
Dependent Types for Safe and Secure Web Programming

Simon Fowler Edwin Brady
School of Computer Science, University of St Andrews, St Andrews, Scotland

Email: {sf37, ecb10}@st-andrews.ac.uk

Abstract
Dependently-typed languages allow precise types to be used dur-
ing development, facilitating reasoning about programs. However,
stronger types bring a disadvantage that it becomes increasingly
difficult to write programs that are accepted by a type checker and
additional proofs may have to be specified by a programmer.

Embedded domain-specific languages (EDSLs) can help ad-
dress this problem by introducing a layer of abstraction over more
precise underlying types, allowing domain-specific code to be writ-
ten in a high-level language which uses dependent types to enforce
invariants without imposing additional proof obligations on an ap-
plication programmer.

In this paper, we apply this technique to web programming. Us-
ing the dependently typed programming language IDRIS, we in-
troduce an EDSL to facilitate the creation and handling of stati-
cally checked web forms, reducing the scope for programmer error
and attacks such as SQL injection. We also show how to enforce
resource usage protocols associated with common web operations
such as CGI, database access and session handling.

1. Introduction
Web applications, whilst ubiquitous, are also prone to incorrect
construction and security exploits such as SQL injection [12] or
cross-site scripting [11]. Security breaches using such exploits are
far-reaching, and high profile cases involve large corporations such
as Sony, who suffered a well-publicised and extremely costly SQL
Injection breach in 2011 [7], and Yahoo!, who suffered a breach in
2012 [8].

Many web applications are written in dynamically-checked
scripting languages such as PHP, Ruby or Python, which facilitate
rapid development [20]. However, such languages do not provide
the same static guarantees about runtime behaviour afforded by
programs with more expressive, static type systems, instead rely-
ing on extensive unit testing to ensure correctness and security.

Let us consider a simple database access routine, written in PHP,
where we wish to obtain the name and address of every employee
working in a given department, $dept. We firstly construct an
object representing a database connection, where the arguments are
the database host, user, password and name respectively:

[Copyright notice will appear here once ’preprint’ option is removed.]

$conn = new mysqli("localhost", "username",
"password", "db");

We should then check to see if the connection was successful, and
exit if not:

if (mysqli_connect_errno()) { exit(); }

We then create a prepared statement detailing our query, and bind
the ‘dept’ value:

$stmt = $conn->prepare("SELECT ‘name‘, ‘address‘
FROM ‘staff‘ WHERE ‘dept‘ = ?);

$stmt->bind_param(’s’, $dept);

After the parameters have been bound, we execute the statement,
assign variables into which results will be stored, and fetch each
row in turn. Failure to execute a statement before attempting to
fetch rows would cause an error, as would attempting to execute a
statement without binding variables to it.

$stmt->execute();
$stmt->bind_result($name, $address);
while ($stmt->fetch()) {

printf("Name: %s, Age: %s", $name, $age);
}

Finally, once the statement and connection are no longer needed,
they should be closed in order to discard the associated resources:

$stmt->close();
$conn->close();

Even in this small example, there exists a precise resource usage
protocol which must be followed for successful and robust oper-
ation. Firstly, a connection to the database must be opened. The
object-oriented style used in the example encapsulates this to an
extent, as the object must be created in order for operations to be
performed, however it is less obvious in a procedural version of the
code. Secondly, a prepared statement is created, using the raw SQL
and placeholders to which variables are later bound. The statement
is then executed, and each row is retrieved from the database. Fi-
nally, the resources are freed.

Problems may arise if the protocol is not followed correctly. A
developer may, for example, accidentally close a statement whilst
still retrieving rows, which would cause a runtime error. Similarly,
a programmer may omit closing the statement or connection, which
can lead to problems such as resource leaks in longer-running
server applications. However, in conventional programming lan-
guages, there is no way to check automatically, at compile-time,
that a protocol is followed.

In contrast, the use of dependent types makes it possible to
specify a program’s behaviour precisely, and to check that a spec-
ification is followed. Unfortunately, automatic verification by a
compiler can be difficult or often impossible, requiring additional
proofs to be given by the programmer.

1 2013/11/18

This complexity can be addressed through the use of embedded
domain-specific languages (EDSLs) to abstract away the complex-
ity of the underlying type system. Embedding a domain-specific
language in a dependently typed host language allows domain ex-
perts to write domain-specific code, with the EDSL itself used to
provide the proof that the code is correct.

IDRIS [2] is a language with full dependent types, and exten-
sive support for EDSLs through overloading and syntax macros.
Through the use of IDRIS, and a framework for describing resource
protocols using algebraic effects [3], we present a dependently-
typed web framework, which allows the construction of programs
with additional guarantees about correctness and security, whilst
minimising the increase in development complexity.

1.1 Contributions
The primary contribution of this paper is the application of depen-
dent types to provide strong static guarantees about the correctness
and security of web applications, whilst minimising additional de-
velopment complexity. In particular, we present:

• Representations of CGI, Databases and sessions as resource-
dependent algebraic effects, allowing programs to be accepted
only when they follow clearly defined resource usage protocols.
(Section 3)

• Type-safe form handling, preserving type information and man-
aging user input, therefore increasing applications’ resilience
to attacks such as SQL injection and cross-site scripting. (Sec-
tion 4)

• An extended example: a message board application, demon-
strating the usage of the framework in practice. (Section 2)

We achieve these without extending the host language. Every
resource protocol we implement is pure IDRIS, using a library
for resource-dependent algebraic effects [3] and IDRIS’ features
for supporting domain-specific language implementation such as
syntax macros and overloading. In particular, this means the same
techniques can be applied to other resources, and most importantly,
combinations of resources and DSLs implemented in this way are
composable.

The code used to implement the framework and all associated
examples used in this paper is available online at http://www.
github.com/idris-hackers/IdrisWeb.

2. An overview of the Effects framework
Effects [3] is an IDRIS library which handles side-effects such as
state, exceptions, and I/O as algebraic effects [16]. In particular,
it supports parameterising effects by an input and output state,
which permits effectful programs to track the progress of a resource
usage protocol. Effectful programs are written in a monadic style,
with do-notation, with their type stating which specific effects are
available. Effectful programs are described using the following data
type, in the simplest case:

Eff : (m : Type -> Type) ->
(es : List EFFECT) -> (a : Type) -> Type

Eff is parameterised over a computation context, m, which de-
scribes the context in which the effectful program will be run, a
list of side effects es that the program is permitted to use, and the
programs return type a. The name m for the computation context is
suggestive of a monad, but there is no requirement for it to be so.

