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This paper presents the derivation of an executable Kri@bstract machine from a small step inter-
preter for the simply typed lambda calculus in the depergéyried programming language Agda.

1 Introduction

There is a close relationship between lambda calculi wifiliex substitutions and abstract machines.
Biernacka and Danvy [7] have shown how to derive several-lWwelvn abstract machines including
the Krivine machine/[14, 15, 21, 22], the CEK machine [19]] #ime Zinc machine [23]. Starting with
a functional program that evaluates by repeated head fedueach of these abstract machines may
be derived by a series of program transformations. Evenstoamation is carefully motivated in the
accompanying text. This paper aims to nail down the coresstrof these derivations further and, in the
process, uncover even more structure.

In this paper we show how the derivation presented by Bidiaand Danvy can be formalized in
the dependently typed programming language Agda [25]. \Wbate hope to gain by doing so? In their
study relating evaluators and abstract machines, Ager f]atate in the introduction:

Most of our implementations of the abstract machines raasepder warnings about non-
exhaustive matches. These are inherent to programmingaabstachines in an ML-like
language.

This paper demonstrates that these non-exhaustive matc®est inherent to a dependently typed pro-

gramming language such as Agda. All the functions we preBerg are structurally recursive and

provide alternatives for every case branch. This shift t@petdently typed language gives us many
properties of evaluation ‘for free.” For example, from tlypds alone we learn that evaluation is type
preserving and that every term can be decomposed uniquelg iredex and evaluation context. Finally,

using Agda enables us to providereachine-checked proaif the correctness of every transformation.

More specifically, this paper makes the following concretetdgbutions:

e We describe the implementation of a small step evaluatorgdaAthat normalizes by repeated
head reduction (Sectidn 3). To convince Agda’s terminatibaecker that our definition is sound,
we provide a normalization proof in the style of Tait|[30]jgmnally sketched by Coquand [13]
(Sectiorl 4).

e Applying therefocusingtransformation|[18], yields a small-step abstract mactkiag is not yet
tail-recursive (Sectionl5). We prove that this transfoiorapreserves the semantics and termina-
tion properties of the small-step evaluator from Sedtion 4.
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e This small-step abstract machine can be transformed furtheéerive the Krivine machine (Sec-
tion[d). Once again, we show that the transformation presetite semantics and termination
properties of the small-step abstract machine from Seglion

This paper is a literate Agda program. Rather than spelliighe details of every proof, we will only
sketch the necessary lemmas and definitions. The completeescode, including proofs, is available
online Every section in this paper defines a separate module, alipus to reuse the same names for
the functions and data types presented in individual sestiBinally, the code in this paper uses a short
Agda Prelude that is included in an appendix. Readers utifamiith Agda may want to consult one of
the many tutorials and introductions that are available|28) 27].

2 Typesand terms

Before we can develop the series of evaluators, we need ttedbft terms and types of the simply typed
lambda calculus.

data Ty : Set where

O: Ty

= Ty = Ty = Ty
Context : Set
Context = List Ty

The data typely represents the types of the simply typed lambda calculus ene base typ®. A
context is defined to be a list of types. Typically the varar and 1 range over types; the variablEs
andA range over contexts.

Next we define the data types of well-typed, well-scopedalmeis and lambda terms:

data Ref : Context — Ty — Set where
Top : Ref (Conso M) o
Pop : Ref 0 — Ref (ConsTl) 0

data Term : Context — Ty — Set where
Lam : Term (Conso ) T — TermT (0 = 1)
App : TermT (0 = 1) — Terml 0 — Term ' T
Var : ReflT' 0 — Terml o

These definitions are entirely standard. There are threstrembors for the simply typed lambda calculus:
Lam introduces a lambda, extending the context; Alpg constructor applies a term of tyge = 71 to
an argument of type; the Var constructor references a variable bound in the context.

Note that in the typeset code presented in this paper, angumtbvariables in type signatures are
implicitly universally quantified, as is the convention imskell [24] and Epigram [28]. When we wish to
be more explicit about implicit arguments, we will adherdgaa’s notation of enclosing such arguments
in curly braces.

Next, we can define the data types representiogedterms. Aclosureis a termt paired with an
environment containing closed terms for all the free vdealint. Furthermore, closed terms are closed
under application. This yields the two mutually recursiatedtypes defined below.

