
Regular

Johan Jeuring

Utrecht University

20 February, 2014

Johan Jeuring (UU) Regular 2014-02-20 1 / 22

Regular

A DGP library (regular on Hackage)

Uses a type-indexed representation type

Based on sum-of-products fixed-point view

Supports the generic fold

Johan Jeuring (UU) Regular 2014-02-20 2 / 22

Generic Deriving (1)

The Generic Deriving structure representation:

data U 1 p = U 1

data (f :+: g) p = L 1 (f p) | R 1 (g p)

data (f :×: g) p = f p :×: g p

newtype Par1 p = Par1 p

newtype Rec1 f p = Rec1 (f p)

Supports parameterized types with sum-of-products view

The type parameter p represents the type parameter of the Haskell
datatype

Recursion is indicated by a value of the Haskell datatype f applied to
the parameter

Johan Jeuring (UU) Regular 2014-02-20 3 / 22

Generic Deriving (2)
The List type representation in Generic Deriving:

data List a = Nil | Cons a (List a)

instance Generic1 List where
type Rep1 List = U 1 :+: Par1 :×: Rec1 List

“Recursion” here is really only a tag

We could change the “name” of the tag to represent a different type:

data Two a = Zero | OneOrTwo a (Maybe a)

instance Generic1 Two where
type Rep1 Two = U 1 :+: Par1 :×: Rec1 Maybe

Given Rep1 Two or Rep1 List , we don’t know where the recursive
positions are

Johan Jeuring (UU) Regular 2014-02-20 4 / 22

Recursion
Recursion is very important in FP

Explicit recursion is the use of a function in its definition

fac n = if n 6 0 then 1 else n ∗ fac (pred n)

Explicit recursion can be difficult to do correctly
I Avoid/ensure nontermination
I Laziness and strictness
I Pass appropriate arguments to recursive calls

There are schemes that describe variants of recursion:
I catamorphism: fold, “natural” recursion
I anamorphism: unfold, dual of catamorphism
I hylomorphism: composition of catamorphism and anamorphism
I ...

Functions for these schemes avoid problems with explicit recursion

fac′ n = foldl′ (∗) 1 [1 . . n]

Johan Jeuring (UU) Regular 2014-02-20 5 / 22

Folds for Datatypes

Recall Fix :

data Fix f = In {out :: f (Fix f)}
data List F a r = Nil F | Cons F a r

type List a = Fix (List F a)

We raise the recursive reference to a parameter

We manually recreate the structure of the datatype

Now, we can systematically represent the structure and the recursive
reference

Johan Jeuring (UU) Regular 2014-02-20 6 / 22

Enter Regular
Regular:

data U r = U

data (f :+: g) r = L (f r) | R (g r)

data (f :×: g) r = f r :×: g r

newtype I r = I r

Generic Deriving:

data U 1 p = U 1

data (f :+: g) p = L 1 (f p) | R 1 (g p)

data (f :×: g) p = f p :×: g p

newtype Rec1 f p = Rec1 (f p)

The parameters for unit, sum, and product are used in the same way

For recursion:

I I uses the parameter directly
I Rec1 uses the parameter to encode a saturated functor f
I r can be one type per representation
I f can be any provided type at each Rec1

In other words, I actually encodes recursion and Rec1 does not

Johan Jeuring (UU) Regular 2014-02-20 7 / 22

Representing Lists

Now, we can represent the same List F type...

data List F a r = Nil F | Cons F a r

... with some help for constant types (which are like a unit with a value) ...

newtype K a r = K a

... as the following:

type List F′ a = U :+: K a :×: I

type List′ a = Fix (List F′ a)

Johan Jeuring (UU) Regular 2014-02-20 8 / 22

Pattern Functor

In Regular and other libraries that use this view, we call the representation
a pattern functor.

type family PF a :: ∗ → ∗

PF is a type-indexed type encoding a parameterized representation.

type instance PF (List a) = U :+: K a :×: I

We also require Functor instances for the representation.

instance Functor U where ...
instance (Functor f,Functor g)⇒ Functor (f :+: g) where ...
...

Johan Jeuring (UU) Regular 2014-02-20 9 / 22

Isomorphism with Representation

We instantiate a type class to define the embedding-projection pair.

class Regular a where
from :: a→ PF a a
to :: PF a a→ a

instance Regular (List a) where . . .

Question

Why is the parameter of the pattern functor duplicated?

Johan Jeuring (UU) Regular 2014-02-20 10 / 22

Defining Generic Equality (1)

Generic functions, such as equality:

class Geq f where

Operate on the parameterized representation

geq :: ...→ f r→ f r→ Bool

Use a function argument for recursion

geq :: (r→ r→ Bool)→ f r→ f r→ Bool

Johan Jeuring (UU) Regular 2014-02-20 11 / 22

Defining Generic Equality (2)
The type cases for generic equality:

instance Geq U where
geq U U = True

instance (Geq f,Geq g)⇒ Geq (f :×: g) where
geq f (x 1 :×: y 1) (x 2 :×: y 2) = geq f x 1 x 2 ∧ geq f y 1 y 2

. . .

