
Lightweight Implementation
of Generics and Dynamics

Johan Jeuring

Utrecht University

17 February, 2014

Johan Jeuring (UU) LIGD 2014-02-17 1 / 39

Introduction

Libraries for Generic Programming in
Haskell

Haskell is powerful enough to support most generic programming
concepts by means of a library.

Compared with a language extension (PolyP, Generic Haskell), a
library is much easier to ship, support, and maintain.

Compared with a preprocessing tool like DrIFT or Template Haskell, a
library gives you much more support, such as types. Of course, a
library might be accompanied by tools.

Johan Jeuring (UU) LIGD 2014-02-17 2 / 39

Introduction

GP Libraries in Haskell (1)

Lightweight Implementation of Generics and Dynamics (2002)

Strafunski (2002)

Scrap Your Boilerplate (SYB) (2003,2004,2005)

Prototyping Generic Programming using Template Haskell (2004)

Generics for the Masses (2004)

SYB Reloaded, Revolutions (2006)

Generic programming, now! (2006)

RepLib (2006)

Smash Your Boilerplate (2006)

Almost Compositional Functions (2006)

Extensible and Modular Generics for the Masses (2006)

Uniplate (2007)

Johan Jeuring (UU) LIGD 2014-02-17 3 / 39

Introduction

GP Libraries in Haskell (2)

Alloy (2008)

Instant Generics (2009)

Multirec (2009)

Regular (2009)

Pointless Haskell (2010)

Generic Deriving (2010)

Multiplate (2010)

Yoko (2012)

Shapely-data (2013)

...

Johan Jeuring (UU) LIGD 2014-02-17 4 / 39

Introduction

Essential Concepts In Libraries

There are three essential concepts related to generic programming which
we will discuss for each library:

Run-time type representation

Generic view on data

Support for overloading

Johan Jeuring (UU) LIGD 2014-02-17 5 / 39

Introduction

Equality

Equality is a classic generic programming example.

eqString :: String→ String→ Bool
eqString [] [] = True
eqString [] = False
eqString [] = False
eqString (a : as) (b : bs) = a ≡ b ∧ eqString as bs

The algorithm is simple:

Check whether two values are in the same alternative.

If not, they are not equal.

Otherwise, they are equal if all arguments are equal.

Johan Jeuring (UU) LIGD 2014-02-17 6 / 39

Introduction

LIGD

A Lightweight Implementation of Generics and Dynamics (“LIGD”):

An approach to embedding generic functions and dynamic values into
Haskell 98 augmented with existential types.

Reflect the type argument onto the value level so we can do ordinary
pattern matching on types.

Developed by James Cheney and Ralf Hinze.

We describe a variant of LIGD that uses GADTs.

We do not discuss the “dynamics” feature of the library.

Johan Jeuring (UU) LIGD 2014-02-17 7 / 39

Introduction

Example: Equality

geq :: Rep a→ a→ a→ Bool
geq RUnit Unit Unit = True
geq RInt i j = i ≡ j
geq RChar c d = c ≡ d
geq (RSum r a) (L a 1) (L a 2) = geq r a a 1 a 2
geq (RSum r b) (R b 1) (R b 2) = geq r b b 1 b 2
geq (RSum) = False
geq (RProd r a r b) (a 1 :×: b 1) (a 2 :×: b 2) = geq r a a 1 a 2 ∧ geq r b b 1 b 2

This is called a type-indexed function.

Johan Jeuring (UU) LIGD 2014-02-17 8 / 39

Introduction

Structure types

These types represent some of the basic structural elements of datatypes.

Question

What are equivalent standard types?

data Unit = Unit

data a :+: b = L a | R b

data a :×: b = a :×: b

data () = ()

data Either a b = Left a | Right b

data (a, b) = (a, b)

Johan Jeuring (UU) LIGD 2014-02-17 9 / 39

Introduction

Run-Time Type Representation

LIGD uses a GADT for representing the structure of a type at run-time:

data Rep :: ∗ → ∗ where
RUnit :: Rep Unit
RInt :: Rep Int
RChar :: Rep Char
RSum :: Rep a→ Rep b→ Rep (a :+: b)
RProd :: Rep a→ Rep b→ Rep (a :×: b)

Rep t is the type representation of t .

Question

What purpose do the type indexes serve here?

Johan Jeuring (UU) LIGD 2014-02-17 10 / 39

Introduction

Going Generic: Universe Extension

The structure of a user-defined datatype t is represented by the following

Rep constructor.

data Rep :: ∗ → ∗ where
...

