Lightweight Implementation of Generics and Dynamics

Johan Jeuring

Utrecht University

17 February, 2014

Libraries for Generic Programming in Haskell

- Haskell is powerful enough to support most generic programming concepts by means of a library.
- Compared with a language extension (PolyP, Generic Haskell), a library is much easier to ship, support, and maintain.
- Compared with a preprocessing tool like DrIFT or Template Haskell, a library gives you much more support, such as types. Of course, a library might be accompanied by tools.

GP Libraries in Haskell (1)

- Lightweight Implementation of Generics and Dynamics (2002)
- **•** Strafunski (2002)
- Scrap Your Boilerplate (SYB) (2003,2004,2005)
- **Prototyping Generic Programming using Template Haskell (2004)**
- Generics for the Masses (2004)
- SYB Reloaded, Revolutions (2006)
- **Generic programming, now!** (2006)
- **•** RepLib (2006)
- **•** Smash Your Boilerplate (2006)
- Almost Compositional Functions (2006)
- Extensible and Modular Generics for the Masses (2006)
- Uniplate (2007)

GP Libraries in Haskell (2)

- Alloy (2008)
- **Instant Generics (2009)**
- Multirec (2009)
- **•** Regular (2009)
- Pointless Haskell (2010)
- Generic Deriving (2010)
- Multiplate (2010)
- **•** Yoko (2012)
- Shapely-data (2013)
- \bullet ...

Essential Concepts In Libraries

There are three essential concepts related to generic programming which we will discuss for each library:

- Run-time type representation
- **Generic view on data**
- **• Support for overloading**

Equality

Equality is a classic generic programming example.

eq_{String} :: String \rightarrow String \rightarrow Bool eq_{String} $\begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} \end{bmatrix}$ = True eq $_{\rm String}$ [] $_{-}$ $_{-}$ $_{\rm =}$ False eq $_{\rm String}$ $_$ $[$ $]$ $_$ $=$ False eq_{String} (a : as) (b : bs) = a \equiv b \wedge eq_{String} as bs

The algorithm is simple:

- Check whether two values are in the same alternative.
- If not, they are not equal.
- Otherwise, they are equal if all arguments are equal.

LIGD

A Lightweight Implementation of Generics and Dynamics ("LIGD"):

- An approach to embedding generic functions and dynamic values into Haskell 98 augmented with existential types.
- Reflect the type argument onto the value level so we can do ordinary pattern matching on types.
- Developed by James Cheney and Ralf Hinze.
- We describe a variant of LIGD that uses GADTs.
- We do not discuss the "dynamics" feature of the library.

Example: Equality

This is called a type-indexed function.

Structure types

These types represent some of the basic structural elements of datatypes.

Run-Time Type Representation

LIGD uses a GADT for representing the structure of a type at run-time:

data Rep :: $* \rightarrow *$ where

Rep t is the type representation of t .

Question

What purpose do the type indexes serve here?

Going Generic: Universe Extension

The structure of a user-defined datatype t is represented by the following Rep constructor.

```
data Rep :: * \rightarrow * where
      ...
```

```
RType :: EP t r \to Rep r \to Rep t
```
The type r is the structure representation type of t , where r is a type isomorphic to t.

The isomorphism is witnessed by an embedding projection pair:

```
data EP t r = EP {from :: (t \rightarrow r), to :: (r \rightarrow t)}
```
Structure of Lists (1)

The structure representation type of List :

data List $a = Nil$ | Cons a (List a) type List, $a =$ Unit : +: a : \times : List a

We define two functions to transform between the Haskell type and its LIGD representation.

Structure of Lists (2)

We define an embedding-projection pair to implement the transformation between the Haskell type and its LIGD representation.

rList :: Rep a \rightarrow Rep (List a) rList $r_a = RT$ ype (EP fromList toList) $(RSum$ RUnit $(RProd$ r_a $(rList$ r_a $)))$

Generic Equality

geq is turned into a generic function by adding the following case to its definition.

```
geq :: Rep a \rightarrow a \rightarrow a \rightarrow Bool
 ...
geq (RType ep r_a) t1 t2 = geq r_a (from ep t1) (from ep t2)
```
Notes on geq

- o geq can be viewed as an implementation of deriving Eq in Haskell.
- • Similarly, we can define functions that implement the methods of the other classes that can be derived in Haskell: Show , Read , Ord , Enum , and Bounded .

