
Generic Programming in
Context

Johan Jeuring

Utrecht University

February 17, 2014

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 1 / 46



Introduction

Introduction

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 2 / 46



Introduction

Generic Programming

Making programming languages more flexible without compromising
safety

Means different things to different people, because they have different
ideas about combining flexibility and safety

Possible interpretations: parametric polymorphism, libraries of
algorithms and data structures, reflection and meta-programming, etc.

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 3 / 46



Introduction

“Generic”

Question

When is something generic?

“Generic” is an over-used adjective in computer science.

Ada has generic packages, Java has generics, Eiffel has generic
classes, etc.

Usually, the adjective “generic” is used to describe a concept that
allows abstraction over a larger class of entities than previously
possible.

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 4 / 46



Introduction

Outline
1 Introduction

2 Genericity by Value

3 Genericity by Type

4 Genericity by Function

5 Genericity by Structure

6 Genericity by Property

7 Genericity by Stage

8 Genericity by Shape

9 Conclusion

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 5 / 46



Genericity by Value

Genericity by Value

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 6 / 46



Genericity by Value

Genericity by Value (1)

Draw ASCII pictures:

* * * *

* * *

* *

*

First attempt:

triangle1 = do
putStrLn " * * * *"

putStrLn " * * *"

putStrLn " * *"

putStrLn " *"

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 7 / 46



Genericity by Value

Genericity by Value (2)

Better attempt:

triangle2 0 = return ()
triangle2 n = do

line2 n
triangle2 (pred n)

line2 0 = putStrLn ""

line2 n = do
putStr " *"

line2 (pred n)

Genericity by value is implemented by means of a function
(a.k.a.procedure, method, subroutine, etc. in other languages).

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 8 / 46



Genericity by Type

Genericity by Type

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 9 / 46



Genericity by Type

Example (1)

data ListI = NilI | ConsI Int ListI

appendI :: ListI → ListI → ListI
appendI NilI ys = ys
appendI (ConsI x xs) ys = ConsI x (appendI xs ys)

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 10 / 46



Genericity by Type

Example (2)

data ListC = NilC | ConsC Char ListC

appendC :: ListC → ListC → ListC
appendC NilC ys = ys
appendC (ConsC x xs) ys = ConsC x (appendC xs ys)

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 11 / 46



Genericity by Type

Parametric Polymorphism

data List a = Nil | Cons a (List a)

append :: List a→ List a→ List a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

This is a parametrically polymorphic function. It cannot depend on the
(parameterized) type of its parameters. Why?

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 12 / 46



Genericity by Type

Free Theorems

The fact that a parametric polymorphic function cannot depend on
the type of its parameters has a nice consequence: it satisfies a free
theorem.

For example, given map :: (a→ b)→ List a→ List b , we know that

append (map f xs) (map f ys) ≡ map f (append xs ys)

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 13 / 46



Genericity by Type

Inclusion Polymorphism
Another form of type genericity is inclusion polymorphism.

class Shape { ... void draw(); ... }
class Circle extends Shape { ... }
class Rect extends Shape { ... }

class ... { void drawShape(Shape s){ s.draw(); } }

drawShape takes a parameter of possibly different types.

The parameter’s type must be a subtype of Shape .

drawShape only knows about the parameter’s fields in Shape
(modulo casting).

Inclusion polymorphism is typically found with subtyping in
object-oriented programming languages.

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 14 / 46



Genericity by Type

Polymorphism in Programming Languages

Haskell and ML: parametric

Java and C#: inclusion

Generics add parametric polymorphism to Java and C#

Other languages combine these in different ways: see Ada, Scala,
Timber

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 15 / 46



Genericity by Function

Genericity by Function

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 16 / 46



Genericity by Function

Example
Write two very similar functions using toUpper toLower from

Data.Char

upper1 Nil = Nil
upper1 (Cons x xs) = Cons (toUpper x) (upper1 xs)

lower1 Nil = Nil
lower1 (Cons x xs) = Cons (toLower x) (lower1 xs)

Or use a higher-order function

map :: (a→ b)→ List a→ List b
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

upper2 = map toUpper
lower2 = map toLower

Note that parametric polymorphism fits well with higher-order functions.

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 17 / 46



Genericity by Function

Another Example (1)
These functions are also very similar

sum1 Nil = 0
sum1 (Cons x xs) = x + sum1 xs

concat1 Nil = Nil
concat1 (Cons x xs) = append x (concat1 xs)

We can use foldList (a.k.a. foldr ) to define both

foldList :: (a→ b→ b)→ b→ List a→ b
foldList c n Nil = n
foldList c n (Cons x xs) = c x (foldList c n xs)

sum2 = foldList (+) 0
concat2 = foldList append Nil

Instances of foldList replace the list constructors Nil and Cons with
supplied arguments.

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 18 / 46



Genericity by Function

Another Example (2)

In fact, the following are also instances of foldList :

append xs ys = foldList Cons ys xs
map f = foldList (Cons ◦ f) Nil

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 19 / 46



Genericity by Structure

Genericity by Structure

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 20 / 46



Genericity by Structure

C++ Templates

Perhaps the most popular use of the term “generic programming” is
with C++ templates.