1The source code, compatible with Agda version 2.3, is avtiltomhttp: //www.cs.ru.nl/ wouters|
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data Closed : Ty — Set where
Closure : TermT 0 — Envl — Closed 0
Clapp : Closed (0 = 1) — Closed 0 — Closed T

data Env : Context — Set where
Nil : Env Nil
-+ Closedo — Envll — Env(Consal)

This is a variation of Curien’d p-calculus, proposed by Biernacka and Danvy [7]. A similavich of
closed terms was independently proposed by Coquand [13].

The aim of evaluation is to computevaluefor every closed term. Closed lambda expressions are
the only values in our language. The final definitions in teisti®n capture this:

isVal : Closed 0 — Set
isVal (Closure (Lam body) env) = Unit
isVal _ = Empty
data Value (0 : Ty) : Set where
Val : (c : Closed 0) — isValc — Value o

With these types in place, we can specify the type of the atigl function we will define in the
coming sections:

evaluate ; Closed 0 — Value o

3 Reduction

Writing t [eny to denote the closure consisting of a terand an environmergny, the four rules in below
specify a normal-order small step reduction relation ferdtosed terms. In this section, we will start to
implement these rules in Agda.

LOOKUP  i[c1,Cp,...Ch] — G

APP  (tot1)[eny — (to[enV) (t1[enV)
BETA  ((At)[enV) x —t[x-eny

LEFT if co— cythencocy — ¢pcp

In the style of Danvy and Nielsen [18], we define a single réidacstep in three parts. First, we
decompose a closed term into a redex and an evaluation toBtexond, we contract the redex to form
a new closed term. Finally, we plug the resulting closed teack into the evaluation context.

To define such a three-step reduction step, we start by dgfihé@Redex type, corresponding to the
left-hand sides of the first three rules above.

data Redex : Ty — Set where
Lookup : Ref' 0 — Envl — Redex 0
Rapp : Terml (0 = 1) — Terml 0 — Envl — Redex T
Beta : Term (Cons o) T — Envl — Closed 0 — Redex T
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Of course, every redex can be mapped back to the closed tatrit tepresents.

fromRedex : Redex 0 — Closed 0

fromRedex (Lookup i env) = Closure (Var i) env

fromRedex (Rapp f x env) = Closure (App fx) env

fromRedex (Beta body env arg) = Clapp (Closure (Lam body) env) arg

Next, we define theontract function that computes the result of contracting a singtkexe

I Envl — Refl' 0 — Closed o

Nil ()

(x-_) ! Top = x

(x-xs) ! Popr =xs!r

contract : Redex 0 — Closed 0

contract (Lookupienv) = env !i

contract (Rapp fxenv) = Clapp (Closure f env) (Closure x env)
contract (Beta body env arg) = Closure body (arg - env)

In the Lookup case, we look up the variable from the environment using the operator. TheRapp
case distributes the environment over the two terms. KinBHta reduction extends the environment
with the argumentrg, and uses the extended environment to create a new closumetlie body of a
lambda. Once again, the definition of mntract function closely follows the first three reduction rules
that we formulated above.

While this describes how to contract a single redex, we séld to define thedecompositiorof
a term into a redex and a reduction context. We begin by defiamevaluation context as the list of
arguments encountered along the spine of a term:

data EvalContext : Ty — Ty — Set where
MT : EvalContext 0 0
ARG : Closed 0 — EvalContext T p — EvalContext (0 = 1) p

Ignoring theTy indices for the moment, an evaluation context is simplyteoli€losed terms. Given
any evaluation contexitx and termt, we would like to plugt in the context by iteratively applyingto
all the arguments imtx. For this to type check, the teromshould abstract over all the variables in the
evaluation context. We enforce this by indexing thalContext type by the ‘source’ and ‘destination’
types in the style of Atkey [3]. Thelug operation itself then applies any arguments from the etialua
context to its argument term:

plug : EvalContext 0 T — Closed 0 — Closed T
plug MTf = f
plug (ARG x ctx) f = plug ctx (Clapp fx)

Finally, we define the decomposition of a closed term into gexeand evaluation context as a
view [24,131] on closed terms. Defining such a view consists of taxdsp a data typ®ecomposition
indexed by a closed term, and a functitetompose that maps every closed term to Recomposition.

