
A call-by-name lambda-calculus machine

Jean-Louis Krivine
University Paris VII, C.N.R.S.
2 place Jussieu 75251 Paris cedex 05
(krivine@pps .jussieu .fr)

Introduction

We present, in this paper, a particularly simple lazy machine w hich runs
programs written in λ-calculus. It was introduced by the present writer
more than twenty years ago. It has been, since, used and implemented
by several authors, but remained unpublished.
In the first section, we give a rather informal, but complete, descrip-
tion of the machine. In the second part, definitions are formalized,
which allows us to give a proof of correctness for the execution of λ-
terms. Finally, in the third part, we build an extension for the machine,
with a control instruction (a kind of call-by-name call/cc) and with
continuations.

This machine uses weak head reduction to execute λ-calculus, which
means that the active redex must be at the very beginning of the λ-
term. Thus, computation stops if there is no redex at the head of the
λ-term. In fact, we reduce at once a whole chain λx1 . . . λxn. Therefore,
execution also stops if there are not enough arguments.

The first example of a λ-calculus machine is P. Landin’s celebrated
SECD-machine [8] . The one presented here is quite different, in partic-
ular because it uses call-by-name. This needs some explanation, since
functional programming languages are, most of the time, implemented
through call-by-value. Here is the reason for this choice :

Starting in the sixties, a fascinating domain has been growing between
logic and theoretical computer science, that we can designate as the
Curry-Howard correspondence. Succinctly, this correspondence permits
the transformation of a mathematical proof into a program, which is
written :

in λ-calculus if the proof is intuitionistic and only uses logical ax-
ioms ;

in λ-calculus extended with a control instruction, if one uses the law
of excluded middle [4] and the axioms of Zermelo-Frænkel set theory [6] ,
which is most often the case.
Other instructions are necessary if one uses additional axioms, such as

?c 2006 Springer Science+Business Media, Inc. Manufactured in The Netherlands.

lazymach .tex ; 4/10/2006 ; 12 :26 ; p . 1

2

the Axiom of Choice [7] .
The programs obtained in this way are indeed very complex and two
important problems immediately arise : how should we execute them
and what is their behaviour? Naturally, these questions are not inde-
pendent, so let us give a more precise formulation :

(i) How should one execute these programs so as to obtain a meaningful
behaviour ?
(ii) Assuming an answer to question (i) , what is the common behaviour
(if any) of the programs obtained from different proofs of the same
theorem ?

It is altogether surprising that there be an answer to question (i) ; it is
the machine presented below. Ibelieve that is, in itself, a strong reason
for being interested in it.
Let us give a very simple but illuminating example, namely the follow-
ing theorem of Euclid :

There exists infinitely many prime numbers.
Let us consider a proof D of this theorem, using the axioms of classical
analysis, or those of classical set t heory ; consider, further, the program
PD extracted from this proof. One would like to have the following
behaviour for PD :

wait for an integer n ;
produce then a prime number p ≥ n.

That is exactly what happens when the program PD is executed by
the present machine. But it’s not true anymore if one uses a different
execution mechanism, for instance call-by-value. In this case one gets,
in general, an aberrant behaviour and no meaningful output.

This machine was thus conceived to execute programs obtained from
mathematical proofs. It is an essential ingredient of the classical real-
izability theory developed in [6, 7] to extend the Curry-Howard cor-
respondence to analysis and set theory. Thanks to the remarkable
properties of weak head reduction, one can thus, inter alia, search
for the specification associated with a given mathematical theorem,
meaning the shared behaviour of the programs extracted from the
various proofs of the theorem under consideration : this is question (ii)
stated earlier. That problem is a very interesting one, it is also quite
difficult and has only been solved, up to now, in very few cases, even
for tautologies (cf. [2]) . A further interesting side of this theory is that
it illuminates, in a new way, the problem of proving programs, so very
important for applications.

lazymach .tex ; 4/10/2006 ; 12 :26 ; p .2

3

1. Description of the machine

Terms of λ-calculus are written with the notation (t)u for application of
t to u. We shall also write tu if no ambiguity arise ; (. . . ((t)u1)u2 . . .)uk
will be also denoted by (t)u1 . . .uk or tu1 . . . uk.

