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This paper presents the derivation of an executable Krivineabstract machine from a small step inter-
preter for the simply typed lambda calculus in the dependently typed programming language Agda.

1 Introduction

There is a close relationship between lambda calculi with explicit substitutions and abstract machines.
Biernacka and Danvy [7] have shown how to derive several well-known abstract machines including
the Krivine machine [14, 15, 21, 22], the CEK machine [19], and the Zinc machine [23]. Starting with
a functional program that evaluates by repeated head reduction, each of these abstract machines may
be derived by a series of program transformations. Every transformation is carefully motivated in the
accompanying text. This paper aims to nail down the correctness of these derivations further and, in the
process, uncover even more structure.

In this paper we show how the derivation presented by Biernacka and Danvy can be formalized in
the dependently typed programming language Agda [25]. Whatdo we hope to gain by doing so? In their
study relating evaluators and abstract machines, Ager et al. [1] state in the introduction:

Most of our implementations of the abstract machines raise compiler warnings about non-
exhaustive matches. These are inherent to programming abstract machines in an ML-like
language.

This paper demonstrates that these non-exhaustive matchesarenot inherent to a dependently typed pro-
gramming language such as Agda. All the functions we presenthere are structurally recursive and
provide alternatives for every case branch. This shift to a dependently typed language gives us many
properties of evaluation ‘for free.’ For example, from the types alone we learn that evaluation is type
preserving and that every term can be decomposed uniquely into a redex and evaluation context. Finally,
using Agda enables us to provide amachine-checked proofof the correctness of every transformation.
More specifically, this paper makes the following concrete contributions:

• We describe the implementation of a small step evaluator in Agda that normalizes by repeated
head reduction (Section 3). To convince Agda’s terminationchecker that our definition is sound,
we provide a normalization proof in the style of Tait [30], originally sketched by Coquand [13]
(Section 4).

• Applying therefocusingtransformation [18], yields a small-step abstract machinethat is not yet
tail-recursive (Section 5). We prove that this transformation preserves the semantics and termina-
tion properties of the small-step evaluator from Section 4.

http://dx.doi.org/10.4204/EPTCS.76.10
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• This small-step abstract machine can be transformed further to derive the Krivine machine (Sec-
tion 6). Once again, we show that the transformation preserves the semantics and termination
properties of the small-step abstract machine from Section5.

This paper is a literate Agda program. Rather than spelling out the details of every proof, we will only
sketch the necessary lemmas and definitions. The complete source code, including proofs, is available
online.1 Every section in this paper defines a separate module, allowing us to reuse the same names for
the functions and data types presented in individual sections. Finally, the code in this paper uses a short
Agda Prelude that is included in an appendix. Readers unfamiliar with Agda may want to consult one of
the many tutorials and introductions that are available [10, 26, 27].

2 Types and terms

Before we can develop the series of evaluators, we need to define the terms and types of the simply typed
lambda calculus.

data Ty : Set where

O : Ty

_⇒_ : Ty → Ty → Ty

Context : Set

Context = List Ty

The data typeTy represents the types of the simply typed lambda calculus with one base typeO. A
context is defined to be a list of types. Typically the variablesσ andτ range over types; the variablesΓ
and∆ range over contexts.

Next we define the data types of well-typed, well-scoped variables and lambda terms:

data Ref : Context → Ty → Set where

Top : Ref (Cons σ Γ) σ
Pop : Ref Γ σ → Ref (Cons τ Γ) σ

data Term : Context → Ty → Set where

Lam : Term (Cons σ Γ) τ → Term Γ (σ ⇒ τ)
App : Term Γ (σ ⇒ τ) → Term Γ σ → Term Γ τ
Var : Ref Γ σ → Term Γ σ

These definitions are entirely standard. There are three constructors for the simply typed lambda calculus:
Lam introduces a lambda, extending the context; theApp constructor applies a term of typeσ ⇒ τ to
an argument of typeσ ; theVar constructor references a variable bound in the context.

Note that in the typeset code presented in this paper, any unbound variables in type signatures are
implicitly universally quantified, as is the convention in Haskell [24] and Epigram [28]. When we wish to
be more explicit about implicit arguments, we will adhere toAgda’s notation of enclosing such arguments
in curly braces.

Next, we can define the data types representingclosedterms. Aclosureis a termt paired with an
environment containing closed terms for all the free variables int. Furthermore, closed terms are closed
under application. This yields the two mutually recursive data types defined below.

