
Dependently Typed Web Client Applications

FRP in Agda in HTML5

Alan Jeffrey

Alcatel-Lucent Bell Labs

Abstract. In this paper, we describe a compiler back end and library for
web client application development in Agda, a dependently typed func-
tional programming language. The compiler back end targets ECMA-
Script (also known as JavaScript), and so is executable in a browser.
The library is an implementation of Functional Reactive Programming
(FRP) using a constructive variant of Linear-time Temporal Logic (LTL)
as its type system.

1 Introduction

Client-side applications are typically model-view-controller architectures, and
often include features such as imperative state, concurrency and continuation-
passing. These features can result in code which is difficult to reason about,
debug and maintain. In this paper, we propose adapting Functional Reactive
Programming (FRP) [13] to the setting of a pure, dependently typed, functional
programming language, Agda [1].

Figure 1 shows some simple applications running in a browser. What is inter-
esting about these applications is that they are written in Agda, and compiled to
ECMAScript [7]. We have developed a compiler back end, foreign function inter-
face, and library bindings for FRP, and for HTML5 [15] Document Object Model
(DOM ) node and event bindings. The compiler extensions have been released
as part of Agda 2.3.0, and the libraries are released under an MIT License [4].
Novel features of the compiler and libraries include:

– Interoperability with ECMAScript idioms. The compiler makes use of com-
mon ECMAScript idioms, to simplify the use of existing ECMAScript li-
braries in Agda. For example, the Visitor and Observer patterns [14] are
used to implement inductive datatypes and notification.

– Singleton analysis for type erasure. We perform a static analysis that con-
servatively approximates singleton types (which have only one inhabitant
at run time). Any term of singleton type is replaced by the singleton value
at compile time. In particular, we regard Set as having singleton value null,
which allows many type-level computations to be eliminated.

– View patterns in the FFI. We support a ECMAScript Foreign Function In-
terface (FFI ) which, as well as providing bindings for constants and func-
tions, also allows inductive datatypes in Agda to be bound to any ECMA-
Script type. A variant of view patterns [24] allows pattern-matching to be



Fig. 1. Example Agda programs running in the browser

compiled to any ECMAScript conditional, for example an Agda boolean
type can be compiled to ECMAScript native booleans, without any addi-
tional support from the Agda compiler.

– Linear-time Temporal Logic (LTL) types for FRP. The semantics of FRP
is defined in terms of signals, which are time-dependent values. In previous
work [16], we showed that signals can be typed using time-dependent types,
using the combinators of LTL [23], such that any FRP program is a proof of
an LTL tautology.

– Resource reclamation of FRP signals. The FRP implementation makes use of
techniques from self-adjusting computation [8], where signals form a dataflow
graph, making use of notifications whenever a signal value changes. We are
recording the creation time of each signal in its type, and so can maintain
time-sensitive invariants which allow resource reclamation of irrelevant sig-
nals, even when the garbage collector regards the signal as still live.

– Inference of DOM node locations. A difficult problem in GUI libraries for
functional languages is the binding of event listeners to GUI components.
In an OO language, binding makes use of object identity, which violates ref-
erential transparency since components with identical definitions may have
different event streams. In a functional language, this could be modeled by a
name creation mechanism [22] or nondeterminism [19], but such models are
not compatible with Agda’s semantics. We provide a novel form of location
inference, which supports the creation of DOM event streams from DOM
nodes without violating referential transparency.

Agda is used throughout this paper, but we expect the results would apply to
other dependently typed languages, such as Coq [3] or Epigram [5].

Thanks to Sebastian Bocq for detailed comments on this paper.

2 Compiling Agda to ECMAScript

We first consider the design of the ECMAScript back end for the Agda compiler,
which is included in Agda 2.3. The compiler translates a dependently typed λ-
calculus with inductive datatypes and records into an untyped λ-calculus with
records. The interesting features of the compiler are its treatment of singleton



data List (A : Set) : Set where
nil : List A
cons : A → List A → List A

append : ∀ {A} → List A → List A → List A
append nil bs = bs
append (cons a as) bs = cons a (append as bs)

Fig. 2. Example program in Agda

data ListA : Set 0 where {
nil : ListA,
cons : Πa . Πas . ListA
}
function append : ΠA . Πas . Πbs . ListA

= λA . λas . case as of {
nil 7→λbs . bs,
cons a as 7→ λbs . cons a(append A as bs)
}