We consider three areas in the memory : the term area where are written
the λ-terms to be performed, the stack and the heap. We denote by &t
the address of the term t in the term area.

In the heap, we have objects of the following kinds :

− environment : a finite sequence (e, ξ1 , . . . , ξk) where e is the address
of an environment (in the heap) ,and ξ1 , . . . ,ξk are closures. There
is also an empty environment.

− closure : an ordered pair (&t, e) built with the address of a term
(in the term area) and the address of an environment.

The elements of the stack are closures.

Intuitively, closures are the values which λ-calculus variables take.

Execution of a term

The term t0 to be performed is written, in “compiled form” in the term

area. The “compiled form” of a term is obtained by replacing each
occurrence of λx with λ and each variable occurrence with an ordered
pair of integers <ν, k> (it is a variant of the de Bruijn notation [3] , see
the definition below) . We assume that t0 is a closed term. Thus, the
term area contains a sequence of closed terms.
Nevertheless, terms may contain symbols of constant, which are per-
formed with some predefined programs. For example :

− a constant symbol which is the name of another closed term ; the
program consists in the execution of this term.

− constant symbols for programs in an input-output library.

The execution consists in constantly updating a closure (T, E) and the
stack. T is the address of the current subterm (which is not closed, in
general) : it is, therefore, an instruction pointer which runs along the
term to be performed ; E is the current environment.
At the beginning, T is the address of the first term t0 to be performed.
Since it is a closed term, E is the null pointer (which points to the
empty environment).
At each moment, there are three possibilities according to the term
pointed by T : it may be an application (t)u, an abstraction λx t or a
variable.

lazymach .tex ; 4/10/2006 ; 12 :26 ; p .3

4

− Execution of (t)u.
We push the closure (&u, E) on the top of the stack and we go on
by performing t : thus T points now to t and E does not change.

− Execution of λx1 . . . λxn t where t does not begin with a λ ; thus,
T points to λx1 .
A new environment (e, ξ1 , . . . ,ξn) is created : e is the address of E,
ξ1 , . . . ,ξn are “popped” : we take the n top entries off the stack.
We put in E the address of this new environment in the heap, and
we go on by performing t : thus T points now to t.

− Execution of x (a λ-calculus variable) .
We fetch as follows the value of the variable x in the environ-
ment E : indeed, it is a bound occurrence of x in the initial term
t0. Thus, it was replaced by an ordered pair of integers <ν, k>. If
ν = 0, the value we need is the k-th closure of the environment E.
If ν ≥ 1, let E1 be the environment which has its address in E, E2
tIhf eν one ,wl ehticE h has its address in E1, etc. Then, the value of x is
the k-th closure of Eν. This value is an ordered pair (T0, E0) which
we put in (T, E) .

Remark.
The intuitive meaning of t hese rules of execution is to consider the symbols
λx, (,x of λ-calculus as elementary instructions :
• “λx” is : “pop” in x and increment the instruction pointer.
• “(” is : “push” tnhxe aandddrei nsscr eomf tenhet corresponding “)” atnerd. increment the
instruction pointer.
• “x” is : go to the address w hich is contained in x.