RType :: EP t r→ Rep r→ Rep t

The type r is the structure representation type of t , where r is a type
isomorphic to t .

The isomorphism is witnessed by an embedding projection pair:

data EP t r = EP {from :: (t→ r), to :: (r→ t)}

Johan Jeuring (UU) LIGD 2014-02-17 11 / 39

Introduction

Structure of Lists (1)

The structure representation type of List :

data List a = Nil | Cons a (List a)
type Lists a = Unit :+: a :×: List a

We define two functions to transform between the Haskell type and its
LIGD representation.

fromList :: List a→ Lists a

fromList Nil = L Unit
fromList (Cons a as) = R (a :×: as)

toList :: Lists a→ List a

toList (L Unit) = Nil
toList (R (a :×: as)) = Cons a as

Johan Jeuring (UU) LIGD 2014-02-17 12 / 39

Introduction

Structure of Lists (2)

We define an embedding-projection pair to implement the transformation
between the Haskell type and its LIGD representation.

rList :: Rep a→ Rep (List a)
rList r a = RType (EP fromList toList)

(RSum RUnit (RProd r a (rList r a)))

Johan Jeuring (UU) LIGD 2014-02-17 13 / 39

Introduction

Generic Equality

geq is turned into a generic function by adding the following case to its
definition.

geq :: Rep a→ a→ a→ Bool
...
geq (RType ep r a) t1 t2 = geq r a (from ep t1) (from ep t2)

Johan Jeuring (UU) LIGD 2014-02-17 14 / 39

Introduction

Notes on geq

geq can be viewed as an implementation of deriving Eq in Haskell.

Similarly, we can define functions that implement the methods of the
other classes that can be derived in Haskell: Show , Read , Ord ,

Enum , and Bounded .

Johan Jeuring (UU) LIGD 2014-02-17 15 / 39

Introduction

Generic Show

We will implement a generic show function to illustrate how a library
deals with:

Constructor names

Ad-hoc cases for particular datatypes: "abc" should not be printed

as Cons ’a’ (Cons ’b’ (Cons ’c’ Nil))

Johan Jeuring (UU) LIGD 2014-02-17 16 / 39

Introduction

Constructor Names

To deal with constructor names, we add a constructor to Rep .

data Rep :: ∗ → ∗ where
...
RCon :: String→ Rep a→ Rep a

Using this constructor, the representation of List becomes:

rList :: Rep a→ Rep (List a)

rList r a = RType (EP fromList toList)
(RSum (RCon "Nil" RUnit)

(RCon "Cons" (RProd r a (rList r a))))

Johan Jeuring (UU) LIGD 2014-02-17 17 / 39

Introduction

Generic Show: First Attempt
gshow :: Rep t→ t→ String
gshow RInt t = show t
gshow RChar t = show t
gshow RUnit t = ""

gshow (RSum r a) (L a) = gshow r a a
gshow (RSum r b) (R b) = gshow r b b
gshow (RProd r a r b) (a :×: b) = gshow r a a ++ " " ++ gshow r b b
gshow (RType ep r a) t = gshow r a (from ep t)
gshow (RCon s RUnit) t = s
gshow (RCon s r a) t = "(" ++ s ++ " " ++ gshow r a t ++ ")"

Question

What will gp look like?

gp = gshow (rList RChar) (Cons ’g’ (Cons ’p’ Nil))

Johan Jeuring (UU) LIGD 2014-02-17 18 / 39

Introduction

Support for Overloading (1)

This definition shows strings and Haskell’s lists using constructor
names.

We want gshow to use the standard Haskell "string" format
instead.

We want gshow to behave in a specialized, non-generic way for
strings.

Solution: Extend Rep with a case for strings:

data Rep :: ∗ → ∗ where
...
RString :: Rep String

Johan Jeuring (UU) LIGD 2014-02-17 19 / 39

Introduction

Support for Overloading (2)

Now we can add the following line to the generic show function to obtain
type-specific behavior for the type String .

gshow :: Rep t→ t→ String
...
gshow RString s = s

Johan Jeuring (UU) LIGD 2014-02-17 20 / 39

Introduction

Support for Overloading Is Weak

We have to adapt the type representation type Rep to obtain

type-specific behavior in the gshow function.

It is undesirable to adapt a library for the purpose of obtaining special
behavior of a single generic function on a particular datatype.

Unfortunately, this is unavoidable in the LIGD library.

This implies that many users will construct their own variant of the
LIGD library, making both the library and the generic functions
written using it less portable and reusable.

Johan Jeuring (UU) LIGD 2014-02-17 21 / 39

Introduction

Producer Function: Generic Empty

Both geq and gshow are generic consumer functions. They take
generic values as arguments and produce non-generic results.

