Dept. of Information and Computing Sciences, Utrecht University

Theory of Programming and Types 2014

Solutions to Exercise Set 2

Johan Jeuring

February 2014

1 General Information

Read the following instructions and notes.

1.1 Instructions

1. Read through all of the exercises before starting, so that you have an overall idea of what
is expected and how much time to plan for each.

2. Create a directory called <First><Last>2 with <First> replaced by your first name
(e.g. Alonzo) and <Last> replaced by your surname (e.g. Church). The first questions
ask you to write Haskell software. Answer these questions in a file with the extension lhs
in this directory. The last question is about Agda, and answer this question in a file with
the extension lagda.

3. Number your solutions in comments to match the exercise numbers.

4. Submit your file as an email attachment to J.T.Jeuring @uu.nl| before the following dead-
line:

13:15 - 13 March, 2014

1.2 Notes
e You will need to install the latest|1igd and |regular| packages from Hackage.

e You may discuss the exercises amongst each other or with the lecturers at a conceptual
level, but you cannot copy or share solutions. All work should be your own.

e Use the literate Haskell format for your submitted file. (Code follows > or goes between
\begin{code} and \end{code} commands.) You don’t need to do any other special
formatting.

mailto:J.T.Jeuring@uu.nl
http://hackage.haskell.org/package/ligd
http://hackage.haskell.org/package/regular
http://www.haskell.org/onlinereport/literate.html

e All code should type-check when the file is loaded into GHCi (Agda for the last question).
You may use any version of GHC.

e The maximum possible score for the exercise set is 10. Next to each exercise number is
its maximum possible score in parentheses.

Good luck!

2 Exercises

1. (0.5) Consider each of the following Haskell datatypes.

data Treeab = Tipa | Branch (Treeab) b (Treeab)
data GList f a = GNil | GCons a (f a)

data Bush a = Bush a (GList Bush (Bush a))

data HFixf a = HIn {hout:: f (HFixf) a}

data Exists b where
Exists::a — (a — b) — Exists b

data Exp where

Bool ::Bool — Exp
Int ::int — Exp
GT :Exp— Exp — Exp
IsZero:: Exp — Exp
Add ::Exp— Exp — Exp
If ::Exp — Exp — Exp — Exp

What is the kind of each datatype?

Solution.

Tree 1% — x — *

GList @2 (s — %) — % — %

Bush ::% — %

HFix @ ((x = %) = % — %) = % — %
Exists:: % — %

Exp %

2. (2.5) Use the Exp datatype above to do the following exercises.

a) Write a function to interpret the Exp datatype above. Use the following type signa-
ture:

eval :: Exp — Maybe (Either Int Bool)

Note:

IsZero expects an expression that evaluates to an Int and itself evalutes to
True if the integeris 0 and False otherwise.

GT takes two integer expressions, and returns True if the first is greater than
the second, and False otherwise.

Add takes two integer expressions and returns their sum.

If takes one boolean expression and two other expressions of undetermined
type. If the first argument evaluates to True , the second argument is returned.
Otherwise, the third argument is returned.

Solution. This is one approach. Since Maybe is a Monad , it can be written more
elegantly monadically.

eval (Boolb) = Just (Right b)
eval (Int i) = Just (Lefti)
eval (GT el e2) = case eval el of
Just (Left i) — case eval €2 of
Just (Left j) — Just (Right (i>]))

_ — Nothing
— — Nothing
eval (IsZeroe) = caseeval e of
Just (Left i) — Just (Right (i=0))
_ — Nothing

eval (Add el e2) = case eval el of
Just (Left il) — case eval €2 of
Just (Lefti2) — Just (Left (i1 +i2))
_ — Nothing
_ — Nothing
eval (If cel e2) = case eval c of
Just (Right b) — if b then eval el else eval €2
— — Nothing

Define a type ExpF such that Exp’ is isomorphic to Exp .

newtype Fixf = In {out::f (Fixf)}
type Exp’ = Fix ExpF

Solution.