We will start by defining a data typecomposition. There are two constructors, corresponding to
the two possible outcomes of decomposing a closed tereitherc is a value, in which case we have



W. Swierstra 167

the closure of dam-term and an environment; alternativetycan be decomposed into a redeand
an evaluation contextx, such that plugging the term corresponding to the evaluation contexitx is
equal to the original term:

data Decomposition : Closed 0 — Set where
Val : (body : Term (Conso ") 1) — (env : Envl) —
Decomposition (Closure (Lam body) env)
Decompose : (r : Redex 0) — (ctx : EvalContext 0 ) —
Decomposition (plug ctx (fromRedex r))

Next we show how every closed tertrcan be decomposed intoCecomposition c. We do so by
defining a pair of functiondpad andunload. Theload function traverses the spine of accumulating
any arguments we encounter in an evaluation context untifineka redex or a closure containing a
Lam. Theunload function inspects the evaluation context thaid has accumulated in order to decide
if a lambda is indeed a value, or whether it still has furthhguments, and hence corresponds Reta
redex:

load : (ctx : EvalContext 0 T) (c : Closed ) — Decomposition (plug ctx c)
load ctx (Closure (Lam body) env) = unload ctx body env

load ctx (Closure (App f x) env) = Decompose (Rapp f x env) ctx

load ctx (Closure (Var i) env) = Decompose (Lookup i env) ctx

load ctx (Clapp fx) = load (ARG x ctx) f

unload : (ctx : EvalContext (0 = 1) p) (body : Term (Cons o I") T) (env : EnvI)
— Decomposition (plug ctx (Closure (Lam body) env))

unload MT body env = Val body env

unload (ARG arg ctx) body env = Decompose (Beta body env arg) ctx

Thedecompose function itself simply kicks offioad with an initially empty evaluation context.

decompose : (c : Closed 0) — Decomposition c
decompose c = load MT ¢

To perform a single reduction step, we decompose a closed téthis yields a value, there is no
further reduction to be done. If decomposition yields a xealed evaluation context, we contract the
redex and plug the result back into the evaluation context:

headReduce : Closed 0 — Closed 0

headReduce ¢ with decompose ¢

headReduce |Closure (Lam body) env| | Val body env = Closure (Lam body) env
headReduce |plug ctx (fromRedex redex)| | Decompose redex ctx = plug ctx (contract redex)

Note that pattern matching on thi@ecomposition produces more information about the term that has
been decomposed. This is apparent infireed patterng25], |Closure (Lam body) env| in the Val
branch and plug ctx (fromRedex redex) | in the Decompose branch, that appear on the left-hand side of
the function definition.

This completes our definition of a single head reduction.step
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4 |terated head reduction

In the previous section we established how to perform asiregduction step. Now it should be straight-
forward to define an evaluation function by iteratively reithg by a single step until we reach a value:

evaluate : Closed 0 — Value
evaluate ¢ = iterate (decompose c)
where
iterate : Decomposition ¢ — Value 0
iterate (Val val p) = Valval p
iterate (Decompose r ctx) = iterate (decompose (plug ctx (contractr)))

There is one problem with this definition: it is not strucllyaecursive. It is rejected by Agda.
Yet we know that the simply typed lambda calculus is stromgigmalizing—so iteratively performing a
single head reduction will always produce a value eventublbw can we convince Agda of this fact?

The Bove-Capretta method is one technique to transform aitilefi that is not structurally recursive
into an equivalent definition that is structurally recuesover a new argument! [9]. Essentially, it does
structural recursion over the call graph of a function. In case, we would like to have an inhabitant of
the following data type:

data Trace : {c : Closed 0} — Decompositionc — Set where
Done : (body : Term (Consa ') T) — (env : EnvIl) — Trace (Val body env)
Step : Trace (decompose (plug ctx (contract r))) — Trace (Decompose r ctx)

We could then define thieerate function by structural induction over the trace:

iterate : {c : Closed 0} — (d : Decompositionc) — Traced — Value 0
iterate (Val body env) (Done |body]| |env]) = Val (Closure (Lam body) env) unit
iterate (Decompose r ctx) (Step step) = iterate (decompose (plug ctx (contractr))) step

Although this definition does pass Agda’s termination cleecthe question remains how to provide the
requiredTrace argument to ouiterate function. That is we would like to define a function of type:

(t: Closed 0) — Tracet

A straightforward attempt to define such a function fails iethately. Instead, we need to define the
following logical relationthat strengthens our induction hypothesis:

Reducible : {0 : Ty} — (t: Closed 0) — Set
Reducible {O} t = Trace (decompose t)
Reducible {0 = 1}t = Pair (Trace (decompose t))
((x : Closed 0) — Reducible x — Reducible (Clapp t x))

ReducibleEnv : Envl — Set

ReducibleEnv Nil = Unit
ReducibleEnv (x - env) = Pair (Reducible x) (ReducibleEnv env)

To prove that all closed terms are reducible, we follow theopsketched by Coquand [13] and prove
the following two lemmas.
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lemmal : (c : Closed 0) — Reducible (headReduce c) — Reducible c
lemma2 : (t: Term " 0) (env : EnvIl) — ReducibleEnv env — Reducible (Closure t env)

The proof oflemma2 performs induction on the term In each of the branches, we appealtamal in
order to prove tha€losure t env is also reducible. The proof &mmal is done by induction o and

c. The only difficult case is that for closed applicatioQ$spp f x. In that branch, we need to show that
Clapp (headReduce (Clapp fx)) y is equal toheadReduce (Clapp (Clapp f x) y).

To prove the desired equality we observe that if decompdSimgp f x yields a redex and evaluation
contextctx, then the decomposition @lapp (Clapp f x) y must yield the same redex with the evaluation
context obtained by addingto the end ottx. To complete the proof we define an auxiliary ‘backwards
view’ on evaluation contexts that states that every evalonatontext is either empty or arises by adding
a closed term to the end of an evaluation context. Using ikis,\the required equality is easy to prove.

Usinglemmal andlemma2, we can prove our main theorem: every closed term is redacitid do
so, we define the following two mutually recursive theorems:

mutual
theorem : (c : Closed 0) — Reducible c
theorem (Closure t env) = lemma2 t env (envTheorem env)
theorem (Clapp f x) = snd (theorem f) x (theorem x)

envTheorem : (env : EnvIl) — ReducibleEnv env
envTheorem Nil = unit
envTheorem (t - ts) = (theorem t,envTheorem ts)

To prove that every closure is reducible, we appedétoma2 and prove that every closed term in the
environment is also reducible. The proof that every cloggulieation is reducible recurses over both
argumentd andx. The recursive call tbyields a pair of a trace and a function of type:

((x : Closed 0) — Reducible x — Reducible (Clapp f x))

Applying this function tox andtheorem x, yields the desired proof.
One important corollary of our theorem is that for every ebbgermc, we can compute an evaluation
trace ofc:

termination : {0 : Ty} — (c : Closed 0) — Trace (decompose c)
termination { O} ¢ = theorem c
termination {0 = T} c = fst (theorem c)

Now we can finally complete the definition of our small stepleation function:

evaluate : Closed 0 — Value 0
evaluate t = iterate (decompose t) (termination t)

Theevaluate function iteratively performs a single step of head redutperforming structural induc-
tion over the trace that we compute using the reducibilityopsketched above.

5 Refocusing

The small step evaluator presented in the previous sedjmeatedly decomposes a closed term into an
evaluation context and a redex, contracts the redex, amgs phe contractum back into the evaluation
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context. Before transforming this evaluator into the Kr&imachine, we will show how to apply the re-
focusing transformation to producesmall-step abstract machiri&7]. This small-step abstract machine
forms a convenient halfway point between the small stepuaetat and the Krivine machine.

The key idea of refocusing is to compose the plugging andrdposition steps into a singtefocus
operation. Instead of repeatedly plugging and decompps#ireyefocus function navigates directly to
the next redex, if it exists:

refocus : (ctx : EvalContext 0 T) (c : Closed 0) — Decomposition (plug ctx )
refocus MT (Closure (Lam body) env) = Val body env

refocus (ARG x ctx) (Closure (Lam body) env) = Decompose (Beta body env x) ctx
refocus ctx (Closure (Var i) env) = Decompose (Lookup i env) ctx

refocus ctx (Closure (App f x) env) = Decompose (Rapp f x env) ctx

refocus ctx (Clapp fx) = refocus (ARG x ctx) f

We can formalize this intuition about the behaviour of refsing by proving the following lemma:

refocusCorrect : (ctx : EvalContext 0 T) (c : Closed 0) —
refocus ctx ¢ = decompose (plug ctx c)