We can also define generic producer functions that do the reverse.

Simple example: associate an “empty” value with every type.

gempty :: Rep a→ a
gempty RUnit = Unit
gempty RInt = 0
gempty RChar = ’\NUL’

gempty (RSum r a) = L (gempty r a)
gempty (RProd r a r b) = gempty r a :×: gempty r b
gempty (RType ep r a) = to ep (gempty r a)
gempty (RCon s r a) = gempty r a

Johan Jeuring (UU) LIGD 2014-02-17 22 / 39

Introduction

Generic Flatten (1)

Many datatypes can be considered container datatypes: those used to
store and structure values.

Examples are the datatypes List a , Maybe a , etc.

A function flatten takes a value of a container datatype and returns
a list containing all values that it contains.

Data.Tree has flatten :: Tree a→ [a] .

The Prelude has a related function for lists of lists,

concat :: [[a]]→ [a] .

Johan Jeuring (UU) LIGD 2014-02-17 23 / 39

Introduction

Generic Flatten (2)

Question

What is the type of the generic flatten function?

Attempt 1:

gflatten :: Rep g→ g a→ [a]

Attempt 2:

gflatten :: Rep (g a)→ g a→ [a]

Attempt 3:

gflatten :: Rep1 ... a→ b→ [a]

Johan Jeuring (UU) LIGD 2014-02-17 24 / 39

Introduction

A New Representation Type

data Rep1 :: (∗ → ∗)→ ∗ → ∗ where
RChar1 :: Rep1 g Char
RInt1 :: Rep1 g Int
RUnit1 :: Rep1 g Unit
RSum1 :: Rep1 g a→ Rep1 g b→ Rep1 g (a :+: b)
RProd1 :: Rep1 g a→ Rep1 g b→ Rep1 g (a :×: b)
RCon1 :: String→ Rep1 g a→ Rep1 g a
RType1 :: EP b a→ Rep1 g a→ Rep1 g b
RVar1 :: g a→ Rep1 g a

We added a new constructor RVar1 for the type of the container
elements.

Johan Jeuring (UU) LIGD 2014-02-17 25 / 39

Introduction

A New List Representation

rList1 :: Rep1 g a→ Rep1 g (List a)
rList1 r a = RType1 (EP fromList toList)

(RSum1 RUnit1 (RProd1 r a (rList1 r a)))

Johan Jeuring (UU) LIGD 2014-02-17 26 / 39

Introduction

Defining GFlatten (1)

newtype GFlatten b a = GFlatten {selFlatten :: a→ [b]}

gflatten′ RUnit1 Unit = []
gflatten′ (RSum1 r a) (L a) = gflatten′ r a a
gflatten′ (RSum1 r b) (R b) = gflatten′ r b b
gflatten′ (RProd1 r a r b) (a :×: b) = gflatten′ r a a ++ gflatten′ r b b
gflatten′ RInt1 i = []
gflatten′ RChar1 c = []
gflatten′ (RCon1 r a) x = gflatten′ r a x
gflatten′ (RType1 ep r a) x = gflatten′ r a (from ep x)
gflatten′ (RVar1 f) x = selFlatten f x

The type:

gflatten′ :: Rep1 (GFlatten b) a→ a→ [b]

Johan Jeuring (UU) LIGD 2014-02-17 27 / 39

Introduction

Defining GFlatten (2)

To simplify the types, we define a type synonym:

type GFlattenRep a b = Rep1 (GFlatten b) a

gflatten′ :: GFlattenRep a b→ a→ [b]

Johan Jeuring (UU) LIGD 2014-02-17 28 / 39

Introduction

Defining GFlatten (3)

We need to describe:

1 A GFlattenRep for containers

2 What to do with the elements of the container

Recall the representation for lists:

rList1 :: Rep1 g a→ Rep1 g (List a)

We use a function as a representation for containers...

gflatten :: (GFlattenRep a a→ GFlattenRep b c)→ b→ [c]
gflatten repContainer = gflatten′ (repContainer repVar)

... and we tell it to insert every element into a singleton list.

where repVar :: GFlattenRep a a
repVar = RVar1 (GFlatten (:[]))

Johan Jeuring (UU) LIGD 2014-02-17 29 / 39

Introduction

Defining GFlatten (4)

To obtain an instance of the generic function gflatten′ on List , we write:

flattenList :: List a→ [a]
flattenList = gflatten rList1

Johan Jeuring (UU) LIGD 2014-02-17 30 / 39

Introduction

Generic Map (1)

The generic map function gmap :

A generalisation of the map on lists

Takes a function of type a→ b and a value of a datatype containing
a -type elements and applies the function to all the elements in the

value.

gmap can be viewed as the implementation of deriving for the

Functor type class in Haskell.