Generic Show

We will implement a generic show function to illustrate how a library deals with:

- Constructor names
- Ad-hoc cases for particular datatypes: "abc" should not be printed as Cons 'a' (Cons 'b' (Cons 'c' Nil))

Constructor Names

To deal with constructor names, we add a constructor to Rep .

```
data Rep :: * \rightarrow * where
```

```
...
RCon :: String \rightarrow Rep a \rightarrow Rep a
```
Using this constructor, the representation of List becomes:

```
rList :: Rep a \rightarrow Rep (List a)
rList r_a = RType (EP fromList toList)
                   (RSum (RCon "Nil" RUnit)
                           (RCon "Cons" (RProd r_a (rList r_a))))
```
Generic Show: First Attempt

```
gshow :: Rep t \to t \to String
gshow RInt t = show t
gshow RChar t = show t
gshow RUnit t = "gshow (RSum r_a) (L a) = gshow r a a
gshow (RSum_r b) (R b) = gshow r b b
gshow (RProd r_a r_b) (a :\times: b) = gshow r_a a ++ " " + gshow r_b b
gshow (RType epr_a) t = gshow r a (from ep t)
gshow (RCon s RUnit) t = sgshow (RCon s r_a) t = "(" ++ s ++ " " ++ gshow r_a t ++ ")"
```
Question

What will gp look like?

 $gp = g$ show (rList RChar) (Cons 'g' (Cons 'p' Nil))

Support for Overloading (1)

- This definition shows strings and Haskell's lists using constructor names.
- We want gshow to use the standard Haskell "string" format instead.
- We want gshow to behave in a specialized, non-generic way for strings.
- Solution: Extend Rep with a case for strings:

```
data Rep :: * \rightarrow * where
   ...
   RString :: Rep String
```
Support for Overloading (2)

Now we can add the following line to the generic show function to obtain type-specific behavior for the type String .

```
gshow :: Rep t \to t \to String
...
gshow RString s = s
```
Support for Overloading Is Weak

- We have to adapt the type representation type Rep to obtain type-specific behavior in the gshow function.
- It is undesirable to adapt a library for the purpose of obtaining special behavior of a single generic function on a particular datatype.
- Unfortunately, this is unavoidable in the LIGD library.
- This implies that many users will construct their own variant of the LIGD library, making both the library and the generic functions written using it less portable and reusable.

Producer Function: Generic Empty

- Both geq and gshow are generic consumer functions. They take generic values as arguments and produce non-generic results.
- We can also define generic producer functions that do the reverse.
- Simple example: associate an "empty" value with every type.

```
gempty :: Rep a \rightarrow a
gempty RUnit = Unit
gempty RInt = 0gempty RChar = 'NUL'gempty (RSum r_a) = L (gempty r_a)gempty (RProd r_a r_b) = gempty r_a :\times: gempty r_b
gempty (RType ep r_a) = to ep (gempty r_a)
gempty (RCon s r_a) = gempty r_a
```
Generic Flatten (1)

- Many datatypes can be considered container datatypes: those used to store and structure values.
- Examples are the datatypes List a , Maybe a , etc.
- A function flatten takes a value of a container datatype and returns a list containing all values that it contains.
- Data. Tree has flatten :: Tree $a \rightarrow [a]$.
- The Prelude has a related function for lists of lists, concat :: $[[a]] \rightarrow [a]$.

Generic Flatten (2)

Question

What is the type of the generic flatten function?