data ExpF :: x — % where
BoolF ::Bool — ExpFr

IntF ::Int — ExpFr
GTF r—r — ExpFr
IsZeroF ::r — ExpF r
AddF :@r—r — ExpF r
IfF wr—r—r— ExpFr

¢) Give the Functor instance for ExpF and the evaluation algebra evalAlg such that

for all isomorphic expressions e::Exp and €' ::Exp’, evale=eval' €' .

fold:: Functor f = (fa —a) — Fixf —a
fold f = f ofmap (fold f) o out

eval’:: Exp’ — Maybe (Either Int Bool)
eval’ = fold evalAlg

Solution.

instance Functor ExpF where
fmap f (BoolFb) = BoolF b
fmap f (IntF i) =IntFi
fmapf (GTFIr) =GTF(fl)(fr)
fmap f (IsZeroF e) = IsZeroF (f e)
fmap f (AddF el e2) = AddF (f el) (f e2)
fmapf (IfF cele2) =IfF (fc) (fel) (f e2)

evalAlg :: ExpF (Maybe (Either Int Bool)) — Maybe (Either Int Bool)
evalAlg (BoolF b) = Just (Right b)
evalAlg (IntF i) = Just (Left i)
evalAlg (GTF el e2) = case el of
Just (Left i) — case e2 of
Just (Left j) — Just (Right (i>]))

_ — Nothing
— — Nothing
evalAlg (IsZeroF e) = case e of
Just (Left i) — Just (Right (i=0))
— Nothing

evalAlg (AddF el e2) = case el of

Just (Leftil) — case e2 of

Just (Lefti2) — Just (Left (i1 +i2))

_ — Nothing

_ — Nothing
evalAlg (IfF cel e2) = case c of

Just (Right b) — if b then el else 2

— — Nothing

d) Define a GADT ExpTF such that ExpT’ is well-typed (using type indexes) and

isomorphic to Exp’ if the extra types are erased.
type ExpT’' = HFix ExpTF

Solution.

data ExpTF:: (x+ — %) — % — x where

BoolTF ::Bool — ExpTF r Bool
IntTF ::Int — ExpTF rInt
GTTF :riInt—rlint — ExpTF r Bool
IsZeroTF::rInt — ExpTF r Bool
AddTF :rint—rlint — ExpTF rInt
IfTF 2:rBool - ra—ra— ExpTFra

What is an expression e::Exp that evaluates successfully (i.e. evale does not re-
sult in Nothing or L) but cannot be defined in ExpT’ ?

Solution. Something using If where the “true” and “false” terms have different
types. Example:

e = If (Bool True) (Int5) (Bool False)

Study the code below carefully. Give the HFunctor instance for ExpTF and the
evaluation algebra evalAlgT such that for all expressions e'::ExpT’ such that
evalT’ € evaluates to a value v , the expression eval e in whichis e is isomorphic
to €' also evaluates to v .
class HFunctor f where

hfmap:: (Vb.gb—hb) —>fga—fha

hfold :: HFunctor f = (Vb .frb—rb) - HFixfa—ra
hfold f = f.hfmap (hfold f) o hout

newtypelda=Id {unld::a}

evalT'::ExpT'a— a

evalT’ = unld o hfold evalAlgT
evalAlgT ::ExpTFIda —Id a

Solution.

instance HFunctor ExpTF where
hfmap f (BoolTFb) = BoolTF b
hfmap f (IntTF i) = IntTFi
hfmap f (GTTF Ir) =GTTF (fl)(fr)
hfmap f (IsZeroTFe) =IsZeroTF (fe)
hfmap f (AddTF el e2) = AddTF (f el) (f e2)

hfmap f (IfTF cele2) =IfTF (fc) (fel) (f e2)

evalAlgT (BoolTF b) =Idb
evalAlgT (IntTF i) =Idi
evalAlgT (GTTF (Id 1) (Id r)) =Id (I>r)
evalAlgT (IsZeroTF (Id x)) =1d (x=0)
evalAlgT (AddTF (Id i1) (Id i2)) =Id (i1+i2)
evalAlgT (IfTF (Idc) (Id el) (Id e2)) = Id (if c then el else e2)

3. (2) Define a generic function using regular that collects the recursive children. The
user-visible function is children , which is defined as:

children:: (R.Regular r, Children (R.PF r)) = r — [r]
children = children’ o R.from

For example:

example3 = children [1,2] = [[2]]

evaluates to True .

a) Define the Children type class with the single method children’ .
Solution.

class Children f where
children’::f r — [r]

b) Give instances of Children for the following functor types: unit, constant, construc-
tor, recursive position, sum, and product.