1The source code, compatible with Agda version 2.3, is available fromhttp://www.cs.ru.nl/~wouters.

http://www.cs.ru.nl/~wouters
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data Closed : Ty → Set where

Closure : Term Γ σ → Env Γ → Closed σ
Clapp : Closed (σ ⇒ τ) → Closed σ → Closed τ

data Env : Context → Set where

Nil : Env Nil

_·_ : Closed σ → Env Γ → Env (Cons σ Γ)

This is a variation of Curien’sλρ-calculus, proposed by Biernacka and Danvy [7]. A similar choice of
closed terms was independently proposed by Coquand [13].

The aim of evaluation is to compute avalue for every closed term. Closed lambda expressions are
the only values in our language. The final definitions in this section capture this:

isVal : Closed σ → Set

isVal (Closure (Lam body) env) = Unit

isVal = Empty

data Value (σ : Ty) : Set where

Val : (c : Closed σ) → isVal c → Value σ

With these types in place, we can specify the type of the evaluation function we will define in the
coming sections:

evaluate : Closed σ → Value σ

3 Reduction

Writing t [env] to denote the closure consisting of a termt and an environmentenv, the four rules in below
specify a normal-order small step reduction relation for the closed terms. In this section, we will start to
implement these rules in Agda.

LOOKUP i [c1,c2, . . .cn]→ ci

APP (t0 t1) [env]→ (t0 [env]) (t1 [env])

BETA ((λ t) [env]) x→ t [x·env]

LEFT if c0 → c′0 thenc0 c1 → c′0 c1

In the style of Danvy and Nielsen [18], we define a single reduction step in three parts. First, we
decompose a closed term into a redex and an evaluation context. Second, we contract the redex to form
a new closed term. Finally, we plug the resulting closed termback into the evaluation context.

To define such a three-step reduction step, we start by defining theRedex type, corresponding to the
left-hand sides of the first three rules above.

data Redex : Ty → Set where

Lookup : Ref Γ σ → Env Γ → Redex σ
Rapp : Term Γ (σ ⇒ τ) → Term Γ σ → Env Γ → Redex τ
Beta : Term (Cons σ Γ) τ → Env Γ → Closed σ → Redex τ
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Of course, every redex can be mapped back to the closed term that it represents.

fromRedex : Redex σ → Closed σ
fromRedex (Lookup i env) = Closure (Var i) env

fromRedex (Rapp f x env) = Closure (App f x) env

fromRedex (Beta body env arg) = Clapp (Closure (Lam body) env) arg

Next, we define thecontract function that computes the result of contracting a single redex:

_!_ : Env Γ → Ref Γ σ → Closed σ
Nil ! ()
(x · ) ! Top = x

(x · xs) ! Pop r = xs ! r

contract : Redex σ → Closed σ
contract (Lookup i env) = env ! i

contract (Rapp f x env) = Clapp (Closure f env) (Closure x env)
contract (Beta body env arg) = Closure body (arg · env)

In theLookup case, we look up the variable from the environment using the_!_ operator. TheRapp

case distributes the environment over the two terms. Finally, Beta reduction extends the environment
with the argumentarg, and uses the extended environment to create a new closure from the body of a
lambda. Once again, the definition of thecontract function closely follows the first three reduction rules
that we formulated above.

While this describes how to contract a single redex, we stillneed to define thedecompositionof
a term into a redex and a reduction context. We begin by defining an evaluation context as the list of
arguments encountered along the spine of a term:

data EvalContext : Ty → Ty → Set where

MT : EvalContext σ σ
ARG : Closed σ → EvalContext τ ρ → EvalContext (σ ⇒ τ) ρ

Ignoring theTy indices for the moment, an evaluation context is simply a list of closed terms. Given
any evaluation contextctx and termt, we would like to plugt in the context by iteratively applyingt to
all the arguments inctx. For this to type check, the termt should abstract over all the variables in the
evaluation context. We enforce this by indexing theEvalContext type by the ‘source’ and ‘destination’
types in the style of Atkey [3]. Theplug operation itself then applies any arguments from the evaluation
context to its argument term:

plug : EvalContext σ τ → Closed σ → Closed τ
plug MT f = f

plug (ARG x ctx) f = plug ctx (Clapp f x)