Attempt 1:

```
gflatten :: Rep g \rightarrow g a \rightarrow [a]
```
Attempt 2:

```
gflatten :: Rep (g a) \rightarrow g a \rightarrow [a]
```
Attempt 3:

```
gflatten :: Rep1 ... a \rightarrow b \rightarrow [a]
```
A New Representation Type

data Rep1 :: $(* \rightarrow *) \rightarrow * \rightarrow *$ where RChar1 :: Rep1 g Char RInt1 :: Rep1 g Int RUnit1 :: Rep1 g Unit RSum1 :: Rep1 g a \rightarrow Rep1 g b \rightarrow Rep1 g (a :+: b) RProd1 :: Rep1 g a \rightarrow Rep1 g b \rightarrow Rep1 g (a : \times : b) RCon1 :: String \rightarrow Rep1 g a \rightarrow Rep1 g a RType1 :: EP b a \rightarrow Rep1 g a \rightarrow Rep1 g b $RVar1$:: g a \rightarrow Rep1 g a

We added a new constructor RVar1 for the type of the container elements.

A New List Representation

rList1 :: Rep1 g a \rightarrow Rep1 g (List a) rList1 $r_a = RT$ ype1 (EP fromList toList) (RSum1 RUnit1 (RProd1 r a (rList1 r a)))

Defining GFlatten (1)

newtype GFlatten b a = GFlatten {selFlatten :: a \rightarrow [b] }

 $gflatten'$ RUnit1 Unit $= []$ gflatten $^{\prime}$ (RSum1 r_a $_{-})$ \quad (L a) \quad \quad = gflatten $^{\prime}$ r_a a gflatten' $(RSum1 _ r_b)$ $(R b) = gflatten' r_b b$ gflatten $^{\prime}$ (RProd1 r_a r_b) (a : \times : b) $=$ gflatten $^{\prime}$ r_a a $+$ gflatten $^{\prime}$ r_b b gflatten' RInt1 $\qquad i = [$ gflatten' RChar1 c $= [$] gflatten' ($RCon1$ $_r$ $_{-}$ r $_{-}$ a) $(RCon1 r_a) \times = gflatten' r_a \times$ gflatten' (RType1 ep r_a) $x =$ gflatten' r_a (from ep x) gflatten' (RVar1 f) $\mathsf{x} = \mathsf{self}$ atten f x

The type:

gflatten' $::$ Rep1 (GFlatten b) a \rightarrow a \rightarrow [b]

Defining GFlatten (2)

To simplify the types, we define a type synonym:

type GFlattenRep a $b = Rep1$ (GFlatten b) a

gflatten $^{\prime}$:: <code>GFlattenRep</code> a b \rightarrow <code>a</code> \rightarrow <code>[b]</code>

Defining GFlatten (3)

We need to describe:

¹ A GFlattenRep for containers

2 What to do with the elements of the container

Recall the representation for lists:

```
rList1 :: Rep1 g a \rightarrow Rep1 g (List a)
```
We use a function as a representation for containers...

```
gflatten :: (GFlattenRep a a \rightarrow GFlattenRep b c) \rightarrow b \rightarrow [c]
gflatten rep\mathsf{Container} = gflatten' (rep\mathsf{Container} rep\mathsf{Var})
```
... and we tell it to insert every element into a singleton list.

```
where repVar :: GFlattenRep a a
      repVar = RVar1 (GFlatten (:[1]))
```
Defining GFlatten (4)

To obtain an instance of the generic function gflatten' on List, we write:

flattenList :: List a \rightarrow [a] $flattenList = gflatten rList1$

Generic Map (1)

The generic map function gmap :

- A generalisation of the map on lists
- Takes a function of type $a \rightarrow b$ and a value of a datatype containing a -type elements and applies the function to all the elements in the value.
- **e** gmap can be viewed as the implementation of **deriving** for the Functor type class in Haskell.
- As with gflatten , gmap needs to know where the occurrences of the type argument of the datatype appear in a constructor.

Generic Map (2)

- Suppose we use the representation type Rep1 to implement the generic map function.
- The action on variables then has type g a \rightarrow Rep1 g a, with g instantiated to a newtype GMap .
- The argument function of gmap can only return a value of a type that depends on \overline{a} , or a constant type, but *not* a value of a type \overline{b} .
- • To pass a function of type $a \rightarrow b$, we need an extra type variable in the RVar1 constructor.