For example, the following type carries an integer state, throws
an exception of type String if the state reaches 100, and runs in a
Maybe context:

addState : Eff Maybe [STATE Int, EXCEPTION String] ()
addState = do val <- get

when (val == 100) (raise "State too big")
put (val + 1)

2.1 Implementing Effects
Effects such as state and exception are described as algebraic data
types, and run by giving handlers for specific computation contexts.
Effects have a corresponding resource (in the case of state, the re-
source is simply the current state). Executing an effectful operation
may change the resource and return a value:

Effect : Type
Effect = (in_res : Type) -> (out_res : Type) ->

(val : Type) -> Type

For example, the state effect is described as follows:
data State : Effect where

Get : State a a a
Put : b -> State a b ()

That is, Get returns a value of type a without updating the resource
type. Put returns nothing, but has the effect of updating the re-
source. To make an effect usable, we implement a handler for a
computation context by making an instance of the following class:

class Handler (e : Effect) (m : Type -> Type) where
handle : res -> (eff : e res res’ t) ->

(k: res’ -> t -> m a) -> m a

The handle function takes the input resource, an effect which may
update that resource and execute a side-effect, and a continuation k
which takes the updated resource and the return value of the effect.
We use a continuation here primarily because there is no restriction
on the number of times a handler may invoke the continuation
(raising an exception, for example, will not invoke it). Reading and
updating states is handled for all computation contexts m:

instance Handler State m where
handle st Get k = k st st
handle st (Put n) k = k n ()

Finally, we promote State into a concrete effect STATE, and the
Get and Put operations into functions in Eff, as follows:

STATE : Type -> EFFECT
STATE t = MkEff t State

get : Eff m [STATE x] x
get = Get

put : x -> Eff m [STATE x] ()
put val = Put val

A concrete effect is simply an algebraic effect type paired with
its current resource type. This, and other technical details, are
explained in full elsewhere [3]. For the purposes of this paper, it
suffices to know how to describe and handle new algebraic effects.

2.2 Resource Protocols as Effects
More generally, a program might modify the set of effects available.
This might be desirable for several reasons, such as adding a new
effect, or to update an index of a dependently typed state. In this
case, we describe programs using the EffM data type:

EffM : (m : Type -> Type) ->
(es : List EFFECT) -> (es’ : List EFFECT) ->
(a : Type) -> Type

EffM is parameterised over the context and type as before, but
separates input effects (es) from output effects (es’). In fact, Eff

2 2013/11/18

http://www.github.com/idris-hackers/IdrisWeb
http://www.github.com/idris-hackers/IdrisWeb

{- { Input resource type } { Output resource type } { Value } -}

data FileIO : Effect where
Open : String -> (m : Mode) -> FileIO () (Either () (OpenFile m)) ()
Close : FileIO (OpenFile m) () ()

ReadLine : FileIO (OpenFile Read) (OpenFile Read) String
WriteLine : String -> FileIO (OpenFile Write) (OpenFile Write) ()
EOF : FileIO (OpenFile Read) (OpenFile Read) Bool

Figure 1. File Protocol Effect

is defined in terms of EffM, with equal input/output effects. We can
use this to describe how effects follow resource protocols. A simple
example is a file access protocol, where a file must be opened
before it is read or written, and a file must be closed on exit.

Figure 1 shows how the protocol is encoded as an effect. Note
that the types of the input and output resources describes how
resource state changes in each operation: opening a file may fail,
so changes an empty resource to a resource containing either a unit
or an open file; reading a line is only possible if the resoource is
a file open for reading, etc. The handler for this effect for an IO
computation context will execute the required primitive I/O actions.

The following program type checks, and therefore implicitly
carries a proof that the file resource protocol is followed correctly:

testFile : Eff IO [FILE_IO (), STDIO] ()
testFile = do open "testFile" Read

if_valid then do str <- readLine
close
putStrLn str

else putStrLn "Error"

The type of testFile states that File I/O and console I/O are
available effects, and in particular that the resource associated with
the File I/O will be in the same state on entry and exit. We use
if valid to handle possible failure—this is a function provided
by the Effects library which checks whether a resource of type
Either a b indicates failure (Left a) or success (Right b) and
branches and updates the resource accordingly. Therefore, attempt-
ing to write to the file, failing to check for success, or failing to
open or close the file, would cause a compile-time error.

We will use this technique extensively throughout this paper:
describe a resource usage protocol in terms of state transitions;
implement an effect which captures that protocol; implement pro-
grams which, by using this effect, implicitly carry a proof that the
resource protocol has been correctly followed.

3. Modelling resource usage protocols
In this section, we show how three effects (CGI, database access
and a simple session handler) may be implemented, and describe
the benefits of developing programs using this technique over sim-
ply handling them in IO or as monad transformers.

3.1 CGI
CGI is used to invoke an application on a web server, making use of
environment variables to convey information gained from an HTTP
request and using standard output to communicate with the remote
client. Importantly, HTTP headers must be correctly written to the
browser prior to any other output; failure to do so will result in an
internal server error being shown.

By modelling CGI as a resource-dependent algebraic effect, we
may enforce a resource usage protocol which prevents arbitrary
IO from being performed and therefore ensures that the headers
are written correctly. We define an effect, Cgi, and an associated
resource, InitialisedCGI, parameterised over the current state,

Uninitialisedstart

Initialised

TaskRunning

TaskCompleted

HeadersWritten

ContentWritten

initialise

startTask

finishTask

writeHeaders

writeContent

Figure 2. CGI States

CGIStep, and containing a CGIInfo record which contains infor-
mation from the request. We represent an uninitialised CGI process
as the unit type, ().

data CGIStep = Initialised | TaskRunning
| TaskCompleted | HeadersWritten
| ContentWritten

data InitialisedCGI : CGIStep -> Type where
ICgi : CGIInfo -> InitialisedCGI s

Figure 2 shows the states through which the CGI program pro-
gresses, and Figure 3 shows how this is represented as a resource-
dependent algebraic effect. Each operation performed in an effect-
ful program requires the resource to be of a certain type, and the
completion of the operation may alter the type or value of the re-
source. The Cgi effect declaration shows these resource updates in
the types of each operation, effectively specifying a state machine.

Upon creation, the CGI application is uninitialised, meaning
that environment variables have not been queried to populate the
CGI state. The only operation that can be performed in this state is
initialisation: by calling initialise, a CGIInfo record is popu-
lated, and the state transitions to Initialised. The Init opera-
tion is defined as part of the Cgi effect, and involves transitioning
from the uninitialised state to the initialised state.

Additional operations, including those to query POST and GET
variables, are omitted in the interest of brevity.

3 2013/11/18

{- { Input resource type } { Output resource type } { Value } -}

data Cgi : Effect where
Init : Cgi () (InitialisedCGI Initialised) ()
StartRun : Cgi (InitialisedCGI Initialised) (InitialisedCGI TaskRunning) ()
FinishRun : Cgi (InitialisedCGI TaskRunning) (InitialisedCGI TaskCompleted) ()
WriteHeaders : Cgi (InitialisedCGI TaskCompleted) (InitialisedCGI HeadersWritten) ()
WriteContent : Cgi (InitialisedCGI HeadersWritten) (InitialisedCGI ContentWritten) ()
OutputData : String ->

Cgi (InitialisedCGI TaskRunning) (InitialisedCGI TaskRunning) ()
RunAction : Env IO (CGI (InitialisedCGI TaskRunning) :: effs) -> CGIProg effs a ->

Cgi (InitialisedCGI TaskRunning) (InitialisedCGI TaskRunning) a

Figure 3. CGI Effect

User code executes in the TaskRunning state. Several opera-
tions, such as querying the POST and GET variables, are available
in this state, alongside functions to output data to the web page and
append data to the response headers. It is important to note that
at this stage nothing is written to the page, with the output and
addHeader functions instead modifying the CGIInfo record. This
data may then be printed at the end of the program’s execution, in
accordance with the resource usage protocol.

After the user code has finished execution, control returns to the
library code. At this point, the state transitions to TaskCompleted,
and the headers are written. Finally, the headers and content are
written which completes the process. Since we parameterise the
resource over a state, we may ensure that certain operations only
happen in a particular prescribed order.