Fig. 3. Example program in Agda IL

exports = {
nil 7→λ() . λ(v) . (v.nil()),
cons 7→λ(a, as) . λ(v) . (v. cons(a, as)),
append 7→λ(A) . λ(as) . (as({

nil 7→λ() . λ(bs) . bs,
cons 7→λ(a, as) . λ(bs) . (exports. cons(a, exports. append(A)(as)(bs)))
})
}

Fig. 4. Example program in ECMAScript IL

define(["exports",function(exports) {
exports.nil = function() { return function(v) { return v.nil(); }; };
exports.cons = function(a,as) { return function(v) { return v.cons(a,as); }; };
exports.append = function(A) { return function(as) { return as({

nil: function() { return function(bs) { return bs; }; },
cons: function(a,as) { return function(bs) {

return exports.cons(a,exports.append(A)(as)(bs));
}; }
}); }; };
});

Fig. 5. Example program in ECMAScript



types (including type erasure, since Set is treated as a singleton type) and the
translation of datatypes to a use of the visitor pattern.

In Figures 2–5, we show how a simple datatype and recursive function (ap-
pend over lists) is translated first into an Agda Intermediate Language (IL), then
an ECMAScript IL, and finally into ECMAScript:

– The translation from Agda (Figure 2) to Agda IL (Figure 3) is not novel, and
handles issues such as making implicit arguments explicit and η-normalizing
function applications. In this paper, we give a presentation using case state-
ments in the IL rather than pattern matching. We compile pattern matches
to case using decision trees (credited by Cardelli [11] to Kahn and MacQueen
in the HOPE compiler [10]).

– The translation from the Agda IL (Figure 3) to the ECMAScript IL (Fig-
ure 4) is the interesting one, and is discussed in more detail below. Note
that in this translation, case statements over inductive datatypes have been
replaced by uses of the visitor pattern, and that top-level declarations in an
Agda module have been replaced by fields in an ECMAScript record exports.

– The translation from the ECMAScript IL (Figure 4) to ECMAScript (Fig-
ure 5) is routine. We make use of the Asynchronous Module Definition
(AMD) [2] module system for ECMAScript, which supports a special ob-
ject exports. The translation of an Agda module is an ECMAScript module
which assigns to the appropriate exports field.

Figure 6 shows a simplified grammar for the Agda IL, which is a λ-calculus
with records, inductive datatypes, Π types, stratified Set types and postulates
(uninterpreted constants). The main differences between this presentation of the
IL and the actual implementation are modules, namespacing, type information,
and the use of case expressions rather than pattern matching functions.

Figure 7 shows a simplified grammar for the ECMAScript IL, which is an
untyped λ-calculus with records. The main differences between this presentation
of the IL and the actual implementation are namespacing, conditionals and infix
and prefix operators. Note that many features of ECMAScript are missing from
the ECMAScript IL, such as mutable state, prototypes and constructors. The
ECMAScript IL allows importing arbitrary AMD modules, so these features can
still be used, as long as they are in an imported module.

We define β-reduction as per usual in a λ-calculus with records. The only
point of interest in the definition is the use of undef in ECMAScript’s semantics.
For example, we define capture-avoiding substitution M [ ~N/~x] in the usual way

whenever | ~N | = |~x|, then generalize to arbitrary ~N and ~x by substituting undef
if necessary:

M [( ~N, ~L)/~x] = M [ ~N/~x] when | ~N | = |~x|
M [ ~N/(~x, ~y)] = M [ ~N/~x, undef/~y] when | ~N | = |~x|

from which we define β-reduction of functions:

(λ(~x) . M)( ~N)→M [ ~N/~x]



A,B,C ::= x ~A | λx . A | {~̀ 7→ ~B} | A.` | g ~A | k |
| Πx . A | Set A | c ~A | caseA of {~P 7→ ~B}

P,Q ::= c ~x

D,E ::= function g : A = B | data g ~x : B where {~c : ~C} |
record g ~x : B where {~̀ : ~C} | postulate g : A

Fig. 6. Agda IL

L,M,N ::= x | λ(~x) . M |M( ~N) | { ~̀ 7→ ~M } |M.` | k

Fig. 7. ECMAScript IL

Similarly, field access of an object returns undef for missing fields:

{ ~̀ 7→ ~M }.`→

{
Mi if ` = `i

undef otherwise

In Figures 8–9 we show how Agda IL is translated into ECMAScript IL. Most
of the translation is direct, but there are two points of interest: a static approx-
imation of singleton types, and the visitor pattern [14] for inductive datatypes.

