Table of Contents

Introduction
Motivation
Hardware EDSLs

Analyzed EDSLs
Chosen EDSLs
Evaluation criteria

Modeled Circuits
ALU
Memory bank
CPU

Analysis of the EDSLs
Lava
ForSyDe
Coquet

Conclusions

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

3

Section 1

Introduction

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

4

Hardware design

Hardware design is very complex and very expensive:

I Mistakes discovered after sales are much more serious
� No such thing as an “update” to a chip

I Thus the need for extensive simulation
� Using specific and expensive systems

I The downfall of Moore’s Law doesn’t help either
� More need for parallelism, fault-tolerance, etc.
� Design even more error-prone and validation even more

complex

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

5

Hardware design

I The level of abstraction has been lifted already. . .
� Verilog and VHDL in the 1980s
� Popular, de facto industry standards

I Functional hardware design languages, also since the 1980s
� Expressive type systems, equational reasoning, etc.
� First, languages designed from scratch
� Then, embedded in general-purpose functional languages

� Prominently, in Haskell
� Several of them available nowadays
� Each with its own strengths and weaknesses

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

6

Goals of this project

Compare exisiting functional Embedded Domain-Specific
Languages (EDSLs) for hardware description.

I A representative sample of EDSLs

I Analyze a well-defined set of criteria

I Practical analysis, with a set of circuits as case studies

Detect possible improvements as future work

Let’s first review our object of study

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

6

Goals of this project

Compare exisiting functional Embedded Domain-Specific
Languages (EDSLs) for hardware description.

I A representative sample of EDSLs

I Analyze a well-defined set of criteria

I Practical analysis, with a set of circuits as case studies

Detect possible improvements as future work

Let’s first review our object of study

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

7

Domain-Specific Languages

A computer language (turing-complete or not) targeting a
specific application domain.
Example DSLs:

I SQL (database queries)

I CSS (document formatting)

I MATLAB (Matrix programming)

I VHDL (Hardware description)

A DSL can also be embedded in a general-purpose language.
Example EDSLs:

I Boost.Proto (C++ / parser combinators)

I Diagrams (Haskell / programmatic drawing)

I Parsec (Haskell / parser combinators)

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

7

Domain-Specific Languages

A computer language (turing-complete or not) targeting a
specific application domain.
Example DSLs:

I SQL (database queries)

I CSS (document formatting)

I MATLAB (Matrix programming)

I VHDL (Hardware description)

A DSL can also be embedded in a general-purpose language.
Example EDSLs:

I Boost.Proto (C++ / parser combinators)

I Diagrams (Haskell / programmatic drawing)

I Parsec (Haskell / parser combinators)

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

8

Example of an EDSL: Parsec

A simple parser for a ”Game of Life”-like input format:

dead, alive :: Parser Bool
dead = fmap (const False) (char ’.’)
alive = fmap (const True) (char ’*’)

line :: Parser [Bool]
line = many1 (dead <|> alive)

board :: Parser [[Bool]]
board = line ‘endBy1‘ newline

parseBoardFromFile :: FilePath -> IO [[Bool]]
parseBoardFromFile filename = do

result <- parseFromFile board filename
return $ either (error . show) id result

I The shallow vs. deep-embedded divide
� Parsec is shallow-embedded

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

9

Hardware EDSLs

An EDSL used for hardware design-related tasks. Can
encompass:

I Modeling / description

I Simulation (validation)

I Formal verification

I Synthesis to other (lower-level) languages

Example of a hardware EDSL (Lava):

halfAdder :: (Signal Bool, Signal Bool)
-> (Signal Bool, Signal Bool)

halfAdder inputs = (xor2 inputs, and2 inputs)

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

10

Section 2

Analyzed EDSLs

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

11

Choice criteria

When choosing which EDSLs to study, our requirements were:

I Hosted on already-known languages

I Covered a wide range over the criteria we defined (variety)

I Originals instead of variants or improvements

I Relatively well-known, frequently cited

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

12

Chosen EDSLs

The languages chosen, with the respective host language, were:

I Lava (Haskell - chalmers-lava variant)

I ForSyDe (Haskell)

I Coquet (Coq interactive theorem prover)

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

13

Evaluation criteria

As orthogonal as possible:

I Simulation (validation)

I (Formal) verification

I Genericity (data, structure)

I Depth of embedding

I Tool integration

I Extensibility

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

14

Section 3

Modeled Circuits

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

15

Choice criteria

I Not too simple, not too complex
I Familiar to any hardware designer

� No signal processing, etc.