The proof by induction ortx andc relies on an easy lemma:

decomposePlug : (ctx : EvalContext 0 T) (c : Closed 0) —
decompose (plug ctxc) = load ctx ¢

The proof of thedecomposePlug lemma proceeds by simple induction on the evaluation contex

To rewrite our evaluator to use tiefocus operation, we will need to adapt tHeace data type from
the previous section. Iterated recursive calls will no kmgplldecompose andplug, but instead navigate
to the next redex using thefocus function. The newTrace data type reflects just that:

data Trace : Decomposition c — Set where
Done : (body : Term (Consa ') T) — (env : EnvIl) — Trace (Val body env)
Step : Trace (refocus ctx (contract r)) — Trace (Decompose r ctx)

To prove that this neWrace data type is inhabited, we call thermination lemma from the previous
section. Using theefocusCorrect lemma, we perform induction on tieace data type from the previous
section to construct a witness of termination. All this imddy the followingtermination function:

termination : (c : Closed 0) — Trace (refocus MT c)

The definition of our evaluator is now straightforward. Titeeate function repeatedly refocuses and
contracts until a value has been reached:

iterate : (d : Decomposition c) — Traced — Value 0
iterate (Val body env) (Done |body]| |env]) = Val (Closure (Lam body) env) unit
iterate (Decompose r ctx) (Step step) = iterate (refocus ctx (contract r)) step

evaluate : Closed 0 — Value
evaluate ¢ = iterate (refocus MT c) (termination c)
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The evaluate function kicks off theiterate function with an empty evaluation context and a proof of
termination.

Finally, we can also show that our new evaluator behavesdime s the evaluation function pre-
sented in the previous section. To do so, we prove the fatigyémma by induction on the decomposi-
tion of t:

correctness : {t : Closed 0} —
(trace : Trace (refocus MT t)) — (trace’ : Section4.Trace (decompose t)) —
iterate (refocus MT t) trace = Sectioné.iterate (decompose t) trace’

An important corollary of thisorrectness property is that our new evaluation function behaves identi
cally to theevaluate function from the previous section:

corollary : (t : Closed 0) — evaluatet = Section4.evaluate t
corollary t = correctness (termination t) (Section4.termination t)

This completes the definition and verification of the evalu#tat arises by applying the refocusing
transformation on the small step evaluator from Sedflon 4.

6 TheKrivine machine

In this section we will derive the Krivine machine from theakyation function we saw previously. To
complete our derivation, we perform a few further prograamsformations on the previous evaluation
function.

We start by inlining theterate function, making ourefocus function recursive. Furthermore, the
evaluate function in the previous section mappagdp terms into closedlapp terms, and subsequently
evaluated the first argument of the resultitigpp constructor, adding the second argument to the evalu-
ation context. In this section, we will combine these tw@stmto a single transition—a transformation
sometimes referred to @a@mpressing corridor transitionfd.€]. As a result, we will no longer add closed
applications to the environment or evaluation context. Mduce the following predicates enforcing
the absence dflapp constructors on closed terms, environments, and evaluatintexts respectively:

mutual
isValidClosure : Closed 0 — Set
isValidClosure (Closure t env) = isValidEnv env
isValidClosure (Clapp fx) = Empty

isValidEnv : EnvA — Set
isValidEnv Nil = Unit
isValidEnv (c - env) = Pair (isValidClosure c) (isValidEnv env)

isValidContext : EvalContext 0 T — Set

isValidContext MT = Unit

isValidContext (ARG (Closure t env) ctx) = Pair (isValidEnv env) (isValidContext ctx)
isValidContext (ARG (Clapp f x) env) = Empty
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Given that the only valid closed terms are closures, we cinalinctions that project the underlying
environment and term from any valid closed term:

getContext : Exists (Closed 0) isValidClosure — Context
getContext (Witness (Closure {T' } tenv) _) =T
getContext (Witness (Clapp fx) ())

getEnv : (c : Exists (Closed 0) isValidClosure) — Env (getContext c)
getEnv (Witness (Closure t env) p) = env
getEnv (Witness (Clapp fx) ())

getTerm : (c : Exists (Closed 0) isValidClosure) — Term (getContext c)
getTerm (Witness (Closure tenv) p) = t
getTerm (Witness (Clapp fx) ())