For singleton types, we include a judgement “A has singleton B”, meaning
that any closed instance of type A must be equal to B. For example:

– > (a record type with no fields) has singleton { }.
– ⊥ (an inductive type with no constructors) has no closed instances, so we

can declare that ⊥ has singleton undef. Since ¬A is defined to be A→⊥, it
has singleton λx.undef, and so we can eliminate many instances of negations.

– Since we are using a type-erasing translation, Set A (the type of types at
universe level A) has singleton null. This eliminates many instances of run-
time type computation.

The visitor pattern uses double callbacks to emulate case statements (in [9], this
form of visitor is called an external visitor, in contrast to an internal visitor
which emulates a recursion scheme). For example, if as is a list, then:

as({ nil: f, cons: g })

will call back f() if as is an empty list, and g(b,bs) if as has head b and tail bs.
The translation of case statements into visitors is direct.

Recall that recursive declarations are translated to imperative updates to the
mutable exports variable. For mutually recursive declarations under a λ (such as
the traditional even and odd functions) this presents no problem, but for top-
level recursive declarations, we have to ensure that exports are defined before



Jx ~AK = x(JA1K) · · · (JAnK)
Jλx . AK = λx . JAK

J{~̀ 7→ ~A}K = { ~̀ 7→ J ~AK }
JA.`K = JAK.`

Jg ~AK =

{
C if g ~A : B and B has singleton C

exports.g J ~AK otherwise
JkK = k

JΠx . AK = null

JSet AK = null

Jc ~AK = c(J ~AK)

JcaseA of {~P 7→ ~B}K = A({ J~P 7→ ~BK })

Jc ~x 7→BK = c 7→ λ(~x) . JBK

data g ~x : Set A where { }
g ~A has singleton undef

data g ~x : Set A where {c : g ~x}
g ~A has singleton c

record g ~x : Set A where { }
g ~A has singleton { }

A has singleton B

Πx . A has singleton λx . B Set A has singleton null

Fig. 8. Translation of Agda expressions to ECMAScript

their use. Consider the Agda IL declaration:

functionx : N = y + 1 function y : N = 3

and then translated into ECMAScript IL it is:

{x 7→ exports.y + 1; y 7→ 3 }

Unfortunately, translated directly into ECMAScript, this would be:

define(["exports"],function(exports) {exports.x = exports.y + 1;exports.y = 3;});

which generates a load-time error, since exports.y is undefined at the point of its
use. To avoid this, we inline any occurrences of exports which occur outside of
an enclosing λ. In this example, inlining exports produces:

{x 7→ {x 7→ exports.y + 1; y 7→ 3 }.y + 1; y 7→ 3 }

which β-reduces to:
{x 7→ 3 + 1; y 7→ 3 }

and translates into ECMAScript as:

define(["exports"],function(exports) {exports.x = 3 + 1;exports.y = 3;});



Jfunction g : A = BK = g 7→

{
C if A has singleton C

JAK otherwise

Jdata g ~x : A where {~c : ~B}K = J~c : ~BK

Jrecord g(~x : ~A) : B where {~̀ : ~C}K = ε

Jpostulate g : AK = g 7→

{
B if A has singleton B

undef otherwise

Jc : Π~x . g ~AK = c 7→ λ(~x) . λ(v) . v.c(~x)

Fig. 9. Translation of Agda declarations to ECMAScript

As this example shows, we use a n̈ıave strategy of always inlining top-level occur-
rences of exports. Since Agda is total, this process must terminate (unless Agda’s
termination checker is disabled, in which case the compiler is not guaranteed to
terminate) but may result in an exponential blowup in program resource usage.
We leave a more sophisticated treatment of inlining for future work.