Class
and function templates are parametrized by type and value parameters.

template<class T> void swap(T& a, T& b) {
T c(a); a = b; b = c;
}

Instantiating a template results in the C++ compiler generating
specialized code for the given parameters.

I Aside: As C++ grew from C, the community continued to require the
highest performance from its code. C++ developers put a strong
emphasis on templates imposing no performance penalty.

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 21 / 46



Genericity by Structure

C++ Standard Template Library

The C++ Standard Template Library (STL) uses templates to provide
“generic” containers and algorithms.

The containers provided in the STL are parametrically polymorphic
datatypes.

I sequence containers: e.g. vector , list , and deque

I associative containers: e.g. set and map

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 22 / 46



Genericity by Structure

STL Iterators (1)

Containers support a common mechanism for accessing their
elements: iterators.

The iterator is a generalization of the pointer.

int a[100];
int n = 100;
...
for (int∗ p = a; p != a+n; ++p)

printf(”%d”, ∗p);

vector<int> v;
...
for (vector<int>::iterator i = v.begin(); i != v.end(); ++i)

printf(”%d”, ∗i);

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 23 / 46



Genericity by Structure

STL Iterators (2)

Iterator Classifications

input - one-way, read-only

output - one-way, write-only

forward - sequential access, one-way

bidirectional - sequential access, two-way

random access - pointer arithmetic

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 24 / 46



Genericity by Structure

STL Iterators (3)

Iterators form the interface between container types and algorithms
over data structures.

These include many general-purpose operations such as searching,
sorting, and filtering.

Rather than operating directly on a container, an algorithm operates
on iterators.

The algorithm is generic, in the sense that it applies to any container
that supports the appropriate kind of iterator.

template<class T, class U> void sort(T first, T last, U comp);

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 25 / 46



Genericity by Structure

Concepts
template<class RandomAccessIterator, class Compare>
void sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

The exact set of requirements on parameters is called a concept.

A concept encapsulates the operations required of a formal type
parameter and provided by an actual type parameter.

For example, the STL’s input iterator concept encompasses
pointer-like types which support comparison for equality, copying,
assignment, dereferencing as an r-value, and incrementing.

The success of the STL lies in the careful choice of such concepts as
an organizing principle for a large library.

Concepts cannot be defined in C++!

It is an informal artifact and not a formal construct.

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 26 / 46



Genericity by Structure

Concepts in Haskell

In Haskell, we can define a concept with a type class.

sort :: (Ord a)⇒ List a→ List a

Ord a⇒ is a type class context.

sort is not parametrically polymorphic: it is not applicable to all list

element types, only those in the type class Ord .

Ord includes exactly those types that support 6 :

class Ord a where
(6) :: a→ a→ Bool

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 27 / 46



Genericity by Structure

Instantiating Concepts

Numerous types are instances of the type class:

instance Ord Integer where
m 6 n = isNonNegative (n−m)

Attempting to apply 6 to two values of some type that is not in the

type class Ord , or sort to a list of such values, is a type error, and
is caught statically.

In contrast, while the equivalent error using the C++ concept is still a
statically-caught type error, it is caught at template instantiation
time, since there is no way of declaring the template’s dependence on
the concept.

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 28 / 46



Genericity by Structure

Polymorphism in Concepts

Concepts in C++ and Haskell serve as a kind of polymorphism

Not parametric polymorphism: demonstrated

Not inclusion polymorphism: why?

Ad-hoc polymorphism

I “ad-hoc” - non-uniform, heterogeneous
I There is no requirement by the type system on the implementation of a

concept.
I In Haskell, the implementation of (6) :: (Ord a)⇒ a→ a→ Bool

only depends on the type. It can be implemented in different ways for
different types.

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 29 / 46



Genericity by Property

Genericity by Property

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 30 / 46



Genericity by Property

Properties for Concepts

Structural genericity is often not enough.

For example, Ord should define a partial order (reflexivity,
antisymmetry, transitivity)

A property is a statement that (usually) cannot be specified directly
in programs.

I External tests can check properties (e.g. using QuickCheck), though
these are usually not conclusive.

I Some languages have (a) explicit support for properties or (b)
interesting type systems that allow properties to be defined and verified.

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 31 / 46



Genericity by Property

Example: Functors in Haskell

The generalized type class for map :

class Functor f where
fmap :: (a→ b)→ f a→ f b

We expect instances like this:

instance Functor List where
fmap = map

But, informally, we also ex-
pect the instances to obey the following properties (the “functor laws”):

fmap (f ◦ g) ≡ fmap f ◦ fmap g
fmap id ≡ id

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 32 / 46



Genericity by Property

Example: Monads in Haskell
Monad is yet another specification for a concept: computation with

impure effects.

class (Functor m)⇒ Monad m where
return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b

Example: the state monad, in which a “computation affecting a state
of type s ” amounts to a function of type s→ (a, s) :

newtype State s a = St {runSt :: s→ (a, s)}
instance Functor (State s) where

fmap f mx = St (λs→ let (a, s′) = runSt mx s in (f a, s′))

instance Monad (State s) where
return a = St (λs→ (a, s))
mx>>= k = St (λs→ let (a, s′) = runSt mx s in runSt (k a) s′)

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 33 / 46



Genericity by Property

Example: Monads Laws

Since Functor is a superclass of Monad , we expect the properties of

Functor to be inherited.