I Well-defined, language-agnostic specification
� Results to validate the models against

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

16

Chosen circuits
We cherry-picked circuits from the book “Elements of
Computing Systems”, as they satisfied all of our demands.

Figure: “Elements of Computing Systems” - Nisan, Schocken,
available at http://www.nand2tetris.org.

http://www.nand2tetris.org

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

17

Chosen circuits

Circuit 1 A 2-input, 16-bit-wide, simple ALU

Circuit 2 A 64-word long, 16-bit wide memory bank

Circuit 3 An extremely reduced instruction set CPU, the
Hack CPU.

Let’s take a quick look at each of these circuit’s specification. . .

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

18

Circuit 1: ALU

Some of the circuit’s key characteristics:

I 2 operand inputs and 1 operand output, each 16-bit wide

I 2 output flags
I Can execute 18 different functions, among which:

� Addition, subtraction
� Bitwise AND / OR
� Constant outputs
� Increment / decrement
� Sign inversion

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

19

Circuit 1: block diagram

ALU

zx nx zy ny f no

zr ng

x
16-bits

y
16-bits

out
16-bits

Figure: Input/Output ports of circuit 1, the ALU.

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

20

Circuit 1: specification

The behaviour of the ALU is specified by the values of the
control bits and flags:

zx and zy Zeroes the “x” and “y” inputs, respectively

nx and ny bitwise negation on the “x” and “y” inputs

f Selects the function to be applied:
“f” = 1 for addition, “f” = 0 for bitwise AND

no bitwise negation on the output ALU output

zr and ng The output flag “zr” = 1 iff the ALU output is
zero. “ng” = 1 iff the output is negative.

Formal definition and test cases in the book.

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

21

Circuit 2: RAM64

Some of the circuit’s key characteristics:

I Sequential circuit, with clock input

I 64 memory words stored, each 16-bit wide

I Address port has width log2 64 = 6 bit

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

22

Circuit 2: block diagram

RAM64

load

16 bits

in

log2 64
bits

address 16 bits

out

Figure: Input/Output ports of circuit 2, the RAM64 block.

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

23

Circuit 2: specification

I The output “out” holds the value at the memory line
indicated by “address”.

I Iff “load” = 1, then the value at input “in” will be loaded
into memory line “address”.

I The loaded value will be emitted on “out” at the next
clock cycle.

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

24

Circuit 3: Hack CPU

I A very reduced instruction set CPU
� Only 2 instructions: “C” and “A”

I Follows the Harvard architecture
� Separate data and instruction memory blocks

I Instructions are 16-bits wide
� As well as the memory input and output

I Two internal registers: “D” and “A”

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

25

Circuit 3: block diagram

C
P
U

inM

instruction

reset

outM

writeM

addressM

pc

to data
memory

to instruction
memory

from
data

memory

from
instruction

memory

Figure: Input/Output ports of circuit 3, the Hack CPU.

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

26

Circuit 3: specification

Circuit 3 runs “A” and “C” instructions, according to the Hack
assembly specification.

I The “A” instruction: sets the “A” register.

v v v0 v v v v v v v v v v v v
Instruction code

value

I The value in “A” can be used:
� As operand for a subsequent computation
� As address for jumps

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

27

Circuit 3: specification

Circuit 3 runs “A” and “C” instructions, according to the Hack
assembly specification.

I The “C” instruction: sets the “C” register, performs
computation or jumps.

Instruction code

1 x x a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

comp dest jump

I Some peculiarities:
� Bits “c1” to “c6” control the ALU
� conditional or unconditional jumps
� destination of the computation result: “A”, “D”, “M”

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

28

Circuit 3: specification (parts)

Figure: Parts used to build the Hack CPU, and their interconnection.