In IDRIS, types are first-class, meaning that they may be treated
like other terms in computations. We may therefore define the fol-
lowing type synonym, used within the CGI section of the frame-
work to denote an effectful CGI program:

CGIProg : List EFFECT -> Type -> Type
CGIProg effs a =

Eff IO (CGI (InitialisedCGI TaskRunning) :: effs) a

This is then passed, along with initial values for other effects that
the user may wish to use, to the runAction function, which invokes
the RunAction operation and executes the user-specified action. A
simple “Hello, world!” program would be defined as follows:

module Main
import Cgi

sayHello : CGIProg [] ()
sayHello = output "Hello, world!"

main : IO ()
main = runCGI [initCGIState] sayHello

3.2 Database access with SQLite
SQLite1 is a lightweight SQL database engine often used as simple,
structured storage for larger applications. We make use of SQLite
to demonstrate a resource usage protocol for database access due to
its simplicity, although we envisage that these concepts would be
applicable to more complex database management systems.

The creation, preparation and execution of SQL queries has
a specific usage protocol, with several possible points of failure.
Failure is handled in traditional web applications by the generation
of exceptions, which may be handled in the program. Handling
such exceptions is often optional, however, and in some cases
unhandled errors may cause a deployed web application to display
an error to the user. Such errors can be used to determine the

1 http://www.sqlite.org

Uninitialisedstart

SQLiteConnected

SQLitePSSuccess Binding

SQLitePSSuccess Bound

SQLiteExecuting
ValidRow

SQLiteExecuting
InvalidRow

openDB
closeDB,
connFail

prepareStatement

finishBind

executeStatement,
nextRow

finaliseValid finaliseInvalid

nextRow

resetnextRow

Figure 5. Database Resource Usage Protocol

structure of an insecure SQL query, and are often used by attackers
to determine attack vectors for SQL injection attacks.

Figure 5 shows a resource usage protocol for database access,
which we have implemented for the SQLite library. Although some
additional states are used to capture failing computations, these are
omitted from the diagram. The effect implementation is given in
Figure 4. There are three main phases involved in the usage of
the SQLite protocol: connection to the database, preparation of a
query, and execution of the query. We define several resources to
encapsulate the state at any given point during the protocol.

We first define the SQLiteConnected resource, which signifies
that a successful connection has been made to the database. This
resource contains a pointer to the database structure which is used
in further computations.

data SQLiteConnected : Type where
SQLConnection : ConnectionPtr -> SQLiteConnected

We secondly define resource types to capture success and fail-
ure states of binding a prepared statement: SQLitePSSuccess,
SQLitePSFail, and SQLiteFinishBindFail. The types are de-
clared as follows (we leave the definitions abstract):

4 2013/11/18

{- { Input resource type } { Output resource type } { Value } -}
data Sqlite : Effect where

OpenDB : DBName ->
Sqlite () (Either () SQLiteConnected) (Either SQLiteCode ())

CloseDB : Sqlite (SQLiteConnected) () ()
PrepareStatement : QueryString ->

Sqlite (SQLiteConnected) (Either (SQLitePSFail)
(SQLitePSSuccess Binding)) (Either SQLiteCode ())

BindInt : ArgPos -> Int ->
Sqlite (SQLitePSSuccess Binding) (SQLitePSSuccess Binding) ()

FinishBind : Sqlite (SQLitePSSuccess Binding) (Either SQLiteFinishBindFail
(SQLitePSSuccess Bound)) (Maybe BindError)

ExecuteStatement : Sqlite (SQLitePSSuccess Bound) (Either (SQLiteExecuting InvalidRow)
(SQLiteExecuting ValidRow) StepResult

RowStep : Sqlite (SQLiteExecuting ValidRow) (Either (SQLiteExecuting InvalidRow)
(SQLiteExecuting ValidRow)) StepResult

GetColumnText : Column ->
Sqlite (SQLiteExecuting ValidRow) (SQLiteExecuting ValidRow) String

CleanupPSFail : Sqlite (SQLitePSFail) () ()
CleanupBindFail : Sqlite (SQLiteFinishBindFail) () ()

Figure 4. Database Effect

data BindStep = Binding | Bound
data SQLitePSSuccess : BindStep -> Type where
data SQLitePSFail : Type where
data SQLiteFinishBindFail : Type where

The SQLitePSSuccess resource indicates that a prepared state-
ment has been correctly created by the underlying library, given a
query string. The resource is parameterised by the BindStep type,
which indicates whether the binding process has been completed.
Should the creation of a prepared statement fail, the resource will
be set to SQLitePSFail.

SQLite operates by loading database rows into a buffer, the con-
tents of which may then be accessed through several column access
functions. After all rows returned by a query have been processed,
no further calls to fetch more rows may be made. Additionally, no
calls to column access functions may be made whilst there is no
row being currently processed.

Through the use of dependent types, we may encode these in-
variants statically, using the SQLiteExecuting resource. This is
parameterised by the ExecutionResult data type, which indi-
cates whether there is currently a valid row in the buffer.

data ExecutionResult = ValidRow
| InvalidRow

data SQLiteExecuting : ExecutionResult -> Type where
SQLiteE : ConnectionPtr ->

StmtPtr -> SQLiteExecuting a

Column access functions may only be called when there is a valid
row in the buffer, as signified by the input resources:

GetColumnText : Column ->
Sqlite (SQLiteExecuting ValidRow)

(SQLiteExecuting ValidRow)
String

In order to provide the necessary static guarantee that there is a
valid row to process in the buffer, we make use of the if valid
construct. The nextRow function will either fetch a row into the
buffer, or indicate that a row could not be loaded, as shown by its
type:

nextRow : EffM IO [SQLITE (SQLiteExecuting ValidRow)]
[SQLITE (Either (SQLiteExecuting InvalidRow)

(SQLiteExecuting ValidRow))] StepResult

The if valid construct provides failure checking functionality, al-
lowing different operations to be performed depending on whether
or not a row was successfully fetched for processing.

By incorporating pointers to open connections and prepared
statements into the resource associated with the effect, we introduce
a further layer of abstraction, which hides implementation details
from the developer and encourages less error-prone code.

3.2.1 Example
To demonstrate the library, we return to the previous example of
selecting the names and addresses of all staff working in a given
department. We define a function textSel of type:
String -> Eff IO [SQLITE ()]

(Either QueryError (List (String, String)))

The program will be run in IO, and starts and finishes with no
active resources. It returns either a list of (String, String)
pairs, representing names and addresses in the database, or an error.

The program initially attempts to open a connection to the
people.db database. At this point, since the OpenDB operation has
been invoked, the program transitions to the ConnectionOpened
state. The openDB function returns either an error code, if the
connection fails, or a unit type should the connection succeed, as
shown in Figure 5.