It remains to explain how we compute the integers ν, k for each occur-
rence of a variable x, i.e. how we “compile” a closed λ-term t. More
generally, we compute ν for an occurrence of x in an arbitrary λ-term t,
and k when it is a bound occurrence in t. This is done by induction on

the length of t.
If t = x, we set ν = 0. If t = uv, the occurrence of x we consider is in
u (resp. v) . We compute ν, and possibly k, in u (resp. v) .
Let now t = λx1 . . . λxn u w ith n > 0, u being a t erm which does
not begin with a λ. If the occurrence of x we consider is free in t, we
compute ν in t by computing ν in u, then adding 1. If this occurrence
of x is bound in u, we compute ν and k in u. Finally, if this occurrence
is free in u and bound in t, then we have x = xi. We compute ν in u,
and we set k = i.

lazymach .tex ; 4/10/2006 ; 12 :26 ; p .4

5

2. Formal definitions and correction proof

Compiled terms or λB-terms (this notion is a variant of the de Bruijn
notation) are defined as follows :

• A constant a or an ordered pair <ν, k> (k ≥ 1) of integers is a
λ•B-Ater cmon (sattaonmtia c oterrma n) .
• If t,u are λB-terms, then so is (t)u.
•• IIff tt, uis a eλλ B-term which does not begin with λi and if n ≥ 1, then
λ•ntI fist a sλa B-λ term.

Let us consider, in a λB-term t, an occurrence of a constant a or of
<ν, k> (ordered pair of integers) . W e define, in an obvious way, the
depth of this occurrence, which is the number of λn symbols above it.

The definition is done by induction on the length of t :
If there is no λi symbol in t, the depth is 0.
If t = (u)v, the occurrence we consider is either inu or in v. We compute
its depth in this subterm and do not change it.
If t = λnu, we compute the depth of this occurrence in the subterm u
and we add 1to it.

An occurrence of <ν, k> in t is said to be f ree (resp. bound) if its depth
in t is ≤ ν (resp. > ν) .
iOnf course, e(raechsp occurrence of a constant a is free. Thus, we could write
constants as ordered pairs <∞, k>.
cCoonnsstiadnetrs a sboo urdnedreedd occurrence ko>f <ν, k> in a λB-term t ; then there
is a unique λn in t which bounds this occurrence. If k > n, we say that
this occurrence of <ν, k> in t is dummy. A λB-term without dummy
bound occurrences will be called good. We can easily transform a λB-
term into a good one : simply substitute each dummy occurrence with
a (unique) new constant symbol d.

Alpha-equivalence

Let t be a closed λ-term, with constants. We define, by induction on t,
its “compiled” form, w hich is a λB-term denoted by B(t) :
If a is a constant, then B(a) = a ; if t = uv, then B(t) = B(u) B(v) .
If t = λx1 . . . λxn u where u does not begin with λ, consider the λB-
term : B(u[a1/x1 , . . . , an/xn]), where a1,. . . ,an are new constants.
We replace in it each occurrence of ai with the ordered pair <ν, i>,
where ν is the depth of this occurrence in B(u[a1/x1 ,. . . , an/xn]) . We
get in this way a λB-term U and we set : B(t) = λnU.

THEOREM 1. A λB-term τ is good iff there exists a λ-term t such
that τ = B[t] .

lazymach .tex ; 4/10/2006 ; 12 :26 ; p .5

6

We omit the easy proof.
?

The compiled form B[t] of a λ-term t is a variant of the de Bruijn
notation for t. Its main property, expressed by theorem 2, is that it
depends only on α-equivalence class of t. This property is not used in
the following, but the simplicity of the proof below convinced me to
give it here.

THEOREM 2. Two closed λ-terms t, t0 are α-equivalent (which we
denote by t ’α t0) if and only if B(t) = B(t0) .

The proof is done by induction on t. The result is clear if t = a or
t = uv. So, w e assume now that t = λx1 . . . λxn u where u does not
begin with λ. If t ’α t0 or if B(t) = B(t0) , then t0 = λx01 . . . λx0n u0 where
bu0e gdinoew s ntoht λ .be Igfti n ’ with λ. Let a1, . . . , an be new constants ; then, by
definition of α-equivalence [5] , w e have :
t ’α t0 ⇔ u[a1/x1 ,. . . ,an/xn] ’α u0 [a1/x10 , . . . , an/xn0] .
tB’y indu⇔ctiu on[a hypothesis, this] i’s equivalent to :
B(u[a1/x1 ,. . . , an/xn]) = B(u0 [a1/x10 , . . . ,an/xn0]) .
If B(u[a1/x1 , . . . , an/xn]) = B(u0 [a1/x10 , . . . , an/xn0]) , we obviously have
B(t) = B(t0) . But conversely, w e get B(u[a1/x1 ,. . . ,an/xn]) from B(t) ,

by removing the initial λn and replacing <ν, i> with ai for every oc-
currence of <ν, i> the depth of which is precisely equal to ν.