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

29

Section 4

Analysis of the EDSLs

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

30

Lava

I Developed at Chalmers University of Technology, Sweden
� Initially by Koen Claessen and Mary Sheeran
� Later also Per Bjesse and David Sands

I Has several dialects
� chalmers-lava, xilinx-lava, kansas-lava, etc.
� We focus on the “canonical” chalmers-lava

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

31

Lava’s key characteristics

I Deep-embedded
I Observable sharing

� “Type-safe pointer equality” to detect sharing and recursion
� Advantages and disadvantages clearer with examples

I Capable of simulation, verification and synthesis
� Generates flat VHDL
� External tools for verification

I Very “functional” style of hardware description
� Will become clearer with examples

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

32

Lava: Adders

type SB = Signal Bool

halfAdder :: (SB, SB) -> (SB, SB)
halfAdder inputs = (xor2 inputs, and2 inputs)

fullAdder :: (SB, (SB, SB)) -> (SB, SB)
fullAdder (cin, (a, b)) = (s, cout)

where
(ab, c1) = halfAdder (a, b)
(s, c2) = halfAdder (ab, cin)
cout = or2 (c1, c2)

rippleCarryAdder :: [(SB, SB)] -> [SB]
rippleCarryAdder ab = s

where (s, _) = row fullAdder (low, ab)

I Straightforward Haskell constructs

I “and2”, “xor2”, etc. are Lava’s atomic circuits

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

33

Lava: Simulation and verification

I A taste of simulation in Lava:
type SB = Signal Bool
testHalfAdder :: [(SB, SB)]
testHalfAdder = map (simulate halfAdder) input

where input = [(low,low), (low,high)
, (high,low), (high,high)]

� Cannot be easily automated: equality of Signal is
non-trivial

I And verification. . .
prop_FullAdderCommutative :: (SB, (SB, SB)) -> SB
prop_FullAdderCommutative (c, (a, b)) =

fullAdder (c, (a, b)) <==> fullAdder (c, (b, a))

-- satzoo prop_FullAdderCommutative

� Advantage: Fully automated (external SAT solver)
� Disadvantage: Only verifies instances of specific size

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

34

Lava: ALU

type ALUControlBits = (SB, SB, SB, SB, SB, SB)

alu :: ([SB], [SB], ALUControlBits) -> ([SB], SB, SB)
alu (x, y, (zx, nx, zy, ny, f, no)) = (out’, zr, ng)

where x’ = mux (zx, (x, replicate (length x) low))
x’’ = mux (nx, (x’, map inv x’))
y’ = mux (zy, (y, replicate (length x) low))
y’’ = mux (ny, (y’, map inv y’))
out = let xy’’ = zip x’’ y’’

in mux (f, (andl xy’’, adder xy’’))
out’ = mux (no, (out, map inv out))
zr = foldl (curry and2) low out’
ng = equalBool high (last out’)
adder = rippleCarryAdder

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

35

Remarks

I Cannot introduce new, meaningful datatypes
� Only Signal Bool is synthesizable
� Or tuples/lists thereof

I Input/Output types have to be uncurried
I Weak type-safety over the inputs/outputs

� Working with tuples is tiresome and has limitations
� Lists don’t enforce size constraints

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

36

Lava: RAM64

reg :: (SB, SB) -> SB
reg (input, load) = out

where dff = mux (load, (out, input))
out = delay low dff

regN :: Int -> ([SB], SB) -> [SB]
regN n (input, load) = map reg $ zip input (replicate n load)

ram64Rows :: Int -> ([SB], (SB,SB,SB,SB,SB,SB), SB) -> [SB]
ram64Rows n (input, addr, load) = mux64WordN n (addr, regs)

where memLine sel = regN n (input, sel <&> load)
regs = map memLine (decode6To64 addr)

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

37

Remarks

Positive:

I Uses host language for binding (let/where) and recursion

I Uses host language for structural combinators

Negative:
I Again, weak type-safety of lists

� Extra Int parameter controls port sizes
� But not type-safe

I No modularity in the generated VHDL code.

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

38

Lava: Hack CPU (new parts)

programCounter :: Int -> (SB, SB, [SB]) -> [SB]
programCounter n (reset, set, input) = out where

incr = increment out
out = delay (replicate n low) increset
incinput = mux (set, (incr, input))
increset = mux (reset, (incinput, replicate n low))

type Dest = (SB, SB, SB)
type JumpCond = (SB, SB, SB)
type CPUCtrl = (SB, SB, Dest, JumpCond, ALUCtrl)

instructionDecoder :: HackInstruction -> CPUCtrl
instructionDecoder (i0,_,_,i3,i4,i5,i6,i7,i8,i9,...,i15)

= (aFlag, cAM, cDest, cJump, cALU) where
aFlag = i0
cAM = inv i3
cDest = (i10, i11, i12)
cJump = (i13, i14, i15)
cALU = (i4, i5, i6, i7, i8, i9)

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

39

Final remarks

Lava could benefit from:

I Fixed-length vectors
� ForSyDe-style or with type-level naturals in recent GHC.