Finally, we define the decomposition of a closed term into a redex and evaluation context as a
view [24, 31] on closed terms. Defining such a view consists of two parts: a data typeDecomposition

indexed by a closed term, and a functiondecompose that maps every closed term to itsDecomposition.
We will start by defining a data typeDecomposition. There are two constructors, corresponding to

the two possible outcomes of decomposing a closed termc: eitherc is a value, in which case we have
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the closure of aLam-term and an environment; alternatively,c can be decomposed into a redexr and
an evaluation contextctx, such that plugging the term corresponding tor in the evaluation contextctx is
equal to the original termc:

data Decomposition : Closed σ → Set where

Val : (body : Term (Cons σ Γ) τ) → (env : Env Γ) →
Decomposition (Closure (Lam body) env)

Decompose : (r : Redex σ) → (ctx : EvalContext σ τ) →
Decomposition (plug ctx (fromRedex r))

Next we show how every closed termc can be decomposed into aDecomposition c. We do so by
defining a pair of functions,load andunload. The load function traverses the spine ofc, accumulating
any arguments we encounter in an evaluation context until wefind a redex or a closure containing a
Lam. Theunload function inspects the evaluation context thatload has accumulated in order to decide
if a lambda is indeed a value, or whether it still has further arguments, and hence corresponds to aBeta

redex:

load : (ctx : EvalContext σ τ) (c : Closed σ) → Decomposition (plug ctx c)
load ctx (Closure (Lam body) env) = unload ctx body env

load ctx (Closure (App f x) env) = Decompose (Rapp f x env) ctx

load ctx (Closure (Var i) env) = Decompose (Lookup i env) ctx

load ctx (Clapp f x) = load (ARG x ctx) f

unload : (ctx : EvalContext (σ ⇒ τ) ρ) (body : Term (Cons σ Γ) τ) (env : Env Γ)
→ Decomposition (plug ctx (Closure (Lam body) env))

unload MT body env = Val body env

unload (ARG arg ctx) body env = Decompose (Beta body env arg) ctx

Thedecompose function itself simply kicks offload with an initially empty evaluation context.

decompose : (c : Closed σ) → Decomposition c

decompose c = load MT c

To perform a single reduction step, we decompose a closed term. If this yields a value, there is no
further reduction to be done. If decomposition yields a redex and evaluation context, we contract the
redex and plug the result back into the evaluation context:

headReduce : Closed σ → Closed σ
headReduce c with decompose c

headReduce ⌊Closure (Lam body) env⌋ | Val body env = Closure (Lam body) env

headReduce ⌊plug ctx (fromRedex redex)⌋ | Decompose redex ctx = plug ctx (contract redex)

Note that pattern matching on theDecomposition produces more information about the term that has
been decomposed. This is apparent in theforced patterns[25], ⌊Closure (Lam body) env⌋ in the Val

branch and⌊plug ctx (fromRedex redex)⌋ in theDecompose branch, that appear on the left-hand side of
the function definition.

This completes our definition of a single head reduction step.
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4 Iterated head reduction

In the previous section we established how to perform a single reduction step. Now it should be straight-
forward to define an evaluation function by iteratively reducing by a single step until we reach a value:

evaluate : Closed σ → Value σ
evaluate c = iterate (decompose c)

where

iterate : Decomposition c → Value σ
iterate (Val val p) = Val val p

iterate (Decompose r ctx) = iterate (decompose (plug ctx (contract r)))

There is one problem with this definition: it is not structurally recursive. It is rejected by Agda.
Yet we know that the simply typed lambda calculus is stronglynormalizing—so iteratively performing a
single head reduction will always produce a value eventually. How can we convince Agda of this fact?

The Bove-Capretta method is one technique to transform a definition that is not structurally recursive
into an equivalent definition that is structurally recursive over a new argument [9]. Essentially, it does
structural recursion over the call graph of a function. In our case, we would like to have an inhabitant of
the following data type:

data Trace : {c : Closed σ } → Decomposition c → Set where

Done : (body : Term (Cons σ Γ) τ) → (env : Env Γ) → Trace (Val body env)
Step : Trace (decompose (plug ctx (contract r))) → Trace (Decompose r ctx)

We could then define theiterate function by structural induction over the trace:

iterate : {c : Closed σ } → (d : Decomposition c) → Trace d → Value σ
iterate (Val body env) (Done ⌊body⌋ ⌊env⌋) = Val (Closure (Lam body) env) unit

iterate (Decompose r ctx) (Step step) = iterate (decompose (plug ctx (contract r))) step