Therefore, we have B(u[a1/x1 , . . . , an/xn]) = B(u0[a1/x10 , . . . ,an/xn0])
⇔ B(t) = B(t0) and finally t ’α t0 ⇔ B(t) = B(t0) .

?

Weak head reduction

Consider a λB-term of the form (λnt)u1 . . . up with p ≥ n. Then, we can
carry out a weak head reduction step : we get twhiteh hλp B-≥ ten rm.T th0uenn+,1w . . .up
(or t0, if n = p) ; the term t0 is obtained by replacing in t each f ree
occurrence of <ν, i> w ith :

<ν −1, i> if ν is strictly greater than the depth of this occurrence ;
ui (−re1sp,.i >d)i fiνf ν siss erqicutlayl gtor tahtee rdt ehpatnh tohfe th deisp occurrence acnurdr ie ≤ce n

(resp. ir s>p .nd)) ; fdν i iss a qfuixaeldt constant, hwh oifcht h irsep olcaccuesrr ednucmema nyd b io ≤unnd
occurrences in λnt.

We write t ? u if u is obtained from t by a finite (possibly null) number
oWf eww earkit eht ea? d ure idfuu c tisioo nb steps.

It is clear that the weak head reduction of a λ-term t corresponds to
the weak head reduction of its compiled form B(t) .

lazymach .tex ; 4/10/2006 ; 12 :26 ; p .6

7

Closures, environments and stacks

We now define recursively closures and environments :
∅ is an environment (the empty environment) ; if e is an environ-
∅mei nst nane dn φvi1r , . . . ,eφnnt are ec leomsuprteys e(nnv ≥ro n0m) , ntth)en; t ifhee f iisnia ten sequence
(e, φ1 , . . . , φn) is an enavrieroc nlmoseunrte.
A closure is an ordered pair (t,e) composed with a λB-term t and an
environment e.
A stack is a finite sequence π = (φ1 , . . . , φn) of closures.
We denote by φ.π the stack (φ, φ1 , . . . , φn) obtained by “pushing” the
closure φ on the top of the stack π.

Execution rules
A state of the machine is a triple (t, e, π) where t is a λB-term, e an
environment and π a stack. We now give the execution rules, by which
we pass from a state (t, e, π) to the next one (t0, e0, π0) :

• If t = (u)v, then t0 = u, e0 = e and π0 = (v, e) .π.

• If t = λnu, the length of the stack π must be ≥ n, otherwise the
•machine stops. tThehul es,n we h oafvt eh π s=ta cφk1 . . . mφuns.πt0,b weh≥ ichn ,do etfihneersw πis0e. Wthee
set t0 = u and e0 = (e, φ1 , . . . ,φn) .

• If t = <ν, k> : let e0 = e and let ei+1 be the environment which is
t•heI ffit rs= t e <leνm,ek>nt o:l fe ei, for i= 0, 1, . . .
If ei = ∅ for an i≤ ν, then the machine stops.
Othe=rw∅ isef o, w e hi a v≤e eν =he n(et ν+h1e , m(t1a , εh1i)n , . . . ,(ptsp., εp)) .
If k ≤ p , we set t0 = tk, e0 = εk and π0 = π.
IIff kk >≤ p , twhee nse ttht e machine stops.