I Slicing operators over vectors

I Synthesizable user-defined datatypes

I Better way of providing observable sharing

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

40

ForSyDe

I Based on the “Formal System Design” approach
� Royal Institute of Technology - KTH, Stockholm

I Available for Haskell and SystemC
I Has BOTH shallow and deep-embedded “versions”

� Same library, subtle distinction
� Will become clearer with examples

I Template Haskell to express circuits with Haskell syntax

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

41

ForSyDe’s key concepts

I Models of Computation (MoCs)
� We focus on the synchronous MoC

I Processes
� Basic unit of computation
� A process belongs to a MoC
� Built with a process constructor

I Signals
� Connections among processes

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

42

ForSyDe’s key concepts

+ + =

Process Constructor Functions Initial Values Process

Signal Domain Interface

MoC A

MoC B

Leaf
Process

Composite
Process

Figure: Key concepts of the ForSyDe EDSL

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

43

ForSyDe: ALU (non-synth)

type S = Signal
type Word = Int16

data ALUOp = ALUSum | ALUAnd
deriving (Typeable, Data, Show)

$(deriveLift1 ’’ALUOp)

type ALUCtrl = (Bit, Bit, Bit, Bit, ALUOp, Bit)
type ALUFlag = (Bit, Bit)

bo, bb :: Bit -> Bool
bo = bitToBool
bb = boolToBit

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

44

ForSyDe: ALU (non-synth)

aluFunc :: ProcFunc (ALUCtrl -> Word -> Word -> (Word,ALUFlag))
aluFunc = $(newProcFun [d|

aluFunc’ (zx,nx,zy,ny,f,no) x y =
(out, (bb (out == 0), bb (out < 0)))

where
zf z w = if bo z then 0 else w
nf n w = if bo n then complement w else w
(xn, yn) = (nf nx $ zf zx $ x, nf ny $ zf zy $ y)
out = nf no $ case f of

ALUSum -> xn + yn
ALUAnd -> xn .&. yn |])

aluProc :: S ALUCtrl -> S Word -> S Word -> S (Word,ALUFlag)
aluProc = zipWith3SY "aluProc" aluFunc

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

45

ForSyDe: synthesis restrictions

Restrictions imposed on a model by ForSyDe so that it can be
translated to VHDL:

I ProcFun-related:
� Limited argument types (instances of ProcType)
� Int, Int8, . . . , Bool, Bit
� Enumerated types (deriving Data and Lift)
� Tuples and FSVec’s

I VHDL engine-related:
� No point-free notation
� Single clause / no pattern matching
� No where or let bindings

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

46

ForSyDe: ALU (synthesizable)

zProc :: ProcId -> S Bit -> S Word -> S Word
zProc name = zipWithSY name $(newProcFun [d|

f :: Bit -> Word -> Word
f z w = if z == H then 0 else w |])

nProc :: ProcId -> S Bit -> S Word -> S Word
nProc name = zipWithSY name $(newProcFun [d|

f :: Bit -> Word -> Word
f n w = if n == H then negate w else w |])

compProc :: S Bit -> S Word -> S Word -> S Word
compProc = zipWith3SY "compProc" $(newProcFun [d|

f :: Bit -> Word -> Word -> Word
f o x y = if o == H then x + y else x .&. y |])

tzProc :: S Word -> S Bit ...
tnProc :: S Word -> S Bit ...

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

47

ForSyDe: ALU (synthesizable)

type ALUCtrl = (Bit, Bit, Bit, Bit, Bit, Bit)
type ALUFlag = (Bit, Bit)

aluProc :: S ALUCtrl -> S Word -> S Word -> S (Word, ALUFlag)
aluProc c x y =

zipSY "aluProc" out (zipSY "flagsProc"
(tzProc out) (tnProc out))

where
(zx,nx,zy,ny,f,no) = unzip6SY "ctrlProc" c
out = nProc "no" no comp
comp = compProc f (nProc "nx" nx $ zProc "zx" zx $ x)

(nProc "ny" ny $ zProc "zy" zy $ y)