Finally, we can define a nelwsokup operation that guarantees that looking up a variable inid val
environment will always return a closure:

lookup : Ref" 0 — (env : Envl) — isValidEnvenv —
Exists (Closed 0) isValidClosure
lookup Top (Closure tenv - _) (p1,p2) = Witness (Closure t env) pl

lookup Top (Clapp — —- ) ((),-)
lookup (Pop i) (—-env) (_,p) = lookupienvp

If the argument reference op, we pattern match on the environment, which must contairosuce.
We use the proof that the environment contains exclusiviglguces to discharge th&app branch. If
the argument reference op i, we recurse overand the tail of the environment.

Once again, we define ®race data type, describing the call-graph of the Krivine machifide
Trace data type is indexed by the three arguments to the Krivinehmac a term, an environment, and
an evaluation context. The data type has a constructor &ydransition; recursive calls to the abstract
machine correspond to recursive arguments to a constructor

data Trace : TermI 0 — EnvIl — EvalContext 0 T — Set where
Lookup : (i : Refl o) (p : isValidEnv env) —
let c = lookupienvpin
Trace (getTerm c) (getEnv c) ctx — Trace (Vari) env ctx
App : (f: TermT (0 = 1)) (x : Term T 0) —
Trace fenv (ARG (Closure x env) ctx) —
Trace (App f x) env ctx
Beta : (ctx : EvalContext 0 p) —
(arg : TermH 1) — (argEnv : EnvH) —
(body : Term (ConsTl) 0) —
Trace body (Closure arg argEnv - env) ctx —
Trace (Lam body) env (ARG (Closure arg argEnv) ctx)
Done : (body : Term (Cons 1) 0) — Trace (Lam body) env MT

Using thisTrace, we can now define the final version of theocus function, corresponding to the
Krivine abstract machine, by structural recursion on thisce. The resulting machine corresponds to
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the Krivine machine as is usually presented in the litemfi, 15/ 21]. Biernacka and Danvy [7] also
consider the derivation of Krivine’s original machine [2B&t contracts nesteélreductions in one step.

refocus : (ctx : EvalContext o T) (t : Term I 0) (env : Envl) —
Tracetenvctx — Value T
refocus ctx |Vari| env (Lookup i q step) =
letc = lookupienvqin
refocus ctx (getTerm c) (getEnv c) step
refocus ctx | App f x| env (App f x step)
= refocus (ARG (Closure x env) ctx) f env step
refocus | ARG (Closure arg env') ctx| |Lam body| env (Beta ctx arg env' body step)
= refocus ctx body ((Closure arg env') - env) step
refocus |[MT | [Lam body| env (Done body) = Val (Closure (Lam body) env) unit

In the case for variables, we look up the closure that thealbrirefers to in the environment, and con-
tinue evaluation with that closure’s term and environmémtthe case foApp f x, we add the argument
and current environment to the application context, andiwoe evaluating the terrh We distinguish
two further cases for lambda terms: if the evaluation cdnterot empty, we can perform a beta reduc-
tion step; otherwise evaluation is finished.

We still need to prove that thérace data type is inhabited. During execution, the Krivine maehi
only adds closures to the environment and evaluation conf@uring the termination proof, we will
need to keep track of the following invariant on evaluationtexts and environments:

invariant : EvalContext 0 T — Envl — Set
invariant ctx env = Pair (isValidEnv env) (isValidContext ctx)

The proof of termination once again calls teemination proof from the previous section. An auxiliary
lemma shows that any witness of termination for the smalfp-stbstract machine in Sectioh 5 will also
suffice as a proof of termination of the Krivine machine.

termination : (t : Term Nil 0) — Tracet Nil MT
terminationt = lemma MT t Nil (unit, unit) (Section5.termination (Closure t Nil))
where
lemma : (ctx : EvalContext 0 T) (t : Term [ o) (env : Envl) —
invariant ctx env. — Sectionb.Trace (Sectionb.refocus ctx (Closure t env)) —
Trace t env ctx

The lemma is proven by straightforward induction on thewatibn context, the term, and theace data
type from the previous section. Once we pattern match oretine &nd the evaluation context, we know
which transition we wish to make, and hence which construafithe Trace data type is required. Any
recursive occurrences of tAeace data type can be produced by recursive calls tddimena. The only
other result necessary states that ldwkup function and the ! operation we saw previously return
the same closed term from an environment.