A call to prepareStatement attempts to create a prepared
statement, and a subsequent call to beginExecution allows
data to be retrieved from the database. CollectResults oper-
ates on the row currently held in the buffer. Firstly, the function
checks that there is a valid row in the buffer, and if so uses the
getColumnText and getColumnInt functions to retrieve the data
from the database. This function is then called recursively until
there are no more rows to process.
collectResults :

EffM IO [SQLITE (Either (SQLiteExecuting InvalidRow)
(SQLiteExecuting ValidRow))]

[SQLITE (SQLiteExecuting InvalidRow)]
(List (String, Int))

5 2013/11/18

testSelect : String -> Eff IO [SQLITE ()]
(Either QueryError (List (String, String)))

testSelect dept = do
db_res <- openDB "people.db"
if_valid then do

let sql = "SELECT name, address FROM ‘staff‘
WHERE dept = ?;"

sql_prep_res <- prepareStatement sql
if_valid then do

bindText 1 dept
bind_res <- finishBind
if_valid then do

executeStatement
results <- collectResults
finaliseInvalid
closeDB
Effects.pure $ Right results

else do
cleanupBindFail
Effects.pure $ Left (getBindError bind_res)

else do
cleanupPSFail
Left $ getQueryError sql_prep_res

else do
Effects.pure $ Left (getQueryError db_res)

Figure 6. Example SQL program

collectResults =
if_valid then do name <- getColumnText 1

age <- getColumnInt 2
step_res <- nextRow
xs <- collectResults
return $ (name, age) :: xs

else return []

Using this, we can build a function to execute a full query:
executeSelect :

String -> String -> List (Int, DBVal) ->
(Eff IO [SQLITE (SQLiteExecuting ValidRow)]

(List DBVal)) ->
Eff IO [SQLITE ()] (Either QueryError ResultSet)

This returns either an error, or a set of results, defined as follows:
ResultSet : Type
ResultSet = List (List DBVal)

data DBVal = DBInt Int | DBText String
| DBFloat Float | DBNull

3.3 A Simple Session Handler
Larger web applications require persistent state across separate
requests. This can be achieved using a session, in which a cookie
is set on the remote host containing a unique session ID, which is
used to retrieve data. In this section, we describe a simple session
handler, and the resource protocol involved.

The Effects library allows for composition of individual, fine-
grained effects. By combining the CGI and SQLite components,
we can construct a simple session handler to provide a notion
of state across separate web requests. We implement this with a
SQLite database containing tables for storing session keys and
expiry dates, along with the data associated with the session.

Figure 8 shows the resource usage protocol associated with the
session handler, and Figure 7 the corresponding algebraic effect. In
this application, there are two states: In SessionClosed, the user
may load or create a session. In SessionOpen, the user may update
the representation of the session in memory, serialise the session
and write it to the database, or delete the session and invalidate

SessionClosedstart

SessionOpen

loadSession,
createSession

writeToDB,
discardSessionChanges,
deleteSession

updateSession

Figure 8. Session Handler Resource Usage Protocol

the user’s session key. These two states ensure that changes are
explicitly either written or discarded, eliminating the possibility
of a developer updating the session but neglecting to commit it to
persistent storage. This, of course, is under the assumption that the
process exits cleanly: we attempt to facilitate this by writing total
functions where possible.

Much like the SQLite effect, we encapsulate failure by reflect-
ing it in the resource associated with the effect.

data SessionStep = SessionClosed | SessionOpen
data SessionRes : SessionStep -> Type where

InvalidSession : SessionRes s
ValidSession : SessionID ->

SessionData ->
SessionRes s

4. Type-aware form handling
Programming web applications often involves processing user data,
which may then be used in further effectful computations. Data
submitted using a form is transmitted as a string as part of an
HTTP request, which traditionally involves losing associated type
information.

This can in turn lead to risks; developers may assume that data
is of a certain type, and therefore discount the possibility that it
may have been modified by an attacker. One example would be
the traversal of paginated data, in which a form is used to make a
request to retrieve the next page of data. This may involve sending
an integer detailing the current page, which could be used in a query
such as:

’SELECT ‘name‘, ‘address‘ FROM ‘staff‘ LIMIT ’ +
page + ’, 5’;

The page variable is assumed to be an integer, but may instead be
modified by an attacker to include a malicious string which would
alter the semantics of the query, allowing an attacker to execute a
blind SQL injection attack.

In this section, we present a DSL for the creation of web
forms which preserve type information, implemented as a resource-
dependent algebraic effect. Once the form has been submitted,
retrieved information is passed directly to a developer-specified
function for handling, without the need to manually check and
deserialise data.

We begin with a simple example of a form which requests a
user’s name, and echoes it back. Firstly, we define a form handler
which echoes back a string provided by the form handler. It has one
argument of type Maybe String, which accounts for the possibil-
ity that the user may have provided invalid data:

echo : Maybe String ->
FormHandler [CGI (InitialisedCGI TaskRunning)]

echo (Just name) = output ("Hello, " ++ name ++ "!")
echo _ = output "Error!"

We then specify this in a list of handlers, detailing the arguments,
available effects, handler function and unique identifier:

6 2013/11/18

{- { Input resource type } { Output resource type } { Value } -}

data Session : Effect where
LoadSession : SessionID ->

Session (SessionRes SessionClosed) (SessionRes SessionOpen) (Maybe SessionData)
UpdateSession : SessionData ->

Session (SessionRes SessionOpen) (SessionRes SessionOpen) ()
CreateSession : SessionData ->

Session (SessionRes SessionClosed) (SessionRes SessionOpen) (Maybe SessionID)
DeleteSession : Session (SessionRes SessionOpen) (SessionRes SessionClosed) Bool
WriteToDB : Session (SessionRes SessionOpen) (SessionRes SessionClosed) Bool
DiscardSessionChanges : Session (SessionRes SessionOpen) (SessionRes SessionClosed) ()
GetSessionID : Session (SessionRes SessionOpen) (SessionRes SessionOpen) (Maybe SessionID)
GetSessionData : Session (SessionRes SessionOpen) (SessionRes SessionOpen) (Maybe SessionData)

Figure 7. Session Effect

handlers : HandlerList
handlers = [handler args=[FormString],

effects=[CgiEffect],
fn=echo,
name="echo"]

We also define a form to take in a name from the user, and specify
that it should use the echo handler.

showHelloForm : UserForm
showHelloForm = do

addTextBox "Name" FormString Nothing
useEffects [CgiEffect]
addSubmit echo handlers

Finally, we specify that if data has been submitted for processing,
then it should be passed to the form handler. If not, then the form
should be shown.

cgiHello : CGIProg [] ()
cgiHello = do

handler_set <- isHandlerSet
if handler_set then do

handleForm handlers
return ()

else do
addForm "nameform" "helloform" showHelloForm
return ()

main : IO ()
main = runCGI [initCGIState] cgiHello

When this CGI application is invoked, it will begin by outputting a
form to the page, requesting a name from the user. Upon submis-
sion of the form, the form handler will be invoked, and the name
will be used in the output.

In Sections 4.1 and 4.2, we examine implementation of the
form-handling system: namely, the effect which allows the creation
of forms, and the handling code which deserialises the data and
passes it to the user-specified handler function.

4.1 Form Construction
Each form element is specified to hold a particular type of data,
which, assuming that the correct type of data is specified by the
user, is passed directly to the handler function. In order to encap-
sulate this, we firstly define the allowed data types as part of an
algebraic data type, FormTy.

data FormTy = FormString | FormInt
| FormBool | FormFloat
| FormList FormTy

Since types in IDRIS are first-class, we may use this to convert be-
tween abstract and concrete representations of allowed form types:

interpFormTy : FormTy -> Type
interpFormTy FormString = String
interpFormTy FormInt = Int
interpFormTy FormBool = Bool
interpFormTy FormFloat = Float
interpFormTy (FormList a) = List (interpFormTy a)

Again, we use Effects to build a form. By recording the type
of each form element as it is added in the type of the form, we
may statically ensure that the user-supplied handler function is of
the correct type to handle the data supplied by the form: using an
incompatible handler will result in a compile-time type error. The
Form effect and associated resource FormRes is given in Figure 9.
The using notation here indicates that within the block, where G
and E occur they are implicit arguments with the given type.