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

48

ForSyDe: RAM64

reg :: S Word -> S Bit -> S Word
reg input load = out where

out = delaySY "delay" (0 :: WordType) dff
dff = (instantiate "mux2" mux2SysDef) load out input

ram64 :: S Word -> S (FSVec D6 Bit) -> S Bit -> S Word
ram64 input addr load = mux’ addr (zipxSY "zipRows" rs) where

mux’ = instantiate "mux" mux64SysDef
decoder’ = instantiate "decoder" decode6To64SysDef
reg’ l = instantiate l regSysDef
and’ l = instantiate l andSysDef
r (s,l) = (reg’ l) input ((and’ (l ++ ":and")) load s)
rs’ = unzipxSY "unzipAddr" $ decoder’ addr
rs = V.map r $ V.zip rs’ (V.map (\n -> "r" ++ show n)

(V.unsafeVector d64 [0..63]))

ram64SysDef = newSysDef ram64 "ram64" ["i","a","l"] ["o"]

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

49

Remarks

I Component instantiation
� Introduces hierarchy in the design
� Influences generated VHDL

I Manual name management
� Error-prone
� Every process must have a unique identifier
� Already was a (lesser) issue with the muxes

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

50

ForSyDe: Hack CPU (part)

type HackInstruction = FSVec D16 Bit
type Dest = (Bit, Bit, Bit)
type Jump = (Bit, Bit, Bit)

instructionDecoder :: S HackInstruction
-> S (Bit, Bit, Dest, Jump, ALUCtrl)

instructionDecoder = mapSY "mapSYdecoder" decoderFun where
decoderFun = $(newProcFun [d|
f :: HackInstruction -> (Bit, Bit, Dest, Jump, ALUCtrl)
f i = (i!d0

, not (i!d3)
, (i!d10, i!d11, i!d12)
, (i!d13, i!d14, i!d15)
, (i!d4, i!d5, i!d6, i!d7, i!d8, i!d9)
) |])

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

51

Coquet

I Developed by Thomas Braibant (INRIA, France)
� Seminal paper published in 2011

I Library embedded in the Coq proof assistant
� Deep-embedded
� Models the architecture of circuits

I Allows for correctness proofs of circuits
� According to a given specification
� Provides tactics to help with these proofs
� More powerful, inductive proofs

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

52

Coquet: The Circuit type

Context {tech : Techno}
Inductive Circuit : Type -> Type -> Type :=
| Atom : forall {n m : Type} {Hfn : Fin n} {Hfm : Fin m},

techno n m -> Circuit n m

| Plug : forall {n m : Type} {Hfn : Fin n} {Hfm : Fin m}
(f : m -> n), Circuit n m

| Ser : forall {n m p : Type},
Circuit n m -> Circuit m p -> Circuit n p

| Par : forall {n m p q : Type},
Circuit n p -> Circuit m q
-> Circuit (n + m) (p + q)

| Loop : forall {n m p : Type},
Circuit (n + p) (n + p) -> Circuit n m

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

53

Features from the Circuit type

I Circuit structure as constructors of the datatype
� Explicit loops (recursion) as constructor

I Parameterized by one type of fundamental gate (Atom)
� For example, NOR or NAND

I Circuit I/O ports are defined by finite types
� Instances of the “Fin” typeclass

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

54

Coquet: circuit example

Definition HADD a b s c: circuit ([:a]+[:b]) ([:s]+[:c]) :=
Fork2 ([:a] + [:b]) |> (XOR a b s & AND a b c).

Program Definition FADD a b cin sum cout :
circuit ([:cin] + ([:a] + [:b])) ([:sum] + [:cout]) :=

(ONE [: cin] & HADD a b "s" "co1")
|> Rewire (* (a, (b,c)) => ((a,b), c) *)
|> (HADD cin "s" sum "co2" & ONE [: "co1"])
|> Rewire (* ((a,b), c) => (a, (b,c)) *)
|> (ONE [:sum] & OR "co2" "co1" cout).

Next Obligation. revert H; plug_def. Defined.
Next Obligation. plug_auto. Defined.
Next Obligation. revert H; plug_def. Defined.
Next Obligation. plug_auto.Defined.

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

55

Features from the example

I Circuit I/O types (finite types)
� Parameterized by strings: tagged units
� Default “Fin” instances for sums, units

I Serial/Parallel composition
I Associativity plugs (reordering) automatically defined

� With help of proof search

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

56

Coquet: How to prove correctness

To understand Coquet proofs, we need 2 concepts:
I Meaning relation

� Circuit → Prop

I Behavioural specification
� What should a circuit do with its inputs

Let’s take a look at the definition for each of these concepts. . .