3 Foreign function interface

For Agda to be useful for writing web applications, it must interact with native
ECMAScript APIs, notably those defined by HTML5. The translation of Agda
into ECMAScript is designed to make this as simple as possible (for example,
translating functions to functions, and records to records) but there is still a need
for a Foreign Function Interface (FFI ) to provide bindings for native types. In
Agda, FFIs are defined via pragmas, for example to bind Agda identifier g to
ECMAScript term M :

COMPILED JS g M

In the case of functions, constructors or postulates, the semantics of FFI code
is direct: the ECMAScript is inlined (and β-reduced) whenever the identifier is
used. For example if we define:

data N : Set where
zero : N
suc : N → N

+ : N → N → N
zero + y = y
suc x + y = suc (x + y)

* : N → N → N
zero * y = zero
suc x * y = y + (x * y)

then the following pragma declarations bind zero, suc, + and * to their native
counterparts:

COMPILED JS zero 0
COMPILED JS suc function(x) { return x+1; }
COMPILED JS + function(x) { return function(y) { return x+y; }; }
COMPILED JS * function(x) { return function(y) { return x*y; }; }



By itself, however, this is not sufficient, as user code may include recursive func-
tions over naturals, such as the ever-popular factorial:

fact : N → N
fact zero = suc zero
fact (suc x) = suc x * fact x

To support this, we allow FFI bindings from datatypes to the acceptor function
for that datatype, similar to view patterns [24]. The acceptor is a function f(x, v)
which takes as parameters a value x, and a visitor v, and calls the appropriate
visitor method. For example if we declare:

COMPILED JS N function (x,v) {
if (x < 1) { return v.zero(); } else { return v.suc(x-1); }
}

then the generated ECMAScript for the factorial function is:

exports.fact = function (x) {
if (x < 1) { return 0+1; } else { return ((x-1)+1) * exports.fact(x-1); }
}

4 Functional Reactive Programming

The style of programming used in web applications such as those in Figure 1 is
Functional Reactive Programming (FRP) [13]. The semantics of FRP is defined
in terms of signals, which are thought of as time-dependent values. For example,
the clock application is:

main = text(map toUTCString(every(1 sec)))

where:

– every(1 sec) is a signal of Time, which updates every second,
– map f(σ) applies a function f : A→ B to a signal σ of A to get a signal of
B, here toUTCString : Time→ String, and

– text(σ) converts a signal σ of String to a signal of DOM nodes.

The types of these combinators are (ignoring some issues about the type for
DOM nodes, which we return to in Section 6):

every : Delay→ J�〈Time〉K
map : JA⇒BK→ J�A⇒�BK
text : J�〈String〉 ⇒�DOMK

which gives the type of main as J�DOMK, that is a signal of DOM nodes, suitable
for rendering in a browser.



These types are based on Linear-time Temporal Logic (LTL) [23]. In previ-
ous work [16] we showed that FRP programs in a dependently typed program-
ming language can be given types in a constructive variant of LTL, such that
any well-typed FRP program is a proof of an LTL tautology. The correspon-
dence between FRP programs and LTL proofs was discovered independently by
Jeltsch [18]. Since LTL propositions are parameterized over time, we consider
types parameterized over time, that is reactive types:

RSet = Time→ Set

where Time is a totally ordered set (implemented using ECMAScript’s time
model, which is an integer number of milliseconds since 1 Jan 1970). Some com-
binators on reactive types are:

〈·〉 : Set→RSet 〈A〉 = λt . A

(· ⇒ ·) : RSet→ RSet→ RSet A⇒B = λt . A(t)→B(t)

J·K : RSet→ Set JAK = ∀{t} . A(t)

� : RSet→ RSet �A = ?

These combinators are:

– 〈A〉 is a constant reactive type; viewed as a temporal proposition 〈A〉 is true
at time t when A is true.

– A⇒B is the pointwise function space between A and B; viewed as a temporal
proposition, A⇒ B is true at time t when A being true at time t implies
that B is true at time t.

– JAK embeds RSet back into Set; viewed as a proposition JAK is true whenever
A is a tautology, that is A is true at all times t.

– �A is the type of signals of A; viewed as a temporal proposition, �A is true
at time t whenever A is true at any time u ≥ t.

The FRP combinators can be viewed as a proof system for LTL, for example
one of the axioms of S4 modal logic is given by:

map : JA⇒BK→ J�A⇒�BK

Note that we do not give a definition for �A (the library defines it as a postulate).
It is isomorphic to LTL’s “global” modality:

�A ≈ λt . ∀u . True(t ≤ u)→Au

where:
True(·) : Bool→ Set

True(b) =

{
1 if b = true
0 otherwise

The implementation of �A in ECMAScript is not given functionally. Instead it is
given as a dataflow graph, where the nodes implement the observer pattern [14].
The implementation is based on self-adjusting computation [8, 20], and is similar
to FrTime [12], Flapjax [21] and Froc [6].

