
Dependent T ypes for S afe and S ecure Web P rogramming

Simon F owler Edwin B rady

School o f Computer Science, U niversity o f S t Andrews, S t Andrews, Scotland
Email: { sf37, e cb10}@st-andrews.ac.uk

Abstract

Dinegp edenvdeelnotplym-teynpt,ef dal cailnigtautaignegsr ea allsoowninp gre acbisoeutt yp proesgrt aomb se.H u soewded vuerr,-
dstifrfoincugletr tto ypw ersit ebr pirnoggr aadm issa tdhvaatna rteaga ecct ehpattei dtb b yeca ot mypesec i nhcercekaesrina gnldy
addEitmionbaeld pderodod fsom maayinh -sapveect ioficb el as npgeucaifgieesdb (EyDa pS rLosg)rac manmeh re.lp ad-

pdterrneesci isnste a hi uh snid gphreor-bllyevlienemgl lt b aynypge iusn,taagr oledlouw wchiiinncgghud a osl measyaed irnep-o sfepa nebdceisftnircattc c ytoipdoeenst o t oovb ee ernm fw orrocirte-e
invariants without imposing a dditional p roof o bligations o n a n ap-

tiprnoligdcIan tuthciote ehnida sne p prpEo aegpnDredSraem,nLw mt elytoea r tpf .ypapcleyidli tthap itrseot get hrcahemnc mirqeiuanetgit oonl a wna gnedbuap h groaengdI rlaDimnRgmISo i,nfw gs .etaU i tsni---
cally checked web forms, reducing the scope for programmer error
and attacks such as SQL injection. We also show how to enforce
resource usage protocols associated with common web operations
such as CGI, database access and session handling.

1. Introduction

Wcoenbstr aupcptlioicnati aonndss ,ew cuhirlistty ue bxipqluoiittsous su,cha rea sa SlsQoLp ri onnjeectt iooni n[c1o2r]reo crt

fIacnrasroj S-esrosce-tniasocyithn,ew ibn sgrhce,roai as cpnhutdifni fgn ehir2 [g e10hd11p a]1.row S[7feiel]lc,el-u ac prnauitsdbyel Ysib cai rnhiseoveaoodcl!h,va eens wdl hu aose rgixn tseugrefc s ofmeurepcrelhoydre ac axtop bisoltrolenyisatS cs suhQa cri Lhen
2012 [8].

srtahcpreiidpMs atiadm nnegveyl ea lw sntoageptbiumcae agg pneuspta[l ir2scua0nac]tti.heoea H nsssoa P wba HeorevPu,etrw R ,r ruus ibunttycteihmno rl eai P nn bygetud hhayoagnvneai,msow ud irhcoiaa cln hflfyoof -tracp dchreieodlcivtkaib edtyede
ipnroggL oernatmue xsstce wnonsitihsvide me uronarietsie t mexsptprilneesgdsia tvoteae ,bna sssutearteaiccc cot eyrsrpseecrtos nyutessitnsemea ,nswd,ri s intestcetuenraiidntyr P.eHlyP,-
where we wish to obtain the name and address of every employee
working in a given department, $dept. We firstly construct an
object representing a database connection, where the arguments are
the database host, user, password and name respectively:

Copyrightn oticew willa ppearh ereo nce’ preprint’ ptioni sr emoved.]

$conn = new m ysqli ("localhost" , " username" ,
"password" , " db") ;

We s hould t hen c heck t o see i f the c onnection was s uccessful, and
exit i f n ot:

if (mysqli_connect_errno ()) { e xit () ; }

We t hen c reate a prepared s tatement d etailing our q uery, and b ind
the ‘ dept ’ v alue:

$stmt = $ conn->prepare ("SELECT ‘name ‘ , ‘ address
FROM ‘ staff ‘ W HERE ‘ dept ‘ = ?) ;

$stmt->bind_param(’ s ’ , $dept) ;

rAaoswfsteigrni n th vaet ur prinaa.rblFa measieli utnerrtoest hwoahve iecxheb cr eueetnseu la btsos uw tanitdle,lmw b eeens te txob erefecduo,treea nt ha dtetef s mettacpthetimne gaenct toh,
fetch rows would cause an error, as would attempting to execute a
statement without binding variables to it.

$stmt->execute () ;
$stmt->bind_result ($name , $address) ;
while ($stmt->fetch()) {

printf ("Name : %s , Age : %s" , $name , $age) ;
}

Finally, once the statement and connection are no longer needed,
they should be closed in order to discard the associated resources:

$stmt->close(() ;
$conn->close(() ;