As with gflatten , gmap needs to know where the occurrences of the
type argument of the datatype appear in a constructor.

Johan Jeuring (UU) LIGD 2014-02-17 31 / 39

Introduction

Generic Map (2)

Suppose we use the representation type Rep1 to implement the
generic map function.

The action on variables then has type g a→ Rep1 g a , with g

instantiated to a newtype GMap .

The argument function of gmap can only return a value of a type

that depends on a , or a constant type, but not a value of a type b .

To pass a function of type a→ b , we need an extra type variable in

the RVar1 constructor.

Johan Jeuring (UU) LIGD 2014-02-17 32 / 39

Introduction

Another Type Representation

data Rep2 :: (∗ → ∗ → ∗)→ ∗ → ∗ → ∗ where
RChar2 :: Rep2 g Char Char
RInt2 :: Rep2 g Int Int
RUnit2 :: Rep2 g Unit Unit
RSum2 :: Rep2 g a b→ Rep2 g c d→ Rep2 g (a :+: c) (b :+: d)
RProd2 :: Rep2 g a b→ Rep2 g c d→ Rep2 g (a :×: c) (b :×: d)
RCon2 :: String→ Rep2 g a b→ Rep2 g a b
RType2 :: EP b a→ EP d c→ Rep2 g a c→ Rep2 g b d
RVar2 :: g a b→ Rep2 g a b

RVar2 represents the two type variables.

Johan Jeuring (UU) LIGD 2014-02-17 33 / 39

Introduction

Another List Representation

rList2 :: Rep2 g a b→ Rep2 g (List a) (List b)
rList2 r a = RType2 (EP fromList toList)

(EP fromList toList)
(RSum2 RUnit2 (RProd2 r a (rList2 r a)))

Johan Jeuring (UU) LIGD 2014-02-17 34 / 39

Introduction

Defining GMap (1)

newtype GMap a b = GMap {selMap :: a→ b}
type GMapRep a b = Rep2 GMap a b

gmap′ :: GMapRep a b→ a→ b

gmap′ RUnit2 Unit = Unit
gmap′ (RSum2 r a) (L a) = L (gmap′ r a a)
gmap′ (RSum2 r b) (R b) = R (gmap′ r b b)
gmap′ (RProd2 r a r b) (a :×: b) = gmap′ r a a :×: gmap′ r b b
gmap′ RInt2 i = i
gmap′ RChar2 c = c
gmap′ (RCon2 r a) x = gmap′ r a x
gmap′ (RType2 ep1 ep2 r a) x = (to ep2 ◦ gmap′ r a ◦ from ep1) x
gmap′ (RVar2 f) x = selMap f x

Johan Jeuring (UU) LIGD 2014-02-17 35 / 39

Introduction

Defining GMap (2)

gmap is defined similarly to gflatten .

gmap :: (GMapRep a b→ GMapRep c d)→ (a→ b)→ c→ d

gmap repContainer f = gmap′ (repContainer repVar)
where repVar = RVar2 (GMap f)

Unlike gflatten , we use a parameter for the function f on the elements.

Johan Jeuring (UU) LIGD 2014-02-17 36 / 39

Introduction

Defining GMap (3)

Recall the List representation:

rList2 :: Rep2 g a b→ Rep2 g (List a) (List b)

with the instance:

rList2 :: GMapRep a b→ GMapRep (List a) (List b)

To obtain an instance of gmap on the datatype List a we write:

gmapList :: (a→ b)→ List a→ List b

gmapList = gmap rList2

Johan Jeuring (UU) LIGD 2014-02-17 37 / 39

Introduction

Notes on GMap

Question

Do we need to introduce a new representation type for every generic
function we define?

For all practical purposes, it appears that we need at most 3 type
variables.

We could use the datatype Rep3 for all of our generic functions, but
that would introduce many type variables which are never used.

Johan Jeuring (UU) LIGD 2014-02-17 38 / 39

Introduction

Conclusions

We have covered:

A library for generic programming in Haskell: LIGD

The important aspects, strengths, and weaknesses of this library.

LIGD:

Is just one of many libraries for generic programming.

Uses one of a number of views on datatype structure.

May be one of the easiest to implement and understand.

May be one of the least modular and extensible.

Johan Jeuring (UU) LIGD 2014-02-17 39 / 39

	Introduction