The value of a closure
Given any closure φ = (t, e) , we define a closed λB-term which is
denoted by φ¯ or t[e] ; it is defined by induction on the environment
e as follows :

If e = ∅, we obtain t[∅] by replacing in t each f ree occurrence of
<ν, if>e (=i.e .∅ ,itws edeo pbttha iins ≤ t[∅ν]) bwyit rhe pthlaec icnognsi ntan tt da.c

,Ifi e =(i. e(ε. ,i tφs1 , . . . , hφn is) , we s weti th[et] =e cuo[nε]s twanhetrd e. u is the λB-term we
obtain by replacing in t each f ree occurrence of <ν, i> with :
<ν − 1, i> if ν is strictly greater than the depth of this occurrence ;

<φ¯iν (r −es 1p,.i d>) iiff ν iiss s etqruicatl tyo gtrheea tdeerpt thha onf tthhies occurrence sano dc ci ≤rr n (cree ;sp.
i>(rne)s ; .dd i)si a νfix isee dq ucaonlst toa nthte.

Remark. We observe that t[e] is a closed λB-term, which is obtained by
replacing in t the free occurrences of <ν, i> with suitable λB-terms. These
closed λB-terms are recursively provided by the environment e ; the constant
d (for “dummy”) is used as a “wild card” , when the environment e does not
provide anything.

lazymach .tex ; 4/10/2006 ; 12 :26 ; p .7

8

THEOREM 3. Let (t, e, π) , (t0, e0, π0) be two consecutive states of the

Tmhaecnh,inw ee,w h iatvheπ : = t[e(φ]φ¯11,......,φ¯φmm?)a t 0n[ed0]π φ¯010=...(φφ¯m010,0....,φm00).
Recall that the symbol ? denotes the weak head reduction. We shall
use talhle nhoattatt ihoen sty[me] ¯πb ofolr ? ?t[de]eφ¯n1o . . . sφ¯t mh ew wheean π hise athde r setdaucckt i(oφn1., . . . , sφhma)ll.
There are three possible cases for t :

• t = (u)v : we have t[e] = u[e]v [e] , t0 [e0] = u[e] (since e0 = e) and
π•0 t== =(v(, ue)) .π. T wheerh eafvoeret [te[]e]π ¯= =u [te0][ev0[]e¯π],0.

• t = <ν, k> : let e0 = e and ej+1 the environment which is the first
e•letm = ent< νof, ej , i:fl ej e= ∅. Then, by the reduction rules of the machine,
we have (t0, e0) = ψ=k6 w∅ .heT rhe eψnk, bisy t thhee kr -etdhu ccltoiosunrr eu olefs sto hef tehnev imroancmhiennet,
eν = (eν+1 ,ψ1 , . . . ,ψp) (and k is necessarily ≤ p) . Now, by definition of

t[e], we have t[e] = ψ¯k). (Tanhderk efo irsen , etc[ee]sπ ¯sa r=i yψ¯k≤ ¯π p=). .tN 0[eo0w]¯π ,0 ,b ysidn ceefi nπit0 i=on π.

• t = λnu : then we have n ≤ m and
t•0 t== u, eu0 :=t h(ee,n nφw 1 , . . . , φenn) , ≤πm0 m=a n(φdn+1 , . . . , φm) . We must show that
(λnu)[e]φ¯1 . . . φ¯n ? u[(e, φ1, . . . ,φn)].
By the very defin?itiu on[(es ,oφf the value of a closure and of the w eak head
reduction, we have u[(e, φ1 , . . . , φn)] = v[e] , where v is obtained by
one step of weak head reduction in (λnu)φ¯1 . . . φ¯n. We denote this by
(λnu)φ¯1 . . . φ¯n ?1 v, and we now show that (λnu)[e]φ¯1 . . . φ¯n ?1 v[e]
(which will give? the result) .
We obtain v [e] by replacing, in u, the free occurrences of <ν, i>
i) with φ¯i (or d if i> n) if ν = the depth of this occurrence ;
ii) with <ν − 1, i> if ν > the depth of this occurrence ; and after that,
we wreitphla< ceν t −his1 occurrence hoef <deνp t−h 1 o, fi>t h iwsi tohc tuhrer ecnlcoseed; tnedrm a gteirvet nh abty,
wthee eenpvlaircoen tmheisnot e.
Now, we obtain (λnu) [e] (which is closed) by the substitution (ii) on
the free occurrences of <ν, i> in u such that ν > the depth of this
occurrence in u. Indeed, they are exactly the free occurrences in λnu.
Then, one step of weak head reduction on (λnu)[e]φ¯1 . . . φ¯n performs
the substitution (i) on the occurrences of <ν, i> in u such that ν = the
depth in u of this occurrence. This shows that this step of reduction
gives v[e] .