The general process of form construction is illustrated by the
AddTextBox and Submit operations of the Form effect:

data Form : Effect where
AddTextBox : (label : String) -> (fty : FormTy) ->

Maybe (interpFormTy fty) ->
Form (FormRes G E)

(FormRes (fty :: G) E) ()
...

Submit : (mkHandlerFn ((reverse G), E)) -> String ->
Form (FormRes G E) (FormRes [] []) String

These use the resource associated with the effect, FormRes, to
construct the form. Adding a field such as a text box adds a new
type, fty to the list of field types, carried in the resource. When
the form is complete, the Submit operation adds a submit button
and returns the HTML text for the form, flushing the list of field
types, and using it to construct the type for an appropriate handler
function. To specify a form instance, we define a function of type
UserForm:

UserForm : Type
UserForm = EffM m [FORM (FormRes [])

(FormRes [])] String

The input and output resource contains an empty list of types,
which means that any form which includes fields must also include
a submit button. Adding fields adds to the list of types, and only
adding a submit button empties that list. Note that there is no need
to restrict this effect to running in the IO monad since creating a
form merely returns HTML text, with no side-effects by default.

Handlers may only be associated with a form if they have
argument types corresponding to the types associated with the form
elements. Additionally, we wish to name the function in order for it
to be serialised, whilst requiring a proof that the specified name is
associated with the function. If this were not required, it would be

7 2013/11/18

using (G : List FormTy, E : List WebEffect)
data FormRes : List FormTy -> List WebEffect -> Type where

FR : Nat -> List FormTy -> List WebEffect -> String -> FormRes G E

data Form : Effect where
AddTextBox : (label : String) -> (fty : FormTy) -> (Maybe (interpFormTy fty)) ->

Form (FormRes G E) (FormRes (fty :: G) E) ()
AddSelectionBox : (label : String) -> (fty : FormTy) -> (vals : Vect m (interpFormTy fty)) ->

(names : Vect m String) ->
Form (FormRes G E) (FormRes (fty :: G) E) ()

AddRadioGroup : (label : String) -> (fty : FormTy) -> (vals : Vect m (interpFormTy fty)) ->
(names : Vect m String) -> (default : Int) ->
Form (FormRes G E) (FormRes (fty :: G) E) ()

AddCheckBoxes : (label : String) -> (fty : FormTy) -> (vals : Vect m (interpFormTy fty)) ->
(names : Vect m String) -> (checked_boxes : Vect m Bool) ->
Form (FormRes G E) (FormRes ((FormList fty) :: G) E) ()

Submit : (mkHandlerFn ((reverse G), E)) -> String ->
Form (FormRes G E) (FormRes [] []) String

Figure 9. Form Effect

possible to use a function satisfying the type requirement, without
guaranteeing that the serialised data corresponded to that function.

Before associating a handler function with the form, we must
specify the effects available to the handler. This is done with
useEffects, which updates the list of effects in the type of the
form resource. By doing this, we may subsequently use the effects
in calculations at the type level, in particular when calculating the
type of the handler function for the form.

useEffects : (effs : List WebEffect) ->
EffM m [FORM (FormRes G E)]

[FORM (FormRes G effs)] ()
useEffects effs = (UseEffects effs)

A WebEffect is an effect which is usable in a web application, and
can be converted to an EFFECT using:

webEffect : WebEffect -> EFFECT

Whilst it is not possible to serialise arbitrary effects due to
the associated difficulties with serialising initial resource environ-
ments, we allow for three effects to be serialised: CGI, SQLITE
and SESSION. This is, however, not an inherent limitation as the
Effects library permits introduction of additional effects within
an effectful computation. We may specify a handler function of
type FormHandler:

FormHandler : List EFFECT -> Type
FormHandler effs = Eff IO effs ()

In order to associate a handler with a form, we may call the
addSubmit function:

addSubmit : (f : mkHandlerFn ((reverse G), E)) ->
(fns : HandlerList) ->
{default tactics

{ applyTactic findFn 100; solve; }
prf : FnElem f fns} ->

EffM m [FORM (FormRes G E)]
[FORM (FormRes [] [])]
String

addSubmit f handlers {prf} = (Submit f name)
where name : String

name = getString’ f handlers prf

This function takes a handler function and a list of available han-
dlers, along with an automatically constructed proof (using the a
default argument) that the handler is available. Let us look at each
aspect of this function in turn. Firstly, the mkHandlerFn function
calculates the required type of the handler function from the list of

types associated with the form elements, and the effects we speci-
fied with useEffects. Note that since we prepend types to the list
of FormTys as opposed to appending them, we must reverse the list.

MkHandlerFnTy : Type
MkHandlerFnTy = (List FormTy, List WebEffect)

mkHandlerFn’ : List FormTy -> List WebEffect -> Type
mkHandlerFn’ [] effs = FormHandler (map webEffect effs)
mkHandlerFn’ (x :: xs) effs = Maybe (interpFormTy x) ->

mkHandlerFn’ xs effs
mkHandlerFn : MkHandlerFnTy -> Type
mkHandlerFn (tys, effs) = mkHandlerFn’ tys effs

The mkHandlerFn function takes a tuple describing the arguments
and web effects available to the handler function. When construct-
ing the function type, we wrap all arguments in a Maybe, in order
to handle failure should the supplied data fail to parse as the re-
quired type. To store a reference to a handler function, we use the
HandlerFn type:

HandlerFn : Type
HandlerFn = (ft ** (mkHandlerFn ft, String))

The ** notation denotes a dependent pair, in which the type of the
second element of the pair is parameterised over the value of the
first element. It is an existential binding: the notation (x ** P x)
can be read as “there exists an x such that P x holds”. Therefore a
HandlerFn states that there exists a function type ft such that we
have a handler for it, and a unique string identifier which is used to
serialise a reference to the handler function.

In order to abstract away from this implementation detail, we
make use of IDRIS syntax rewriting rules. This allows us to define
the following:
syntax

"handler args=" [args] ", effects=" [effs] ", fn=" [fn]
", name=" [name] = ((args, effs) ** (fn, name))

We may then define handlers in a more intuitive fashion, without
being concerned with the implementation details. This allows us to
write a handler with one String argument, making use of the CGI
effect, associated with the echo handler function as follows:

handler args=[FormString],
effects=[CgiEffect],
fn=echo,
name="echo"

We then store each HandlerFn in a HandlerList.

8 2013/11/18

HandlerList : Type
HandlerList = List HandlerFn

To enforce the requirement that a supplied handler function
must be in the list of available handlers, and therefore allow us to
retrieve the name with which to serialise the handler, we require a
list membership proof, FnElem f fns, which statically guarantees
that a given item resides in a list.

using (xs : HanderList , f : mkHandler (reverse G, E))
data FnElem : mkHandlerFn ((reverse G), E) ->

HandlerList -> Type where
FnHere : FnElem f (((reverse G, E) **

(f, fStr)) :: xs)
FnThere : FnElem f xs -> FnElem f (x :: xs)

FnElem is parameterised over G and E, the types of the form
elements and the effects used by the handler function. FnHere is a
proof that the element is at the head of the current point of the list,
whereas FnThere is a proof that the element is in the tail of the
list. We then use an automatic proof search to generate the proof
at compile time, should one exist. The proof may then be used in
subsequent computations: we use it to retrieve the unique identifier
for the function. If the automated proof search fails, compilation
will fail.

Finally, we serialise the argument types, supported effects, and
return type of the handler, to allow the form data to be deserialised
and ensure that the correct handler is executed on the server.