Although this definition does pass Agda’s termination checker, the question remains how to provide the
requiredTrace argument to ouriterate function. That is we would like to define a function of type:

(t : Closed σ) → Trace t

A straightforward attempt to define such a function fails immediately. Instead, we need to define the
following logical relation that strengthens our induction hypothesis:

Reducible : {σ : Ty} → (t : Closed σ) → Set

Reducible {O} t = Trace (decompose t)
Reducible {σ ⇒ τ } t = Pair (Trace (decompose t))

((x : Closed σ) → Reducible x → Reducible (Clapp t x))

ReducibleEnv : Env Γ → Set

ReducibleEnv Nil = Unit

ReducibleEnv (x · env) = Pair (Reducible x) (ReducibleEnv env)

To prove that all closed terms are reducible, we follow the proof sketched by Coquand [13] and prove
the following two lemmas.
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lemma1 : (c : Closed σ) → Reducible (headReduce c) → Reducible c

lemma2 : (t : Term Γ σ) (env : Env Γ) → ReducibleEnv env → Reducible (Closure t env)

The proof oflemma2 performs induction on the termt. In each of the branches, we appeal tolemma1 in
order to prove thatClosure t env is also reducible. The proof oflemma1 is done by induction onσ and
c. The only difficult case is that for closed applications,Clapp f x. In that branch, we need to show that
Clapp (headReduce (Clapp f x)) y is equal toheadReduce (Clapp (Clapp f x) y).

To prove the desired equality we observe that if decomposingClapp f x yields a redexr and evaluation
contextctx, then the decomposition ofClapp (Clapp f x) y must yield the same redex with the evaluation
context obtained by addingy to the end ofctx. To complete the proof we define an auxiliary ‘backwards
view’ on evaluation contexts that states that every evaluation context is either empty or arises by adding
a closed term to the end of an evaluation context. Using this view, the required equality is easy to prove.

Using lemma1 andlemma2, we can prove our main theorem: every closed term is reducible. To do
so, we define the following two mutually recursive theorems:

mutual

theorem : (c : Closed σ) → Reducible c

theorem (Closure t env) = lemma2 t env (envTheorem env)
theorem (Clapp f x) = snd (theorem f) x (theorem x)

envTheorem : (env : Env Γ) → ReducibleEnv env

envTheorem Nil = unit

envTheorem (t · ts) = (theorem t,envTheorem ts)

To prove that every closure is reducible, we appeal tolemma2 and prove that every closed term in the
environment is also reducible. The proof that every closed application is reducible recurses over both
argumentsf andx. The recursive call tof yields a pair of a trace and a function of type:

((x : Closed σ) → Reducible x → Reducible (Clapp f x))

Applying this function tox andtheorem x, yields the desired proof.
One important corollary of our theorem is that for every closed termc, we can compute an evaluation

trace ofc:

termination : {σ : Ty} → (c : Closed σ) → Trace (decompose c)
termination {O} c = theorem c

termination {σ ⇒ τ } c = fst (theorem c)

Now we can finally complete the definition of our small step evaluation function:

evaluate : Closed σ → Value σ
evaluate t = iterate (decompose t) (termination t)

Theevaluate function iteratively performs a single step of head reduction, performing structural induc-
tion over the trace that we compute using the reducibility proof sketched above.

5 Refocusing

The small step evaluator presented in the previous section repeatedly decomposes a closed term into an
evaluation context and a redex, contracts the redex, and plugs the contractum back into the evaluation
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context. Before transforming this evaluator into the Krivine machine, we will show how to apply the re-
focusing transformation to produce asmall-step abstract machine[17]. This small-step abstract machine
forms a convenient halfway point between the small step evaluator and the Krivine machine.

The key idea of refocusing is to compose the plugging and decomposition steps into a singlerefocus

operation. Instead of repeatedly plugging and decomposing, the refocus function navigates directly to
the next redex, if it exists:

refocus : (ctx : EvalContext σ τ) (c : Closed σ) → Decomposition (plug ctx c)
refocus MT (Closure (Lam body) env) = Val body env

refocus (ARG x ctx) (Closure (Lam body) env) = Decompose (Beta body env x) ctx

refocus ctx (Closure (Var i) env) = Decompose (Lookup i env) ctx

refocus ctx (Closure (App f x) env) = Decompose (Rapp f x env) ctx

refocus ctx (Clapp f x) = refocus (ARG x ctx) f

We can formalize this intuition about the behaviour of refocusing by proving the following lemma:

refocusCorrect : (ctx : EvalContext σ τ) (c : Closed σ) →
refocus ctx c ≡ decompose (plug ctx c)