?

This theorem shows that the machine which has been described above
computes correctly in the following sense : if t ? at1 . . .tk, where t is a
ccloomsepdu λte-stec romrr eacntdly a nist a constant, gts heenns teh: ei fet xe? cua ttion of B(t) , from an
empty environment and an empty stack, will end up in aB(t1) . . . B(tk) .
In particular, if t ? a, then the execution of B(t) will end up in a.

lazymach .tex ; 4/10/2006 ; 12 :26 ; p .8

9

3. Control instruction and continuations

We now extend this machine with a call-by-name control instruction,
and with continuations. There are two advantages : first, an obvious
utility for programming ; second, in the frame of realisability theory
(see the introduction) , this allows the typing of programs in classical
logic and no longer only in intuitionistic logic. Indeed, the type of the
instruction call/cc is Peirce’s law ((A → B) → A) → A (see [4]) .
iWnset rinucsitsito on tlhle/ fcacct i stP heatir we use a cAall →-byB -n)a →meA)ve→ rsioA n osefe ec [a4l])l./cc,
which is rather unusual. The reason for this was explained in the in-
troduction.
An interesting study of the connection of such a machine with context
sensitive calculi (calculi of explicit substitutions) is done in [1] .

As we did before, we give first an informal description of the machine,
then mathematical definitions.

Description of the machine

We describe only the changes. Terms are the same but there is one
more constant, which is denoted by cc. There are still three memory
areas : the stack and the term area, which are the same as before, and
the heap which contains objects of the following kinds :

− environment : same definition.

− closure : it is, either an ordered pair (&t, e) built with the address
of a term (in the term area) and the address of an environment (in

the heap) ; or the address &γ of a continuation.

− continuation : it is a sequence γ = (ξ1 , . . . , ξn) of closures (the
same as a stack) .

Execution of a term
The execution consists in constantly updating the current closure Ξ and
the stack. There are now two possible forms for the current closure :
(&τ, e) (where τ is a term) or &γ (where γ is a continuation) .
Consider the first case : Ξ = (&τ, e) . There are now four possibilities
for the term τ : an application (t)u, an abstraction λx t, a variable x or
the constant cc. Nothing is changed during execution in the first two
cases.

− Execution of x (λ-calculus variable) .
As before, we fetch the value of the variable x in the environment
e, which gives a closure ξ which becomes the current closure Ξ.
The stack does not change.

lazymach .tex ; 4/10/2006 ; 12 :26 ; p .9

10

− Execution of cc.
We pop a closure ξ which becomes the current closure Ξ. We save
the current stack in a continuation γ and we push the address of γ

(this address is a closure) on the top of the stack.
Therefore, the stack, which was of the form (ξ, ξ1 , . . . , ξn) , has

become (&γ, ξ1 , . . . , ξn) with γ = (ξ1 , . . . ,ξn) .

Consider now the second case, when the current closure Ξ is of the form
&γ. Then, the execution consists in popping a closure ξ, w hich becomes
the current closure and in replacing the current stack with γ.

Formal definitions

λB-terms are defined as before, with a distinguished constant, which is
denoted by cc.