Although sending details of the handler function to the client
may appear to be a security risk, we envisage that the use of
symmetric encryption or a cryptographic nonce would mitigate
this. Ultimately, we hope to implement a web server with persistent
state, which would eliminate the need for serialisation altogether.

Running form construction is achieved as an operation of the
CGI effect, AddForm, which then outputs the generated HTML to
the page. The generated metadata describing the handler function
is serialised as a hidden HTML field.

4.2 Form Handling
Once the form has been submitted, a web application may han-
dle the submitted data by invoking HandleForm. This will check
for the existence of the hidden handler field, which contains the
previously serialised metadata about the form handler, before dese-
rialising the data into a MkHandlerFnTy.

With this data, we then look up the function in the list of regis-
tered handlers by using the unique handler identifier. In order to ap-
ply the handler function to the data submitted in the form, we must
first prove to the type checker that the deserialised MkHandlerFnTy
is the same as the one retrieved from the list of registered handlers.
We do this by making use of the decEq function, which determines
whether two types are equal, returning a proof of equality if so, and
a proof of inequality if not.

decEq : DecEq t => (x : t) -> (y : t) -> Dec (x = y)

We then use the with construct, inspired by views in Epi-
gram [9], to rewrite the arguments on the left hand side. This
allows us to construct a function which, given the stored han-
dler, the data required to construct the function type and the
MkHandlerFnTy deserialised from the form, determines whether
the two MkHandlerFnTys are decidably equal. If so, we rewrite
this on the left hand side since the equality proof demonstrates that
the recorded function may also be used to handle the form data. If
not, the computation fails.

checkFunctions : (reg_fn_ty : MkHandlerFnTy) ->
(frm_fn_ty : MkHandlerFnTy) ->
mkHandlerFn reg_fn_ty ->
Maybe (mkHandlerFn frm_fn_ty)

checkFunctions reg_ty frm_ty reg_fn with
(decEq reg_ty frm_ty)

checkFunctions frm_ty frm_ty reg_fn
| Yes refl = Just reg_fn

checkFunctions reg_ty frm_ty reg_fn
| No _ = Nothing

We may then parse the arguments according to the types specified
by the handler function, and then apply the arguments to the handler
function. Finally, we may run the handler function, ensuring that all
updates made to the CGI state are propagated.

5. Extended Example: Message Board
In this section we consider a larger example—a message board
application which allows users to register, log in, view and create
threads, and list and create new posts in threads.

Firstly, we create a database schema in which to record in-
formation stored by the message board. We create three tables:
Users, which contains a unique User ID, usernames and pass-
words; Threads, which contains a unique thread ID, a title, and the
ID of the user who created the thread; and Posts, which contains
a unique post ID, the ID of the thread to which each post belongs,
the content of the post, and the ID of the user that created the post.

Secondly, we use a GET variable, action, to indicate which
page of the message board should be displayed, and pattern-match
on these to call the appropriate function which displays the page.
Some pages, such as the page which shows all of the posts in a
thread, require a second argument, thread id.

5.1 Handling requests
The entry point to any CGI application is the main function. From
here, we run the remainder of the program through a call to runCGI,
which we initialise with empty initial environments for the CGI,
Session and SQLite effects, so they may be used in further com-
putations.

main : IO ()
main = do (runCGI [initCGIState,

InvalidSession, ()]
handleRequest)

return ()

We define a function, handleRequest, which firstly determines
whether submitted form data must be handled, by checking whether
a handler variable exists. If so, then the form handling routine
is called, which executes the corresponding handler function as
specified in Section 4.2. If not, then the handleNonFormRequest
function is called, which inspects the GET variables in order to
display the correct page.

handleRequest : CGIProg
[SESSION (SessionRes SessionUninitialised),
SQLITE ()] ()

handleRequest = do
handler_set <- isHandlerSet
if handler_set then do

lift’ (handleForm handlers)
Effects.return ()

else do
action <- lift’ (queryGetVar "action")
thread_id <- lift’ (queryGetVar "thread_id")
handleNonFormRequest action (map strToInt thread_id)

5.2 Thread Creation
We create four forms: one to handle registration, one to handle
logging in, one to handle the creation of new threads, and one to
handle the creation of new posts. For example, the form used to

9 2013/11/18

create a new thread contains elements for the title of the new thread
and the content of the first post of the new thread:

newThreadForm : UserForm
newThreadForm = do

addTextBox "Title" FormString Nothing
addTextBox "Post Content" FormString Nothing
useEffects [CgiEffect, SessionEffect, SqliteEffect]
addSubmit handleNewThread handlers

This consists of two text boxes: one for the title of the thread,
and one for the content of the first post. Both are of type String,
as denoted by the FormString argument, and both have no de-
fault value. The handler function may make use of the CGI,
SESSION and SQLITE effects, and the handler function is speci-
fied as handleNewThread. The handlers argument refers to the
list of form handlers, and is of the following form:
handlers : HandlerList
handlers = [
(handler args=[FormString, FormString],

effects=[CgiEffect, SessionEffect, SqliteEffect],
fn=handleRegisterForm,
name="handleRegisterForm"),

(handler args=[FormString, FormString],
effects=[CgiEffect, SessionEffect, SqliteEffect],
fn=handleNewThread,
name="handleNewThread"),

...]

Creating a new thread (shown in Figure 10) requires a user to
be logged in, so that the thread starter may be recorded in the
database. In order to do this, we make use of the session handler.
We define a function withSession, which attempts to retrieve the
session associated with the current request, and if it exists, executes
a function which is passed the associated session data. If not, then a
failure function is called instead. Should the form handler function
be called with invalid arguments, an error is shown.

handleNewThread :
Maybe String -> Maybe String ->
FormHandler [CGI (InitialisedCGI TaskRunning),

SESSION (SessionRes SessionUninitialised),
SQLITE ()]

handleNewThread (Just title) (Just content) = do
withSession (addNewThread title content) notLoggedIn
return ()

handleNewThread _ _ = do
outputWithPreamble "<h1>Error</h1>
There was

an error posting your thread."
return ()

Figure 10. Thread Creation

Once we have loaded the session data from the database, we then
check whether the UserID variable is set, which demonstrates that
a user has successfully logged into the system, and allows us to use
the ID in subsequent computations. The database operation to insert
the thread into the database is performed by threadInsert, shown
in Figure 11. This uses a library function executeInsert, which
abstracts over the low-level resource usage protocol, enabling for
provably-correct database access without the excess boilerplate
code. In addition, executeInsert returns the unique row ID of
the last item which was inserted, which may be used in subsequent
computations. In the case of the message board, we use this to
associate the first post of the thread with the thread being inserted.