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

57

Coquet: Meaning relation

Inductive Sem : forall {n} {m},
C n m -> (n -> Data) -> (m -> Data) -> Prop :=

| KAtom: forall n m {Hfn: Fin n} {Hfm: Fin m}
(t: techno n m) i o, spec t i o -> Sem (Atom t) i o

| KSer: forall n m p (x: C n m) (y: C m p) i mid o,
Sem x i mid -> Sem y mid o -> Sem (Ser x y) i o

| KPar: forall n m p q (x: C n p) (y: C m q) i o,
Sem x (select_left i) (select_left o)

-> Sem y (select_right i) (select_right o)
-> Sem (Par x y) i o

| KPlug: forall n m {Hfn: Fin n} {Hfm: Fin m} (f: m -> n) i,
Sem (Plug f) i (Data.lift f i)

| KLoop: forall n m l (x: C (n + l) (m + l)) i o ret,
Sem x (Data.app i ret) (Data.app o ret)

-> Sem (Loop x) i o

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

58

Coquet: Specification

Context {n m N M : Type}
(Rn : Iso (n -> T) N) (Rm : Iso (m -> T) M).

Class Realise (c : Circuit n m) (R : N -> M -> Prop) :=
realise: forall i o, Semantics c i o -> R (iso i) (iso o)

Class Implement (c : Circuit n m) (f : N -> M) :=
implement: forall i o, Semantics c i o -> iso o = f (iso i)

The semantics of a circuit entails (implies):

I A relation between inputs and outputs

I The application of a function to the inputs

I Up to isomorphisms. . .

Now for a (small) example of correctness proof. . .

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

59

Coquet: Correctness proofs

Instance HADD_Implement {a b s c} :
Implement (HADD a b s c) _ _
(fun (x : bool * bool) =>

match x with (a,b) => (xorb a b, andb a b) end).
Proof.

unfold HADD; intros ins outs H; tac.
Qed.

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

60

Coquet: How to prove correctness

Ltac tac :=
rinvert; (* destruct the circuit *)
realise_all; (* use the hint data-base *)
unreify_all bool; (* unreify *)
destruct_all; (* destruct the booleans *)
intros_all;
clear;
boolean_eq.

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

61

Section 5

Conclusions

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

62

Results

Summary of our findings, by aspect:

I Depth of embedding
� Lava: deep-embedded, recursion and sharing through host
� ForSyDe: both shallow and deep-embedded signals
� Coquet: the deepest of all, circuit structure in the AST

I Simulation
� Lava: straightforward, but not easily automated
� ForSyDe: easy in both embedding depths
� Coquet: one of the example interpretations, not sequential

I Verification
� Lava: safety properties through external SAT solver
� ForSyDe: no capabilities of verification whatsoever
� Coquet: Interactive theorem proving, verifies families of

circuits.

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

63

Results

Summary of our findings, by aspect:

I Genericity
� Lava: families of circuits, with extra arguments
� ForSyDe: weak genericity, monomorphic types in ProcFun’s
� Coquet: similar approach to Lava

I Tool integration
� Lava: flat VHDL code (Signal Bool) and CNF formulas
� ForSyDe: modular VHDL code and GraphML files
� Coquet: no circuit extraction whatsoever

I Extensibility
� Lava: no data extensibility, high structural extensibility
� ForSyDe: possible to use custom enumerated types
� Coquet: flexible approach to data extensibility with

meaning relation

Introduction

Motivation

Hardware EDSLs

Analyzed EDSLs

Chosen EDSLs

Evaluation criteria

Modeled Circuits

ALU

Memory bank

CPU

Analysis of the
EDSLs

Lava

ForSyDe

Coquet

Conclusions

64

Future work

I Modelling larger circuits

I Investigate and try to apply recent GHC developments
� Data and type families
� Type-level natural literals and operations
� Datatype promotion and kind polymorphism

I Hardware description in dependently-typed languages
� Coq verifiable synthesis of circuits
� Hardware EDSL in the Agda language

Thank you!

Questions?

	Introduction
	Motivation
	Hardware EDSLs

	Analyzed EDSLs
	Chosen EDSLs
	Evaluation criteria

	Modeled Circuits
	ALU
	Memory bank
	CPU

	Analysis of the EDSLs
	Lava
	ForSyDe
	Coquet

	Conclusions