Constant types must support non-generic equality:

instance (Eq a)⇒ Geq (K a) where
geq (K x) (K y) = x ≡ y

Recursion uses the function argument:

instance Geq I where
geq f (I x) (I y) = f x y

Johan Jeuring (UU) Regular 2014-02-20 12 / 22

Defining Generic Equality (3)

The final generic function uses explicit recursion:

eq :: (Regular a,Geq (PF a))⇒ a→ a→ Bool
eq x y = geq eq (from x) (from y)

Johan Jeuring (UU) Regular 2014-02-20 13 / 22

Why the Fixed-Point View?
There are a large number of applications that use the recursive structure
of datatypes:

Fold and its variants (Malcolm, Meijer et al)

Accumulations on trees (Bird, Gibbons)

Unification, and matching (Jansson, Jeuring)

Rewriting (Jansson, Jeuring, van Noort et al)

Pattern matching (Jeuring)

Design patterns (Gibbons)

The zipper and its variants (McBride, Hinze, Jeuring, Löh)

Subterm selection (Van Steenbergen et al)

Generating arbitrary elements (for QuickCheck; Hesselink, Jeuring,
Löh, Magalhães)

Johan Jeuring (UU) Regular 2014-02-20 14 / 22

Folds and Algebras (1)

In Regular, implementing the generic fold requires two components:

The algebra

Recursion

An algebra, specifically an F -algebra, is defined according to the structure

of the functor F .

Johan Jeuring (UU) Regular 2014-02-20 15 / 22

Folds and Algebras (2)

We define a type-indexed type for algebras that is indexed by the functor
type f :

type family Alg (f :: ∗ → ∗) r

The type Alg f indicates some structure that will “extract” an element

from the functor f . For example:

type instance Alg Maybe r = (r, r→ r)

applyMaybeAlg :: Alg Maybe r→ Maybe r→ r
applyMaybeAlg (n,) Nothing = n
applyMaybeAlg (, j) (Just x) = j x

Johan Jeuring (UU) Regular 2014-02-20 16 / 22

Folds and Algebras (3)
Application of the algebra is also defined according to the structure of the
functor. As usual, we use a type class:

class Apply f where
apply :: Alg f r→ f r→ r

Then, we can define instances for the representation types:

type instance Alg U r = r

instance Apply U where
apply f U = f

The binary sum requires a pair of algebras, one for each alternative.

type instance Alg (f :+: g) r = (Alg f r,Alg g r)

instance (Apply f,Apply g)⇒ Apply (f :+: g) where
apply (f,) (L x) = apply f x
apply (, g) (R y) = apply g y

Johan Jeuring (UU) Regular 2014-02-20 17 / 22

Folds and Algebras (4)

Constant and recursive algebras are simple functions.

type instance Alg (K a) r = a→ r

instance Apply (K a) where
apply f (K x) = f x

type instance Alg I r = r→ r

instance Apply I where
apply f (I x) = f x

Johan Jeuring (UU) Regular 2014-02-20 18 / 22

Folds and Algebras (5)

The binary product algebra is the composition of algebras. We simplify the
composition to define only the product cases that we expect to find.

type instance Alg (K a :×: g) r = a→ Alg g r

instance (Apply g)⇒ Apply (K a :×: g) where
apply f (K x :×: y) = apply (f x) y

type instance Alg (I :×: g) r = r→ Alg g r

instance (Apply g)⇒ Apply (I :×: g) where
apply f (I x :×: y) = apply (f x) y

Note that this implies a right-nested representation.

Johan Jeuring (UU) Regular 2014-02-20 19 / 22

Folds and Algebras (6)

In the fold , the algebra is applied recursively to the functorial
representation.

fold :: (Regular a,Apply (PF a),Functor (PF a))⇒ Alg (PF a) r→ a→ r
fold alg = apply alg ◦ fmap (fold alg) ◦ from

Johan Jeuring (UU) Regular 2014-02-20 20 / 22

Folds and Algebras (7)

Using the fold only requires defining an algebra:

listMaxAlg :: Alg (PF (List Int)) Int
listMaxAlg = (minBound,max)

listMax :: List Int→ Int
listMax = fold listMaxAlg

Question

What is the dual “top-down” recursion scheme? What can we do with it?

Johan Jeuring (UU) Regular 2014-02-20 21 / 22

Resources

Thomas van Noort, Alexey Rodriguez, Stefan Holdermans, Johan
Jeuring, Bastiaan Heeren. A Lightweight Approach to
Datatype-Generic Rewriting. WGP 2008.

Johan Jeuring (UU) Regular 2014-02-20 22 / 22

http://people.cs.uu.nl/bastiaan/DatatypeGenericRewriting.html
http://people.cs.uu.nl/bastiaan/DatatypeGenericRewriting.html