The proof by induction onctx andc relies on an easy lemma:

decomposePlug : (ctx : EvalContext σ τ) (c : Closed σ) →
decompose (plug ctx c) ≡ load ctx c

The proof of thedecomposePlug lemma proceeds by simple induction on the evaluation context.
To rewrite our evaluator to use therefocus operation, we will need to adapt theTrace data type from

the previous section. Iterated recursive calls will no longer calldecompose andplug, but instead navigate
to the next redex using therefocus function. The newTrace data type reflects just that:

data Trace : Decomposition c → Set where

Done : (body : Term (Cons σ Γ) τ) → (env : Env Γ) → Trace (Val body env)
Step : Trace (refocus ctx (contract r)) → Trace (Decompose r ctx)

To prove that this newTrace data type is inhabited, we call thetermination lemma from the previous
section. Using therefocusCorrect lemma, we perform induction on theTrace data type from the previous
section to construct a witness of termination. All this is done by the followingtermination function:

termination : (c : Closed σ) → Trace (refocus MT c)

The definition of our evaluator is now straightforward. Theiterate function repeatedly refocuses and
contracts until a value has been reached:

iterate : (d : Decomposition c) → Trace d → Value σ
iterate (Val body env) (Done ⌊body⌋ ⌊env⌋) = Val (Closure (Lam body) env) unit

iterate (Decompose r ctx) (Step step) = iterate (refocus ctx (contract r)) step

evaluate : Closed σ → Value σ
evaluate c = iterate (refocus MT c) (termination c)
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The evaluate function kicks off theiterate function with an empty evaluation context and a proof of
termination.

Finally, we can also show that our new evaluator behaves the same as the evaluation function pre-
sented in the previous section. To do so, we prove the following lemma by induction on the decomposi-
tion of t:

correctness : {t : Closed σ } →
(trace : Trace (refocus MT t)) → (trace’ : Section4.Trace (decompose t)) →
iterate (refocus MT t) trace ≡ Section4.iterate (decompose t) trace’

An important corollary of thiscorrectness property is that our new evaluation function behaves identi-
cally to theevaluate function from the previous section:

corollary : (t : Closed σ) → evaluate t ≡ Section4.evaluate t

corollary t = correctness (termination t) (Section4.termination t)

This completes the definition and verification of the evaluator that arises by applying the refocusing
transformation on the small step evaluator from Section 4.

6 The Krivine machine

In this section we will derive the Krivine machine from the evaluation function we saw previously. To
complete our derivation, we perform a few further program transformations on the previous evaluation
function.

We start by inlining theiterate function, making ourrefocus function recursive. Furthermore, the
evaluate function in the previous section mappedApp terms into closedClapp terms, and subsequently
evaluated the first argument of the resultingClapp constructor, adding the second argument to the evalu-
ation context. In this section, we will combine these two steps into a single transition—a transformation
sometimes referred to ascompressing corridor transitions[16]. As a result, we will no longer add closed
applications to the environment or evaluation context. We introduce the following predicates enforcing
the absence ofClapp constructors on closed terms, environments, and evaluation contexts respectively:

mutual

isValidClosure : Closed σ → Set

isValidClosure (Closure t env) = isValidEnv env

isValidClosure (Clapp f x) = Empty

isValidEnv : Env ∆ → Set

isValidEnv Nil = Unit

isValidEnv (c · env) = Pair (isValidClosure c) (isValidEnv env)

isValidContext : EvalContext σ τ → Set

isValidContext MT = Unit

isValidContext (ARG (Closure t env) ctx) = Pair (isValidEnv env) (isValidContext ctx)
isValidContext (ARG (Clapp f x) env) = Empty
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Given that the only valid closed terms are closures, we can define functions that project the underlying
environment and term from any valid closed term:

getContext : Exists (Closed σ) isValidClosure → Context

getContext (Witness (Closure {Γ} t env) ) = Γ
getContext (Witness (Clapp f x) ())

getEnv : (c : Exists (Closed σ) isValidClosure) → Env (getContext c)
getEnv (Witness (Closure t env) p) = env

getEnv (Witness (Clapp f x) ())

getTerm : (c : Exists (Closed σ) isValidClosure) → Term (getContext c) σ
getTerm (Witness (Closure t env) p) = t

getTerm (Witness (Clapp f x) ())