Additionally, a Monad instance must satisfy the following laws:

return a>>= k ≡ k a -- left unit
m>>= return ≡ m -- right unit
m>>= (λx→ k x>>= h) ≡ (m>>= k)>>= h -- associative

Question

How do you verify the monad laws?

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 34 / 46



Genericity by Stage

Genericity by Stage

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 35 / 46



Genericity by Stage

Metaprogramming

metaprogramming - constructing programs that write or manipulate
other programs

Examples

I Program generation: generating source code
F lex, yacc

I Reflection: observing and modifing a program’s structure and
behaviour

F Java, C#, JavaScript, Smalltalk

I Multi-stage programming: partitioning computation into phases
F MetaOCaml, Template Haskell

I A compiler could also be considered a generative metaprogram, though
this is not usually the case.

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 36 / 46



Genericity by Stage

Example: C++ Templates

The C++ template mechanism provides a metaprogramming facility.

Template instantiation takes place at compile time, so one can think
of a C++ program with templates as a two-stage computation.

Some high-performance numerical libraries rely on these generative
properties.

The template instantiation mechanism is Turing complete: you can
determine if a number is a prime at compile time!

I http://homepage.mac.com/sigfpe/Computing/peano.html

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 37 / 46

http://homepage.mac.com/sigfpe/Computing/peano.html


Genericity by Shape

Genericity by Shape

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 38 / 46



Genericity by Shape

Fold: Again

Consider the polymorphic datatype of binary trees:

data Tree a = Tip a | Bin (Tree a) (Tree a)

A natural pattern of recursion on these trees (recall foldList ):

foldTree :: (a→ b)→ (b→ b→ b)→ Tree a→ b
foldTree t b (Tip x) = t x
foldTree t b (Bin xs ys) = b (foldTree t b xs) (foldTree t b ys)

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 39 / 46



Genericity by Shape

Fold: Instances

As with foldList , instances of foldTree replace the datatype’s

constructors Tip and Bin with supplied functions:

reverseTree :: Tree a→ Tree a
reverseTree = foldTree Tip (flip Bin)

flattenTree :: Tree a→ List a
flattenTree = foldTree (flip Cons Nil) append

Note: flip :: (a→ b→ c)→ b→ a→ c

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 40 / 46



Genericity by Shape

Fold: Similarities

foldList :: (a→ b→ b)→ b→ List a→ b

foldTree :: (a→ b)→ (b→ b→ b)→ Tree a→ b

Parametric polymorphism unifies commonality of computation,
abstracting over variability in irrelevant types.

Higher-order functions unify commonality of program construction,
abstracting over variability in some of the details.

How can we unify the higher-order, polymorphic functions foldList

and foldTree ?

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 41 / 46



Genericity by Shape

DGP to the Rescue

What differs between foldList and foldTree is the shape of the data
on which they operate.

We have come to call this approach to generic programming
datatype-generic programming or DGP.

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 42 / 46



Genericity by Shape

DGP Example (1)

One approach to abstracting over the shape of List and Tree :

data List a = Nil | Cons a (List a)
data ListF a r = NilF | ConsF a r

data Tree a = Tip a | Bin (Tree a) (Tree a)
data TreeF a r = TipF a | BinF r r

Now that we have parameterized over the repeated types, we can fill them
back in.

data Fix f = In {out :: f (Fix f)}

type List′ a = Fix (ListF a)
type Tree′ a = Fix (TreeF a)

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 43 / 46



Genericity by Shape

DGP Example (2)

The usefulness of Fix ?

We only need to define fold once:

fold :: (Functor f)⇒ (f c→ c)→ Fix f → c
fold f = f ◦ fmap (fold f) ◦ out

Though we do need an instance of Functor for each datatype.

instance Functor (ListF a) where ...
instance Functor (TreeF a) where ...

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 44 / 46



Genericity by Shape

DGP Example (3)

The instances of fold are straightforward.

sumList xs = fold f
where f NilF = 0

f (ConsF n r 1) = n + r 1

sumTree xs = fold f
where f (TipF n) = n

f (BinF r 1 r 2) = r 1 + r 2

We can do better! (And we will see how.)

For example, with other approaches to DGP, we can define a single
sum function instead of sumList and sumTree .

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 45 / 46



Conclusion

Conclusion

There are many interpretations of genericity.

Each kind of genericity is useful.

We will focus on datatype-generic programming.

Johan Jeuring (Utrecht University) Generic Programming in Context 2014-02-17 46 / 46


	Introduction
	Genericity by Value
	Genericity by Type
	Genericity by Function
	Genericity by Structure
	Genericity by Property
	Genericity by Stage
	Genericity by Shape
	Conclusion