Consider the dataflow graph for the expression x ∗ (y + x):



x ∗

y +

This is implemented as an object graph, where every node implements the Ob-
server pattern, and memoizes its current value. When an update takes place (for
example, an external event arrives) the nodes send notifications to their obervers,
requesting that they update themselves, and recursively inform their observers if
necessary. Note that nodes only notify their observers when their values change,
so unchanged nodes are not involved in any updates. For example, if x’s value
is 3, and y’s value is updated to 6 then the following notifications are sent:

x ∗

y +

6
9

27

Unfortunately, a simple application of the observer pattern results in glitches.
These are transient erroneous values, due to nodes receiving multiple notifica-
tions. For example, if x’s value is updated to 4 then the following notifications
could be sent:

x ∗

y +

4
36

4
10

40

In this example, the ∗ node has been notified twice, and as result has sent two
notifications, the first of which does not match the FRP semantics. To avoid
such glitches, we adopt the same strategy as [12, 21], and rank nodes, such that



every node has smaller rank than all of its observers1. Notifications are now
asynchronous rather than synchronous, and are executed in rank order. For
example, the above glitchy behaviour is replaced by:

x ∗

y +

4

4
10

40

For efficiency, we use synchronous notification for nodes with fan-in one, and
reserve asynchronous notification for nodes with fan-in of two or more. The
implementation of flow graphs makes use of a task scheduler, which handles
asynchronous notification, and ensures that notifications are processed in rank
order. The scheduler also supports delayed notification (using the HTML5 time-
out mechanism) and rank updates (a node may switch its observed neighbours,
causing its rank to change, which must be propagated upwards).

5 Garbage collecting FRP

Nodes in the flow graph of an FRP program maintain a set of observer nodes
(which should be notified on state updates) and observed nodes (whose mem-
oized values can be queried when a notification is processed). This presents a
challenge to a garbage collector, since bidirectional links may keep nodes alive
unnecessarily. For example, consider the graph:

x ∗

y +

−

Here there is a node − with no observers, which should be reclaimed. Such
unobserved nodes can arise dynamically due to switches, which reconfigure the

1 Acar [8] uses post-order traversal order rather than height order, because his target
languages allow for exceptions and other error behaviours, and so (for example)
conditionals must be evaluated before branches in an if-expression. Agda is total,
and so we can use a simpler ordering strategy, at the possible cost of wasted effort.



node graph. To reclaim unobserved nodes, some FRP implementations [12] make
use of weak pointers for observers, which would allow garbage collection in this
case. Unfortunately, ECMAScript does not support weak pointers.

An alternative is to have the FRP library handle node reclamation. Nodes
have addObserver and removeObserver methods: when a node has its last observer
removed, it calls removeObserver on each of its observed neighbours to remove
itself. Essentially, this is a reference counting garbage collector (cyclic flow graphs
are handled by an explicit fixed point function, which does not increase the
reference count, so cycles can be collected). These functions are only visible in
ECMAScript: they have mutable semantics, so must be kept hidden from Agda.

Unfortunately, this is not always safe, since a node might be added back into
the graph after it has been reclaimed:

// node1 starts out with just observer node2
node1.removeObserver(node2);
// at this point node1 reclaims its resources
node1.addObserver(node3);

Without some additional guarantees, node1 would reclaim its resources, only
later to be added back into the flow graph in an unsafe state. To avoid this, we
maintain two invariants:

1. the state of a node is only ever queried by its observers, and
2. a node only ever has observers added during the time slice that it is created.

In the presence of these invariants, we have a safe variant of removeObserver:
when a node has its last observer removed and we have finished processing the
time slice that created the node, it calls removeObserver on each of its observed
neighbours to remove itself. In ECMAScript, there is no way to statically enforce
the invariants, but in Agda we can do this because the LTL type for a signal
�A(t) carries a time parameter t which records its start time. The API for
signals only allows signals to be built at their start time (for example map f
converts a signal of type �A(t) to a signal of type �B(t), that is the start time
is preserved). This technique for tracking creation times is similar to Jeltsch’s era
parameters [17]. Since Agda is a dependent language, we can embed start times
directly in types, rather than having to use phantom types for this purpose.