Finally, we can define a newlookup operation that guarantees that looking up a variable in a valid
environment will always return a closure:

lookup : Ref Γ σ → (env : Env Γ) → isValidEnv env →
Exists (Closed σ) isValidClosure

lookup Top (Closure t env · ) (p1,p2) = Witness (Closure t env) p1

lookup Top (Clapp · ) ((), )
lookup (Pop i) ( · env) ( ,p) = lookup i env p

If the argument reference isTop, we pattern match on the environment, which must contain a closure.
We use the proof that the environment contains exclusively closures to discharge theClapp branch. If
the argument reference isPop i, we recurse overi and the tail of the environment.

Once again, we define aTrace data type, describing the call-graph of the Krivine machine. The
Trace data type is indexed by the three arguments to the Krivine machine: a term, an environment, and
an evaluation context. The data type has a constructor for every transition; recursive calls to the abstract
machine correspond to recursive arguments to a constructor:

data Trace : Term Γ σ → Env Γ → EvalContext σ τ → Set where

Lookup : (i : Ref Γ σ) (p : isValidEnv env) →
let c = lookup i env p in

Trace (getTerm c) (getEnv c) ctx → Trace (Var i) env ctx

App : (f : Term Γ (σ ⇒ τ)) (x : Term Γ σ) →
Trace f env (ARG (Closure x env) ctx) →
Trace (App f x) env ctx

Beta : (ctx : EvalContext σ ρ) →
(arg : Term H τ) → (argEnv : Env H) →
(body : Term (Cons τ Γ) σ) →
Trace body (Closure arg argEnv · env) ctx →
Trace (Lam body) env (ARG (Closure arg argEnv) ctx)

Done : (body : Term (Cons τ Γ) σ) → Trace (Lam body) env MT

Using thisTrace, we can now define the final version of therefocus function, corresponding to the
Krivine abstract machine, by structural recursion on thisTrace. The resulting machine corresponds to
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the Krivine machine as is usually presented in the literature [14, 15, 21]. Biernacka and Danvy [7] also
consider the derivation of Krivine’s original machine [22]that contracts nestedβ -reductions in one step.

refocus : (ctx : EvalContext σ τ) (t : Term Γ σ) (env : Env Γ) →
Trace t env ctx → Value τ

refocus ctx ⌊Var i⌋ env (Lookup i q step) =
let c = lookup i env q in

refocus ctx (getTerm c) (getEnv c) step

refocus ctx ⌊App f x⌋ env (App f x step)
= refocus (ARG (Closure x env) ctx) f env step

refocus ⌊ARG (Closure arg env’) ctx⌋ ⌊Lam body⌋ env (Beta ctx arg env’ body step)
= refocus ctx body ((Closure arg env’) · env) step

refocus ⌊MT⌋ ⌊Lam body⌋ env (Done body) = Val (Closure (Lam body) env) unit

In the case for variables, we look up the closure that the variable refers to in the environment, and con-
tinue evaluation with that closure’s term and environment.In the case forApp f x, we add the argument
and current environment to the application context, and continue evaluating the termf. We distinguish
two further cases for lambda terms: if the evaluation context is not empty, we can perform a beta reduc-
tion step; otherwise evaluation is finished.

We still need to prove that theTrace data type is inhabited. During execution, the Krivine machine
only adds closures to the environment and evaluation context. During the termination proof, we will
need to keep track of the following invariant on evaluation contexts and environments:

invariant : EvalContext σ τ → Env Γ → Set

invariant ctx env = Pair (isValidEnv env) (isValidContext ctx)

The proof of termination once again calls thetermination proof from the previous section. An auxiliary
lemma shows that any witness of termination for the small-step abstract machine in Section 5 will also
suffice as a proof of termination of the Krivine machine.

termination : (t : Term Nil σ) → Trace t Nil MT

termination t = lemma MT t Nil (unit,unit) (Section5.termination (Closure t Nil))
where

lemma : (ctx : EvalContext σ τ) (t : Term Γ σ) (env : Env Γ) →
invariant ctx env → Section5.Trace (Section5.refocus ctx (Closure t env)) →
Trace t env ctx

The lemma is proven by straightforward induction on the evaluation context, the term, and theTrace data
type from the previous section. Once we pattern match on the term and the evaluation context, we know
which transition we wish to make, and hence which constructor of theTrace data type is required. Any
recursive occurrences of theTrace data type can be produced by recursive calls to thelemma. The only
other result necessary states that thelookup function and the_!_ operation we saw previously return
the same closed term from an environment.