Another Type Representation

data Rep2 :: $(* \rightarrow * \rightarrow *) \rightarrow * \rightarrow * \rightarrow *$ where RChar2 :: Rep2 g Char Char RInt2 :: Rint2 :: Rep2 g Int Int RUnit2 :: Rep2 g Unit Unit RSum2 :: Rep2 g a b \rightarrow Rep2 g c d \rightarrow Rep2 g (a :+: c) (b :+: d) RProd2 :: Rep2 g a b \rightarrow Rep2 g c d \rightarrow Rep2 g (a : \times : c) (b : \times : d) RCon2 :: String \rightarrow Rep2 g a b \rightarrow Rep2 g a b RType2 :: EP b a \rightarrow EP d c \rightarrow Rep2 g a c \rightarrow Rep2 g b d $RVar2$:: g a b \rightarrow Rep2 g a b

RVar2 represents the two type variables.

Another List Representation

rList2 :: Rep2 g a b \rightarrow Rep2 g (List a) (List b) rList2 $r_a = RT$ ype2 (EP fromList toList) (EP fromList toList) (RSum2 RUnit2 (RProd2 r_a (rList2 r_a)))

Defining GMap (1)

```
newtype GMap a b = GMap \{ selMap :: a \rightarrow b }
type GMapRep a b = Rep2 GMap a b
```

```
gmap^{\prime} :: GMapRep a b \rightarrow a \rightarrow b
gmap' RUnit2 Unit = Unit
\text{gmap}' (RSum2 r_a) (La) = L (gmap' r_a a)\text{gmap}' (RSum2 \_ r_b) (R b) = R (gmap' r_b b)gmap' (\mathsf{RProd2}\ \mathsf{r}\_\mathsf{a}\ \mathsf{r}\_\mathsf{b})\ =\ \mathsf{gmap}'\ \mathsf{r}\_\mathsf{a}\ \mathsf{a}\times\mathsf{gmap}'\ \mathsf{r}\_\mathsf{b}\ \mathsf{b}gmap<sup>'</sup> RInt2 i = igmap<sup>\prime</sup> RChar2 c = cgmap' (RCon2<sub>-</sub> r<sub>-</sub>a)(RCon2 r.a) x = gmap' r_a x
gmap^{\prime} (RType2 ep_{1} ep_{2} r_a) \times \hphantom{1} \qquad = \hphantom{1} (to ep_{2} \circ gmap^{\prime} r_a \circ from ep_{1}) \timesgmap' (RVar2 f)
                            \mathsf{x} = \mathsf{selMap} \mathsf{f} \mathsf{x}
```

```
Defining GMap (2)
```
gmap is defined similarly to gflatten .

gmap :: (GMapRep a b \rightarrow GMapRep c d) \rightarrow (a \rightarrow b) \rightarrow c \rightarrow d

 gmap rep $\mathsf{Container}$ f $= \mathsf{gmap}'$ (rep $\mathsf{Container}$ rep $\mathsf{Var})$ where $repVar = RVar2$ (GMap f)

Unlike gflatten , we use a parameter for the function f on the elements.

```
Defining GMap (3)
```
Recall the List representation:

rList2 :: Rep2 g a b \rightarrow Rep2 g (List a) (List b)

with the instance:

rList2 :: GMapRep a $b \rightarrow$ GMapRep (List a) (List b)

To obtain an instance of gmap on the datatype List a we write:

```
gmapList :: (a \rightarrow b) \rightarrow List a \rightarrow List b
gmapList = gmap rList2
```
Notes on GMap

Question

Do we need to introduce a new representation type for every generic function we define?

- For all practical purposes, it appears that we need at most 3 type variables.
- We could use the datatype Rep3 for all of our generic functions, but that would introduce many type variables which are never used.

Conclusions

We have covered:

- A library for generic programming in Haskell: LIGD
- The important aspects, strengths, and weaknesses of this library. LIGD:
	- Is just one of many libraries for generic programming.
	- Uses one of a number of views on datatype structure.
	- May be one of the easiest to implement and understand.
	- May be one of the least modular and extensible.