We define recursively the closures, the environments and the stacks
(which are now also called continuations) :
∅ is an environnement (the empty environnement) ; if e is an envi-
∅ron isma ennt annvidr oφn1n , . . . , nφtn are c elmosuprteys (nnv i≥ro n0)n , tmheennt)th; e ffine iti es sequence
(e, φ1 , . . . , φn) is an enviraornenc elmoseunrte.
A closure is either a stack, or an ordered pair (t, e) composed with a
λB-term t and an environment e.
A stack (or continuation) is a finite sequence γ = (φ1 , . . . , φn) of clo-
sures. We denote by φ.γ the stack (φ, φ1 , . . . ,φn) which is obtained by
“pushing” the closure φ on the top of the stack γ.

Execution rules
A state of the machine is an ordered pair (φ, π) where φ is a closure
and π is a stack. We give now the execution rules, by which we pass
from a state (φ, π) to the next one (φ0, π0) :

• If φ is a continuation (i.e. a stack) , then φ0 is the closure which is on
t•heI top soaf t choen tsitnaucakt π n(i(fi π .ias empty, tthhee nmφ achine stops) and π0 = φ.

• Else, we have φ = (t,e) and there are four possibilities for the
•λB-term t :

• If t = (u)v, then φ0 = (u, e) and π0 = (v, e) .π.

• If t = λnu, then the length of the stack π must be ≥ n, otherwise
the• •m Iafct h =ineλ stops. nTht uhes, we thha vofe π e=s φa1c . . . φ mnu.πst0, bweh ≥ichn ,do etfihneersw πise0.
We set φ0 = (u, e0) with e0 = (e, φ1 ,. . . , φn) .

• If t = <ν, k> : let e0 = e and let ei+1 be the environment which

is t•he ffirt st= e <leνm,ekn>t o:fl ei, for i= 0, 1, . . . If ei = ∅ for an i≤ ν, then

the machine stops. Else, we have eν = (eν+1 , φ1 , . . . , φp) .

If k ≤ p , we set φ0 = φk and π0 = π. If k > p , the machine stops.

lazymach .tex ; 4/10/2006 ; 12 :26 ; p .10

11

• If t = cc, then φ0 is the closure which is on the top of the stack π

(if π i Isf empty, t thhee nmφ achine stops) . Thus, we have π = φ0.ρ where ρ is a

stack. Therefore, ρ is also a closure, which we denote by φρ. Then, we

set π0 = φρ.ρ.

References

1. M. Biernacka, O. Danvy. A syntactic correspondence between context-sensitive
calculi and abstract machines. BRICS Report series, RS-05-38, 2005.

2. V. Danos, J.-L. Krivine. Disjunctive tautologies and synchronisation schemes.
Computer Science Logic’00, Lecture Notes in Computer Science no. 1862,
pp. 292-301, 2000.

3. N. G. de Bruijn. Lambda calculus notation with nameless dummies, a t ool
for automatic formula manipulation, with application to the Church-Rosser
theorem. Indagationes Mathematicae, 34, pp. 381-392, 1972.

4. T. Griffin. A formulæ-as-type notion of control. In Conference Record of the
17th A.C.M. Symposium on principles of Programming Languages, 1990.

5. J.-L. Krivine. Lambda-calculus, types and models. Ellis Horwood, 1993.
6. J.-L. Krivine. Typed λ-calculus in classical Zermelo-Frænkel set theory.

Archiv for Mathematical Logic, 40, 3, pp. 189-205, 2001.
7. J.-L. Krivine. Dependent choice, ‘quote’ and the clock.

Theoretical Computer Science, 308, pp. 259-276, 2003.
8. P. J. Landin. The mechanical evaluation of expressions.

The Computer Journal, vol. 6, pp. 308-320, 1964.

Many thanks to Olivier Danvy for organizing this special issue of HOSC, and for

several helpful remarks and suggestions about this paper.

lazymach .tex ; 4/10/2006 ; 12 : 26 ; p .11