Finally, we can define thevaluation function that callsefocus with a suitable choice for its initial
arguments:

evaluate : Term Nil 0 — Value o
evaluate t = refocus MT t Nil (termination t)
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To conclude, we show that this final version of tlfocus function behaves equivalently to the
refocus function from the previous section. To prove this, we foratelthe correctness property below.

correctness : (ctx : EvalContext 0 T) (t : Term I o) (env : EnvI) —
(t1 : Tracetenvctx) —
(ta : Section5.Trace (Section5.refocus ctx (Closure tenv))) —
refocus ctx t env t; = Section5.iterate (Section5.refocus ctx (Closure t env)) t»

Once again, the proof proceeds by straightforward indoatio the traces.
As a result of this correctness property, we can prove thaeealuation function behaves the same
as the function presented in the previous section:

corollary : (t : Term Nil 0) — evaluatet = Section5.evaluate (Closure t Nil)
corollaryt = lettrace = terminationtin

let trace’ = Section5.termination (Closure t Nil) in

correctness MT t Nil trace trace’

By chaining together our correctness results, we can shatvatlr Krivine machine produces the
same value as our original evaluator based on repeated &dadtion, thereby completing the formal
derivation of the Krivine machine from a small step evaluato

7 Discussion

There has been previous work on formalizing the derivatminabstract machines in Coqg [6,/29]. In
contrast to the development here, these formalizations@rexecutable but instead define the reduction
behaviour as inductive relations between terms and vallies.executability of our abstract machines
comes at a price: we need to prove that the evaluators teleniwhich requires a clever logical relation.
On the other hand, it is easier to reason about executaldtidos. In type theory, definitional equalities
are always trivially true—a fact you can only exploit if younctions compute.

This paper uses the Bove-Capretta method to prove terminafi every evaluator. Chapman and
Altenkirch use a similar logical relation to produce intahts of Bove-Capretta predicates when writing
a big-step normalization algorithm/[2]. There are, of ceuralternative methods to show that a non-
structurally recursive function does terminate. For examip may be interesting to investigate how
to adapt the normalization proof to use an order on lambdastgmroposed by Gandy [20] to define a
suitable accessibility relation.

Finally, you may wonder if the usage of logical relations toye termination is ‘cheating.” After
all, the computational content of normalization proofsngsiogical relations is itself a normalization
algorithm [4,.5, B]—so is our small-step evaluator not jesiding off the value from the trace that our
proof computes? Not at all! In fact, the behaviour of iteeate function from Sectioh4 isndependent
of the trace we provide—once tligerate function matches on the argument decomposition, the trace
passed as an argument to therate function is uniquely determined. The following statemengasy to
prove:

collapsible : (d : Decomposition ¢) (t; to : Traced) — t1 = t»

In other words, the traces themselves carry no computdtemmient. Suclcollapsibledata types may
be erased by a suitable clever compiler [11, 12].

This paper focuses on the derivation of the Krivine abstnaathine. There is no reason to believe
that the other derivations of abstract machines|[1, 7] mayadormalized in a similar fashion.
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A An AgdaPrelude

module Prelude where
id : forall {a : Set} — a — a
idx = x
data Empty : Set where
magic : forall {a : Set} — Empty — a
magic ()
record Unit : Set where
unit : Unit
unit = record { }

data Pair (a b : Set) : Set where
_,_:a— b — Pairab

fst : forall {ab} — Pairab — a

fst (x,—) = x
snd : forall{ab} — Pairab — b
snd (L,y) =y
data List (a : Set) : Set where
Nil : List a
Cons : a — Lista — Lista
data_=_{a:Set} (x:a):a — Setwhere
Refl : x = x
infix6 =
sym:{a:Set}{xy:a} = x=y >y =x
sym Refl = Refl

cong : {ab:Set}{xy:a} = (f:a=b) 2 x=y = fx="fy
cong f Refl = Refl
data Exists (a : Set) (b : a — Set) : Set where
Witness : (x : a) — bx — Existsab
fsts : forall {ab} — Existsab — a
fsts (Witnessx _) = x

snds : forall {ab} — (x: Existsab) — (b (fstsx))
snds (Witness _y) =y
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