
Dept. of Information and Computing Sciences, Utrecht University

Theory of Programming and Types 2014

Exercise Set 2

Johan Jeuring

February 2014

1 General Information

Read the following instructions and notes.

1.1 Instructions

1. Read through all of the exercises before starting, so that you have an overall idea of what
is expected and how much time to plan for each.

2. Create a directory called <First><Last>2 with <First> replaced by your first name
(e.g. Alonzo) and <Last> replaced by your surname (e.g. Church). The first questions
ask you to write Haskell software. Answer these questions in a file with the extension lhs
in this directory. The last question is about Agda, and answer this question in a file with
the extension lagda.

3. Number your solutions in comments to match the exercise numbers.

4. Submit your file as an email attachment to J.T.Jeuring@uu.nl before the following dead-
line:

13:15 – 13 March, 2014

1.2 Notes

• You will need to install the latest ligd and regular packages from Hackage.

• You may discuss the exercises amongst each other or with the lecturers at a conceptual
level, but you cannot copy or share solutions. All work should be your own.

• Use the literate Haskell format for your submitted file. (Code follows > or goes between
\begin{code} and \end{code} commands.) You don’t need to do any other special
formatting.

1

mailto:J.T.Jeuring@uu.nl
http://hackage.haskell.org/package/ligd
http://hackage.haskell.org/package/regular
http://www.haskell.org/onlinereport/literate.html

• All code should type-check when the file is loaded into GHCi (Agda for the last question).
You may use any version of GHC.

• The maximum possible score for the exercise set is 10. Next to each exercise number is
its maximum possible score in parentheses.

Good luck!

2 Exercises

1. (0.5) Consider each of the following Haskell datatypes.

data Tree a b = Tip a | Branch (Tree a b) b (Tree a b)
data GList f a= GNil | GCons a (f a)
data Bush a = Bush a (GList Bush (Bush a))

data HFix f a = HIn {hout :: f (HFix f) a}
data Exists bwhere
Exists ::a→ (a→ b)→ Exists b

data Expwhere
Bool ::Bool → Exp
Int :: Int → Exp
GT ::Exp→ Exp → Exp
IsZero ::Exp → Exp
Add ::Exp→ Exp → Exp
If ::Exp→ Exp→ Exp→ Exp

What is the kind of each datatype?

2. (2.5) Use the Exp datatype above to do the following exercises.

a) Write a function to interpret the Exp datatype above. Use the following type signa-
ture:

eval ::Exp→Maybe (Either Int Bool)

Note:

• IsZero expects an expression that evaluates to an Int and itself evalutes to
True if the integer is 0 and False otherwise.

• GT takes two integer expressions, and returns True if the first is greater than
the second, and False otherwise.

• Add takes two integer expressions and returns their sum.

2

• If takes one boolean expression and two other expressions of undetermined
type. If the first argument evaluates to True , the second argument is returned.
Otherwise, the third argument is returned.

b) Define a type ExpF such that Exp′ is isomorphic to Exp .

newtype Fix f = In {out :: f (Fix f)}
type Exp′ = Fix ExpF

c) Give the Functor instance for ExpF and the evaluation algebra evalAlg such that

for all isomorphic expressions e ::Exp and e′ ::Exp′ , eval e≡ eval′ e′ .

fold ::Functor f⇒ (f a→ a)→ Fix f→ a
fold f = f ◦ fmap (fold f)◦out
eval′ ::Exp′→Maybe (Either Int Bool)
eval′ = fold evalAlg

d) Define a GADT ExpTF such that ExpT′ is well-typed (using type indexes) and

isomorphic to Exp′ if the extra types are erased.

type ExpT′ = HFix ExpTF

What is an expression e ::Exp that evaluates successfully (i.e. eval e does not re-

sult in Nothing or ⊥) but cannot be defined in ExpT′ ?

e) Study the code below carefully. Give the HFunctor instance for ExpTF and the

evaluation algebra evalAlgT such that for all expressions e′ ::ExpT′ such that

evalT′ e′ evaluates to a value v , the expression eval e in which is e is isomorphic
to e′ also evaluates to v .

class HFunctor f where
hfmap :: (∀b . g b→ h b)→ f g a→ f h a

hfold ::HFunctor f⇒ (∀b . f r b→ r b)→ HFix f a→ r a
hfold f = f.hfmap (hfold f)◦hout
newtype Id a= Id {unId ::a}
evalT′ ::ExpT′ a→ a
evalT′ = unId◦hfold evalAlgT
evalAlgT ::ExpTF Id a→ Id a

3. (2) Define a generic function using regular that collects the recursive children. The
user-visible function is children , which is defined as:

3

children :: (R.Regular r,Children (R.PF r))⇒ r→ [r]
children= children′ ◦R.from

For example:

example3= children [1,2]≡ [[2]]

evaluates to True .

a) Define the Children type class with the single method children′ .

b) Give instances of Children for the following functor types: unit, constant, construc-
tor, recursive position, sum, and product.

4. (2) Define a generic function using regular that collects the subexpressions that are
parents in a value of a datatype. A subexpression is a parent if it has a non-empty list of
children. The user-visible function is parents , with the type:

parents :: (R.Regular r, ...)⇒ r→ [r]

For example:

example4= parents [1,2,3]≡ [[1,2,3], [2,3], [3]]

evaluates to True . Note that the subexpression [] is not among the parents, since is has
no children.

5. (3) Implement the embedding from Regular into MultiRec in José Pedro Magalhães frame-
work for formally proving embeddings of generic programming libraries. Most of the
code can be found here: http://www.dreixel.net/research/code/fcadgp.agda.
To check this code you need version 0.7 of the Agda library, available here: http:

//www.cse.chalmers.se/~nad/software/lib-0.7.tar.gz. Implement a module
Regular2Multirec.

4

http://www.dreixel.net/research/code/fcadgp.agda
http://www.cse.chalmers.se/~nad/software/lib-0.7.tar.gz
http://www.cse.chalmers.se/~nad/software/lib-0.7.tar.gz

	General Information
	Instructions
	Notes

	Exercises