5.3 Listing Threads
Listing the threads in the database is achieved using executeSelect,
which returns either a ResultSet or an error:

threadInsert : Int -> String -> String ->
Eff IO [SQLITE ()] Bool

threadInsert uid title content = do
let query = "INSERT INTO ‘Threads‘

(‘UserID‘, ‘Title‘) VALUES (?, ?)"
insert_res <- (executeInsert DB_NAME query

[(1, DBInt uid), (2, DBText title)]
case insert_res of

Left err => return False
Right thread_id => postInsert uid thread_id content

Figure 11. Thread Insertion

getThreads : Eff IO [SQLITE ()] (Either String ResultSet)
getThreads =

executeSelect DB_NAME query [] collectThreadResults
where query = "SELECT ‘ThreadID‘, ‘Title‘, ‘UserID‘,

‘Username‘ FROM ‘Threads‘ NATURAL JOIN ‘Users‘"

Once the result set has been retrieved, we may iterate through the
results and output them to the page, including a link to a page which
shows the posts associated with the thread. This is shown in Figure
12. Since we know the structure of the returned row from designing
the query, we may pattern match on each returned row to make use
of the returned values.

traverseThreads : ResultSet ->
Eff IO [CGI (InitialisedCGI TaskRunning)] ()

traverseThreads [] = return ()
traverseThreads (x::xs) = do traverseRow x

traverseThreads xs
where traverseRow : List DBVal ->

Eff IO [CGI (InitialisedCGI TaskRunning)] ()
traverseRow ((DBInt thread_id)::

(DBText title)::
(DBInt user_id)::
(DBText username)::[]) =

(output $ "<tr><td>
<a href=\"?action=showthread&thread_id=" ++
(show thread_id) ++ "\">" ++
title ++ "</td><td>" ++
username ++ "</td></tr>")

traverseRow _ = return ()

Figure 12. Thread Insertion

5.4 Authentication
Once a user submits the login form, the associated handler queries
the database to ascertain whether a user with the given username
and password exists through a call to the authUser function. This
is shown in Figure 13. If so, then the session handler is invoked, and
a session is initialised with the user ID retrieved from the database.
The session ID is then set as a cookie using the CGI effect, so that
it may be used in subsequent requests. Any failures, for example
with creating a new session or querying the database, are reported
to the user.

Implementations for the insertion and display of posts, along-
side registration, follow the same structure.

Although we have described a relatively simple application, we
have shown that through the use of embedded domain-specific lan-
guages, and particularly by encapsulating resource usage protocols
in the types, we can write verified code that fails to compile should
resources be incorrectly accessed. Additionally, we have used the
form handling mechanism to simply handle the arguments passed
by the user. Importantly, we have shown that dependent types can
be used to increase confidence in an (albeit simplified) real-world
application, without requiring developers to supply proofs or in-
deed work explicitly with dependent types.

10 2013/11/18

handleLoginForm (Just name) (Just pwd) = do
auth_res <- lift’ (authUser name pwd)
case auth_res of

Right (Just uid) => do
set_sess_res <- setSession uid
if set_sess_res then do

lift’ (output $ "Welcome, " ++ name)
return ()

else do
lift’ (output "Could not set session")
return ()

Right Nothing => do
lift’ (output "Invalid username or password")
return ()

Left err => do
lift’ (output $ "Error: " ++ err)
return ()

Figure 13. Thread Insertion

6. Related Work
Meijer [10] implemented a CGI library which was among the first
libraries to handle web scripting monadically, and allows the user
to implement application logic without having to consider the low-
level details such as parsing in CGI data from the environment, or
printing headers to the remote browser. The library also provides
support for cookies and basic form handling.

Thiemann [18] adds the notion of a CGI Session for maintaining
state, and provides more sophisticated form-handling methods. In
particular, callbacks may be associated with submit buttons, with
nameless representations for form inputs. Due to the unavailability
of full dependent types in Haskell, however, this implementation
does not statically verify the suitability of the callback function for
the form inputs. Both implementations of the CGI library, being
built upon monads, mean that the use of additional effects such as
database access is achieved either through monad transformers or
performing arbitrary IO operations. Both of these approaches are
limited—the former does not scale well to multiple effects, and the
latter allows for the introduction of errors by allowing the violation
of resource usage protocols.

Plasmeijer and Achten [13] describe an alternative approach to
type-safe form handling through the interactive Data, or iData ab-
straction. Instead of processing being triggered by form submis-
sion, as in the approach described in this paper, applications created
in the iData toolkit are edit-driven. This means that upon a com-
ponent being edited, a computation occurs, given the state of the
current form. This is saved for future computations. Should a user
enter invalid data, for example by entering text in a field designated
for integers, the change will be reverted. This is demonstrated prac-
tically through the use of iData to implement a conference manage-
ment system [14].

The concept of iData is taken further by the introduction of
iTasks [15], which make use of a workflow system to allow mul-
tiple iData forms to interact with one another. This is achieved
using high-level combinators which allow the implementation of
concepts such as recursion, sequence and choice in a scalable fash-
ion. These high-level abstractions are elegant, but the style and syn-
tax differ substantially from a traditional web application. Our ap-
proach takes the concept of type-safe input handling and uses it in
a more traditional fashion, whilst retaining the type-retention guar-
antees afforded by iData elements.

UrWeb [5] is a library built for the Ur language, which does
not use full dependent types but does have an expressive type
system with record types and type-level computation. By using
these concepts, UrWeb may generate provably correct and unex-
ploitable DOM code and SQL queries from records, without re-

quiring developers to supply proofs. In contrast to using runtime
code generation, which is prone to obscure code generation er-
rors, UrWeb makes use of its static type system to guarantee that
metaprograms—in this case, generated SQL and DOM code—must
be correct and secure. Such ideas regarding the use of static check-
ing of metaprogram generation will be extremely useful when con-
sidering an object-relational mapping system, which we hope to
implement in the near future. It will also be interesting to see how
such concepts may be applied with a yet more expressive type sys-
tem involving full dependent types.

WebDSL [19] is a domain-specific language written primarily
to introduce new abstractions which aim to reduce the amount of
boilerplate code that must be written and maintained by develop-
eres. WebDSL is built on top of Java, which often includes a large
amount of redundant code such as accessor and mutator functions
within entity classes. The Java Persistence API (JPA) [1] provides
an object-relational mapping through the use of Java 5 annotations,
which may then be used to construct database tables. These anno-
tations soon become complex, however, and coupled with redun-
dant boilerplate code, data model declarations may soon become
unwieldy. Through the use of WebDSL, these data model declara-
tions can be much more compactly declared, and elaborated into
Java code by parsing the data-modelling DSL into an abstract syn-
tax tree, applying rewrite rules, and pretty-printing. WebDSL also
applies similar concepts to implement a template system for such
objects, which allows the data to be used in code generation. We
look to implement many of these ideas, but as effects within the
IdrisWeb framework, as with the form construction effect.

7. Conclusions
Dependently-typed languages promise to support machine check-
able program correctness proofs, but to date they have remained rel-
atively unused for practical purposes. By using embedded domain-
specific languages, we can abstract away some of the complexities
of creating correctness proofs and provide expressive libraries, giv-
ing guarantees by the successful compilation of a program (assum-
ing the use of specific enough types) without additional proofs.

Our framework provides several static guarantees. Data submit-
ted by users is inherently unsafe and means systems are vulnera-
ble to attacks such as SQL injection. This particular threat is ame-
liorated due to elements being associated with specific types dur-
ing form construction. This immediately eliminates the possibili-
ties of SQL injection attacks on non-string types. Since failures are
handled transparently, no runtime errors are output to the browser,
meaning that attackers may not use such information to aid attacks.
Additionally, since checking is performed on the types of the form
elements and the types of arguments accepted by the handler, it is
impossible to associate a form with a handler incompatible with the
submitted data.

Many external libraries also follow (unchecked or dynamically
checked) resource usage protocols. Incorrect usage is however still
possible, for example by forgetting to release acquired resources or
failing to initialise a library correctly. By creating high-level bind-
ings to these libraries, however, we may statically enforce these
resource-usage protocols, ensuring that the libraries are used cor-
rectly. Whilst previous work has demonstrated that this is possible
through the use of embedded DSLs [4] and dependent algebraic
effects [3], this paper has provided more substantial examples of
real-world applications.