Finally, we can define theevaluation function that callsrefocus with a suitable choice for its initial
arguments:

evaluate : Term Nil σ → Value σ
evaluate t = refocus MT t Nil (termination t)
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To conclude, we show that this final version of therefocus function behaves equivalently to the
refocus function from the previous section. To prove this, we formulate the correctness property below.

correctness : (ctx : EvalContext σ τ) (t : Term Γ σ) (env : Env Γ) →
(t1 : Trace t env ctx) →
(t2 : Section5.Trace (Section5.refocus ctx (Closure t env))) →
refocus ctx t env t1 ≡ Section5.iterate (Section5.refocus ctx (Closure t env)) t2

Once again, the proof proceeds by straightforward induction on the traces.
As a result of this correctness property, we can prove that our evaluation function behaves the same

as the function presented in the previous section:

corollary : (t : Term Nil σ) → evaluate t ≡ Section5.evaluate (Closure t Nil)
corollary t = let trace = termination t in

let trace’ = Section5.termination (Closure t Nil) in

correctness MT t Nil trace trace’

By chaining together our correctness results, we can show that our Krivine machine produces the
same value as our original evaluator based on repeated head reduction, thereby completing the formal
derivation of the Krivine machine from a small step evaluator.

7 Discussion

There has been previous work on formalizing the derivationsof abstract machines in Coq [6, 29]. In
contrast to the development here, these formalizations arenot executable but instead define the reduction
behaviour as inductive relations between terms and values.The executability of our abstract machines
comes at a price: we need to prove that the evaluators terminate, which requires a clever logical relation.
On the other hand, it is easier to reason about executable functions. In type theory, definitional equalities
are always trivially true—a fact you can only exploit if yourfunctions compute.

This paper uses the Bove-Capretta method to prove termination of every evaluator. Chapman and
Altenkirch use a similar logical relation to produce inhabitants of Bove-Capretta predicates when writing
a big-step normalization algorithm [2]. There are, of course, alternative methods to show that a non-
structurally recursive function does terminate. For example, it may be interesting to investigate how
to adapt the normalization proof to use an order on lambda terms proposed by Gandy [20] to define a
suitable accessibility relation.

Finally, you may wonder if the usage of logical relations to prove termination is ‘cheating.’ After
all, the computational content of normalization proofs using logical relations is itself a normalization
algorithm [4, 5, 8]—so is our small-step evaluator not just reading off the value from the trace that our
proof computes? Not at all! In fact, the behaviour of theiterate function from Section 4 isindependent
of the trace we provide—once theiterate function matches on the argument decomposition, the trace
passed as an argument to theiterate function is uniquely determined. The following statement is easy to
prove:

collapsible : (d : Decomposition c) (t1 t2 : Trace d) → t1 ≡ t2

In other words, the traces themselves carry no computational content. Suchcollapsibledata types may
be erased by a suitable clever compiler [11, 12].

This paper focuses on the derivation of the Krivine abstractmachine. There is no reason to believe
that the other derivations of abstract machines [1, 7] may not be formalized in a similar fashion.
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A An Agda Prelude

module Prelude where

id : forall {a : Set} → a → a

id x = x

data Empty : Set where

magic : forall {a : Set} → Empty → a

magic ()

record Unit : Set where

unit : Unit

unit = record { }

data Pair (a b : Set) : Set where

, : a → b → Pair a b

fst : forall {a b} → Pair a b → a

fst (x, ) = x

snd : forall {a b} → Pair a b → b

snd ( ,y) = y

data List (a : Set) : Set where

Nil : List a

Cons : a → List a → List a

data _≡ _ {a : Set} (x : a) : a → Set where

Refl : x ≡ x

infix 6 _≡ _

sym : {a : Set} {x y : a} → x ≡ y → y ≡ x

sym Refl = Refl

cong : {a b : Set} {x y : a} → (f : a → b) → x ≡ y → f x ≡ f y

cong f Refl = Refl

data Exists (a : Set) (b : a → Set) : Set where

Witness : (x : a) → b x → Exists a b

fsts : forall {a b} → Exists a b → a

fsts (Witness x ) = x

snds : forall {a b} → (x : Exists a b) → (b (fsts x))
snds (Witness y) = y
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