Solution.
instance Children R.U where
children’ R.U =[]

instance Children (R.K a) where
children’ (R.K _) =]

instance Children f = Children (R.C c f) where
children’ (R.C x) = children’ x

instance Children R.| where
children’ (R.1r) = [r]

instance (Children f, Children g) = Children (fR. +: g) where
children’ (R.L x) = children’ x
children’ (R.Ry) = children’y

instance (Children f, Children g) = Children (fR. :x: g) where
children’ (xR. :xx:y) = children’ x -+ children’ y

4. (2) Define a generic function using regular that collects the subexpressions that are
parents in a value of a datatype. A subexpression is a parent if it has a non-empty list of
children. The user-visible function is parents , with the type:

parents:: (R.Regularr,...) = r — [r]

For example:

example4 = parents [1,2,3] =[[1,2,3],]2,3],[3]]

evaluates to True . Note that the subexpression [] is not among the parents, since it has
no children.

Solution.

parents:: (R.Regular r, Children (R.PF r),Subelems (R.PF r)) = r — [r]
parents r = filter (—onull o children) (r:subelems r)

subelems:: (R.Regular r,Subelems (R.PF r)) = r — [r]
subelems = subelems’ o R.from

class Subelems f where
subelems’:: (R.Regular r,Subelems (R.PF r)) = f r — [r]

Solution.

instance Subelems R.U where
subelems’ R.U =]

instance Subelems (R.K a) where
subelems’ (R.K _) =]

instance Subelems f = Subelems (R.C c f) where
subelems’ (R.C x) = subelems’ x
instance Subelems R.| where
subelems’ (R.Ir) = r:subelems’ (R.fromr)
instance (Subelems f, Subelems g) = Subelems (fR. = g) where
subelems’ (R.L x) = subelems’ x
subelems’ (R.Ry) = subelems’ y

instance (Subelems f,Subelems g) = Subelems (fR. :x: g) where
subelems’ (xR. xx:y) = subelems’ x ++ subelems’ y

type instance (R.PF) [a] = R.UR. #: (R.KaR.xx:R.l)

instance R.Regular [a] where
from[]=R.LR.U
from (x:xs) = R.R (R.K xR. x:R.I xs)

to (RLR.U) =[]
to (R.R (R.KxR.x:R.I'xs)) = x:xs

example4 = subelems [1,2,3,4]
type instance R.PF (Treea b) = R.K aR. =+ (R.IR. :x: (R.K bR. x: R.I))

instance R.Regular (Tree a b) where
from (Tipx) =R.L (R.Kx)
from (BranchInr) =R.R (R.IIR.:x: (R.KnR.xx:R.I'r))
to (R.L (R.Kx))=Tipx
to (R.R (R.INR.x: (R.KnR.>x:R.Ir))) = Branch Inr
deriving instance (Show a,Show b) = Show (Tree a b)

example5 = subelems (Branch (Branch (Tip0) ’a’ (Tip 1)) ’b’ (Tip2))

. (3) Implement the embedding from Regular into MultiRec in José Pedro Magalhaes frame-
work for formally proving embeddings of generic programming libraries. Most of the
code can be found here: http://www.dreixel.net/research/code/fcadgp.agda.
To check this code you need version 0.7 of the Agda library, available here: http:
//www.cse.chalmers.se/~nad/software/1ib-0.7.tar.gz. Implement a module
Regular2Multirec.

http://www.dreixel.net/research/code/fcadgp.agda
http://www.cse.chalmers.se/~nad/software/lib-0.7.tar.gz
http://www.cse.chalmers.se/~nad/software/lib-0.7.tar.gz

	General Information
	Instructions
	Notes

	Exercises