In particular, the framework guarantees that it is not possible for
a CGI application to produce an internal server error due to content
being written to the remote host prior to headers. With regard to
database access, we may statically guarantee that library calls are
made in the correct order, and calls to retrieve rows of data are made
only when more data is available. Additionally, by encoding desired

11 2013/11/18

invariants within operation types, we may gain static guarantees
about adherence to resource usage protocols and failure handling.
Enforcing resource usage protocols also guards against common
programmer errors, saving debugging time by identifying errors at
compile time.

7.1 Further Work
We have shown that embedded domain-specific languages using
dependent types and algebraic effects can be used to increase con-
fidence in web applications by providing additional static guaran-
tees about runtime behaviour, but much more can be done using the
same approach.

There are many other applications which make use of specific
resource usage protocols, for example popular libraries such as
libgcrypt2. Applying a similar approach would allow for sensitive
programs requiring cryptographic routines to be written using a
language with full dependent types, in turn adding an extra layer
of confidence in their security.

Whilst the use of CGI allows for experimenting with the use
of dependent types in a real-world scenario such as web program-
ming, there remain practical considerations about its scalability, as
a separate process must be created for each individual request. We
believe that the use of FastCGI may alleviate this, but ultimately,
we would like to create a web server written in IDRIS, which would
make more efficient usage of resources.

Since at this stage we have concentrated on the use of depen-
dent types for enforcing resource usage protocols and type-safe
form handling, we currently handle the generation of HTML in an
unstructured manner. Future work will entail a DOM library to fa-
cilitate the generation and manipulation of HTML, in turn giving
stronger guarantees about its correctness. Other planned features
include a template system, allowing for web pages to be automati-
cally generated from data, and an object-relational mapping system
which will allow users to manipulate records which can then be
automatically written to the database, instead of having to update
tables manually via SQL queries.

Type providers, as originally implemented in F# [17], are an in-
teresting method by which external data sources may be used to
import external information, such that it may be used during com-
pilation. In this way, it becomes possible to use the extra type in-
formation to statically ensure the validity of artefacts such as SQL
queries and data structures. If data structures within the program
do not conform to a given database schema, for example, then the
program will not type-check. This has been implemented for IDRIS
[6], exploiting the fact that types can be calculated by functions
to avoid generating extra code in the type provider step. Depen-
dent type providers additionally have stronger safety guarantees
as they may not generate unchecked code, but at the same time
this is matched by a decrease in expressiveness. Nonetheless, such
techniques provide a promising mechanism to verify the semantic
soundness of programs and we look to investigate their integration
in further work.

Dependently-typed languages provide great promise for the
construction of secure and correct programs. Through the use of
embedded domain-specific languages, we hope that more develop-
ers may benefit from the extra guarantees afforded by dependent
types, resulting in more stable, secure applications.

Acknowledgments
This work has been supported by the Scottish Informatics and
Computer Science Alliance (SICSA) and the EPSRC. The authors
would like to thank contributors to the IDRIS language, especially
the authors of the original Network.Cgi and SQLite libraries.

2 http://directory.fsf.org/wiki/Libgcrypt

References
[1] Heiko Böck. Java persistence api. In The Definitive Guide to NetBeans

Platform 7, pages 315–320. Springer, 2011.
[2] Edwin Brady. Idris, a general-purpose dependently typed program-

ming language: Design and implementation. Journal of Functional
Programming, 23:552–593, 9 2013. ISSN 1469-7653. . URL http:
//journals.cambridge.org/article_S095679681300018X.

[3] Edwin Brady. Programming and reasoning with algebraic effects and
dependent types. In Proceedings of the 18th ACM SIGPLAN Interna-
tional Conference on Functional Programming, 2013. To appear.

[4] Edwin Brady and Kevin Hammond. Resource-safe systems program-
ming with embedded domain specific languages. In Practical Aspects
of Declarative Languages, pages 242–257. Springer, 2012.

[5] Adam Chlipala. Ur: statically-typed metaprogramming with type-level
record computation. In ACM Sigplan Notices, volume 45, pages 122–
133. ACM, 2010.

[6] David Raymond Christiansen. Dependent type providers. In Workshop
on Generic Programming (WGP ’13), 2013.

[7] Lee Garber. Security, privacy, and policy roundup. IEEE Security &
Privacy, 10(2):15–17, 2012. ISSN 1540-7993. .

[8] Imperva. Lessons Learned From the Yahoo! Hack. 2013. URL
http://www.imperva.com/download.asp?id=299.

[9] C. McBride and J. McKinna. The view from the left. Journal of
Functional Programming, 14(1):69–111, 2004.

[10] Erik Meijer. Server side web scripting in haskell. Journal of Func-
tional Programming, 10:1–18, 1 2000. ISSN 1469-7653. . URL http:
//journals.cambridge.org/article_S0956796899003561.

[11] OWASP. Cross-site Scripting (XSS). URL https://www.owasp.
org/index.php/Cross-site_scripting.

[12] OWASP. SQL Injection, 2013. URL https://www.owasp.org/
index.php/SQL_injection.

[13] Rinus Plasmeijer and Peter Achten. idata for the world wide web–
programming interconnected web forms. In Functional and Logic
Programming, pages 242–258. Springer, 2006.

[14] Rinus Plasmeijer and Peter Achten. A conference management system
based on the idata toolkit. In Implementation and Application of
Functional Languages, pages 108–125. Springer, 2007.

[15] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. itasks: exe-
cutable specifications of interactive work flow systems for the web.
SIGPLAN Not, 42:141–152, 2007.

[16] Gordon Plotkin and Matija Pretnar. Handlers of Algebraic Effects. In
ESOP 09: Proceedings of the 18th European Symposium on Program-
ming Languages and Systems, pages 80—-94, 2009.

[17] Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, Jomo
Fisher, Jack Hu, Tao Liu, Brian McNamara, Daniel Quirk, Matteo
Taveggia, et al. Strongly-typed language support for internet-scale
information sources. Technical report, Technical Report. Microsoft
Research, 2012.

[18] Peter Thiemann. Wash/cgi: Server-side web scripting with sessions
and typed, compositional forms. In Practical Aspects of Declarative
Languages, pages 192–208. Springer, 2002.

[19] Eelco Visser. Webdsl: A case study in domain-specific language engi-
neering. In Generative and Transformational Techniques in Software
Engineering II, pages 291–373. Springer, 2008.

[20] W3Techs. Usage of server-side programming languages for web-
sites, July 2013. URL http://w3techs.com/technologies/
overview/programming_language/all.

12 2013/11/18

http://journals.cambridge.org/article_S095679681300018X
http://journals.cambridge.org/article_S095679681300018X
http://www.imperva.com/download.asp?id=299
http://journals.cambridge.org/article_S0956796899003561
http://journals.cambridge.org/article_S0956796899003561
https://www.owasp.org/index.php/Cross-site_scripting
https://www.owasp.org/index.php/Cross-site_scripting
https://www.owasp.org/index.php/SQL_injection
https://www.owasp.org/index.php/SQL_injection
http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all

	Introduction
	Contributions

	An overview of the Effects framework
	Implementing Effects
	Resource Protocols as Effects

	Modelling resource usage protocols
	CGI
	Database access with SQLite
	Example

	A Simple Session Handler

	Type-aware form handling
	Form Construction
	Form Handling

	Extended Example: Message Board
	Handling requests
	Thread Creation
	Listing Threads
	Authentication

	Related Work
	Conclusions
	Further Work