6 Bindings for DOM nodes and events

In Figure 1 we showed a calculator application, built in Agda. A prototypical
example of a GUI is a single button:



The source for this program is quite simple:

main = lab ++ but where

but = element "button"(text(const "OK"))

clk = listen click but

lab = text(hold "Press me: " (tag "Pressed: " clk))

This declares a button but, and then some text lab whose value depends on the
stream clk of click events coming from but. The boilerplate holdx (tag y σ) is a
behaviour which starts as value x, and switches to y after the first event from σ.

The types of the functions used here are (somewhat simplified):

∗ : RSet→ RSet

Mouse : RSet

EventType : RSet→ Set

click : EventType Mouse

listen : ∀{A}→ EventTypeA→ J�DOM⇒∗AK
const : ∀{A}→ JAK→ J�AK

tag : ∀{AB}→ JBK→ J∗A⇒∗BK
hold : ∀{A}→ J〈A〉 ⇒ ∗〈A〉 ⇒�〈A〉K

element : String→ J�DOM⇒�DOMK
(·++ ·) : J�DOM⇒�DOM⇒�DOMK

Here:

– ∗A is the reactive type of event streams, where any event at time t has type
A(t). It is implemented in a similar fashion to �A.

– Mouse is the reactive type of mouse events.
– EventType A is the type of codes for events of type A, for example click is a

code for events of type Mouse.
– listen c σ is an event stream which listens for events with code c coming

from DOM nodes σ. For example, listen click but is the stream of click events
coming from the button but.

– constx is a constant signal that always returns x.
– tag xσ is a stream of x events which fires whenever σ fires.
– holdxσ converts an event stream to a signal, by returning the most recent

value from σ (or x if there is none).
– element a σ constructs a DOM node with tag a and children σ.
– σ ++ τ concatenates the DOM nodes from σ with those from τ .

The implementation of these functions is fairly straightforward ECMAScript pro-
gramming using the HTML5 API, for example Mouse(t) is inhabited by mouse
events processed at time t, and listen clickσ registers a click event handler to each
DOM node generated by σ (and deregisters them when the event stream has no
observers). DOM nodes are sinks for notifications, for example in the program:



text (const "x=") ++ text (map show x)

if x’s value is updated to 4 then the following notifications are sent; note that
the text node does not update its parent:

const "x=" text

++

x map show text

4

"4"

The library behaves as expected if a user declares multiple buttons, for example:

main = lab ++ but1 ++ but2 where

but1 = element "button"(text(const "OK"))

but2 = element "button"(text(const "OK"))

clk = listen click but1

lab = text(hold "Press me: " (tag "Pressed: " clk))

only changes the text when the first button is pressed, not the second, since it
only listens to but1 and not but2. On the surface, this appears to violate Agda’s
semantics, which includes β-equivalence, and hence referential transparency. It
appears that but1 and but2 have the same definition, but yet the behaviour
depends on which button we listen to.

Krishnaswami and Benton [19] resolve this by giving event streams a nonde-
terministic semantics, which the implementation is given freedom to resolve in
any way it likes. In practice, the implementation uses node identity to resolve
nondeterminism. Since the semantics is nondeterministic, it is no longer defined
in a cartesian closed category of sets and functions, but instead in the monoidal
closed category of sets and relations. Krishnaswami and Benton provide a DSL
with a linear type system for writing such nondeterministic programs. In our GUI
library, we are using Agda’s native function space to express reactive programs,
so we cannot use a nondeterministic semantics.

In fact, the above example does not violate referential transparency, and
instead is using implicit arguments to name components. Above, we noted that
we had simplified the presentation of the types for DOM nodes. In fact, we do
not have DOM : RSet, instead we have:

DOM : DOW→ RSet

where DOW is a type of Document Object Worlds (or “upside-down DOMs”).
A value of type DOW records where in a DOM tree a node lives, for example in
the DOM flow graph:



++

text

. .
.

++

button button

"OK" "OK"

the route from the the first button node to the root node is left, then right,
which we write as left(right(`)) where ` is the location of the root node. DOWs
are postulated as:

DOW : Set

left, right : DOW→ DOW

child : String→ DOW→ DOW

Under the hood, a DOW is implemented as a container of DOM nodes, with
pointers to all of the DOM nodes at that location (typically there is just one,
but since Agda does not support linear types there is no way to enforce that
convention).

We can now reveal the “real” types for the DOM-manipulating functions:

text : ∀{`}→ J�〈String〉 ⇒�(DOM `)K
element : ∀a {`}→ J�(DOM(child a `))⇒�(DOM `)K
(·++ ·) : ∀{`}→ J�(DOM(left `))⇒�(DOM(right `))⇒�(DOM `)K

listen : ∀{A `}→ EventTypeA→ J�DOM `⇒∗AK

For example, we can make the inferred types explicit in our problematic example:

main : ∀{`}→ J�(DOM `)K
main{`}{t} = lab ++ but1 ++ but2 where

but1 : �(DOM(left(right(`)))) t

but1 = element "button"(text(const "OK"))

but2 : �(DOM(right(right(`)))) t

but2 = element "button"(text(const "OK"))

clk : ∗Mouse t

clk = listen{Mouse}{left(right(`))}click but1

lab : �(DOM(left(`))) t

lab = text(hold "Press me: " (tag "Pressed: " clk))

With the optional arguments in place, we can see how referential transparency is
being maintained: the optional argument to listen is left(right(`)), which is why
the value of lab depends on but1 being pressed but not but2. Agda’s ability to infer
expressions as well as types is being used to provide a referentially transparent
semantics to a program which looks like it depends on object identity.



References

1. The Agda wiki. http://wiki.portal.chalmers.se/agda/.
2. Asynchronous module definition API. https://github.com/amdjs/.
3. The Coq proof assistant. http://coq.inria.fr/.
4. ECMAScript back end for functional reactive programming in Agda.

https://github.com/agda/agda-frp-js.
5. The Epigram 2 programming language. http://www.e-pig.org/darcs/Pig09/web/.
6. Froc: Functional reactive programming in O’Caml.

https://jaked.github.com/froc/.
7. ECMAScript language specification. ECMA Standard 262, 5.1 Edition, 2011.
8. U. A. Acar. Self-Adjusting Computation. PhD thesis, Carnegie Mellon Univ., 2005.
9. P. Buchlovsky and H. Thielecke. A type-theoretic reconstruction of the visitor

pattern. In Proc. Mathematical Foundations of Programming Semantics, pages
309–329, 2006.

10. Rod M. Burstall, David B. MacQueen, and Donald Sannella. HOPE: An experi-
mental applicative language. In Proc. LISP Conf., pages 136–143, 1980.

11. Luca Cardelli. Compiling a functional language. In Proc. ACM Symp. LISP and
Functional Programming, pages 208–217, 1984.

12. Gregory H. Cooper and Shriram Krishnamurthi. Embedding dynamic dataflow in
a call-by-value language. In Proc. European Symp. Programming, pages 294–308,
2006.

13. C. Elliott and P. Hudak. Functional reactive animation. In Proc. Int. Conf.
Functional Programming, pages 263–273, 1997.

14. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

15. Ian Hickson et al. HTML5: A vocabulary and associated APIs for HTML and
XHTML. W3C Working Draft, 2011. http://www.w3.org/TR/html5/.

16. A. S. A. Jeffrey. LTL types FRP: Linear-time temporal logic propositions as types,
proofs as functional reactive programs. In Proc. ACM Workshop Programming
Languages meets Program Verification, 2012.

17. W. Jeltsch. Signals, not generators! In Proc. Symp. Trends in Functional Pro-
gramming, pages 283–297, 2009.

18. W. Jeltsch. The Curry-Howard correspondence between temporal logic and func-
tional reactive programming. http://www.cs.ut.ee/˜varmo/tday-nelijarve/jeltsch-
slides.pdf, 2011.

19. N. Krishnaswami and N. Benton. A semantic model for graphical user interfaces.
In Proc. ACM Int. Conf. Functional Programming, pages 45–57, 2011.

20. Ruy Ley-Wild. Programmable Self-Adjusting Computation. PhD thesis, Carnegie
Mellon Univ., 2010.

21. Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Green-
berg, Aleks Bromfield, and Shriram Krishnamurthi. Flapjax: a programming lan-
guage for Ajax applications. In Proc. ACM Conf. Object Oriented Programming
Systems Languages and Applications, pages 1–20, 2009.

22. A. M. Pitts and I. Stark. Observable properties of higher order functions that
dynamically create local names, or: What’s new? In Proc. Math. Foundations of
Computer Science, pages 122–141, 1993.

23. A. Pnueli. The temporal logic of programs. In Proc. Symp. Foundations of Com-
puter Science, pages 46–57, 1977.

24. P. Wadler. Views: a way for pattern matching to cohabit with data abstraction.
In Proc. ACM Symp. Principles of Programming Languages, pages 307–313, 1987.