Even in this small example, there exists a precise resource usage

aptroiotnoc.F olir wsthlyic,ha m counsnteb cetif oonllo towt ehdef d oartas buacsceesm sfuuslta b nedo r poebnuesdt.o T pehre-

apeoceoxbnddrjtfeeepocn .trtla,- Smoc eaecrsediheot ,nnohh ldeteodld wyeo,rbsea s jtveyt epoclrrteew ipm thu i asursieces dlhedtvb ss isentaar ott c ibearhmevbeaileeote neusxdtsa ai i mrsi nen cpa l ro aleerp tadere toreenrcb dceo,f aoduu prunssrio udanpl.lgaT etv reehtahsretseiost i hor tnaainsswteo t mtofS ot eQ hb anLeent

nisa tlPhlyer,on thbe elxee rmecssuo mtuerdacy,e asa nra dirseee fa icrfeh ethdr eo.w pr oisto rectorliei vsen dotf rf oomllot wheedd ca toarbreacsetl.y .FA i-

acstdsgthaeeupi rnalavvItlrgoee r anel lergoep sra ptcar r,adeoomite prnhvptt omtmro eliracnieecoasgp arltyi r,m ,tr s iiooso tfbannh wof lyeeoosrs lo. ,em l wuoxHwm sswaaehiomyt siewcu co dp ltchef.loohvews dec ,i eaohnra, pcuegsei clct nnd khrieddcesc e aeaoos nunutnuttatsoravtecmt eleylemyna patlr eteic eiosunclaonnatkm salto selilraymi ka p ,c enora es o sntetl granori tc renoteoacgrmmm.p teiS oemorp-nnsiiimrtsl,nuiew bw -ginltlnhehiaml iiarilclnt neysohg,-,t
specify a program’s behaviour precisely, and o check hat a pec-
fication s ollowed. Unfortunately, automatic verification by
compiler can be difficult or often mpossible, equiring additional
proofs o be given by he programmer.

013/11/18

This complexity can b e addressed through the use of embedded
domain-specific languages (EDSLs) to abstract away the complex-
ity of the underlying type system. Embedding a domain-specific
language in a dependently typed host language allows domain ex-
perts to write domain-specific code, with the EDSL itself used to
provide the proof that the code is correct.

IDRIS [2] is a language with full dependent types, and exten-
sive support for E DSLs through overloading and syntax macros.
Through the use of IDRIS, and a framework for describing resource
protocols using a lgebraic effects [3], we present a dependently-
typed web framework, which allows the construction of programs
with additional guarantees about correctness and security, whilst
minimising the increase in development complexity.

1.1 Contributions

The primary contribution of this paper is the application of depen-
dent types to provide strong static guarantees about the correctness
and security of web applications, whilst minimising additional de-
velopment complexity. In particular, we present:

• Representations of CGI, Databases and sessions as resource-
dependent algebraic effects, allowing programs to be accepted
only when they follow clearly defined resource u sage protocols.
(Section 3)

• Type-safe form handling, preserving type information and man-
aging user input, therefore increasing applications’ resilience
to attacks such as SQL injection and cross-site scripting. (Sec-
tion 4)

• An extended example: a message b oard application, demon-
strating the usage of the framework in practice. (Section 2)

We achieve these without extending the host language. E very

resource protocol we implement is p ure IDRIS, using a library
for resource-dependent algebraic effects [3] and IDRIS’ features
for supporting domain-specific language implementation such as
syntax macros and overloading. In p articular, this means the same
techniques can be applied to other r esources, and most importantly,
combinations of resources and DSLs implemented in this way are
composable.

The code used to implement the framework and all associated
examples used in this p aper is available online at http : //www .
github .com/idris-hackers/IdrisWeb.

2. An overview of the Effects framework

Effects [3] is an IDRIS library which handles side-effects such as
state, exceptions, and I/O as algebraic effects [16]. In particular,
it supports parameterising effects by an input and output state,
which permits effectful programs to track the progress of a resource
usage protocol. Effectful programs are written in a monadic style,
with do-notation, with their t ype stating which specific effects are
available. Effectful programs are described using the following data
type, in the simplest case:

Eff : (m : Type -> Type) ->
(es : List EFFECT) -> (a : Type) -> Type

Eff is parameterised over a computation context, m , which de-
scribes the context in which the effectful program will b e r un, a
list of side effects es that the program is permitted to use, and the
programs r eturn type a. The name m for the computation context is
suggestive of a monad, but there is no requirement for it to be so.

For example, the following type carries an integer state, throws
an exception of type String if the state reaches 100, and runs in a
Maybe context:

2

addState : Eff Maybe [STATE Int , EXCEPTION String] ()
addState = do val <- get

when (val == 100) (raise "State too b ig")
put (val + 1)

2.1 Implementing Effects

Effects such as state and exception are described as algebraic data
types, and run by giving handlers for specific computation contexts.
Effects h ave a corresponding resource (in the case of state, the re-
source is simply the current state). Executing an effectful operation
may change the resource and return a value:

Effect : T ype
Effect = (in_res : Type) -> (out_res : Type) ->

(val : Type) -> Type

For example, the state effect is described as follows:

data State : Effect where
Get : State a a a
Put : b -> State a b ()

That is, Get returns a value of type a without updating the resource
type. Put returns nothing, but has the effect of updating the re-
source. To make an effect usable, we implement a handler for a
computation context b y making an instance of the following class:

class Handler (e : Effect) (m : Type -> Type) where
handle : res -> (eff : e res res ’ t) ->

(k : res ’ -> t -> m a) -> m a

The h andle function takes the input resource, an effect which may
update that resource and execute a side-effect, and a continuation k

which takes the updated resource and the return value of the effect.
We use a continuation here p rimarily because there is no restriction
on the number of times a handler may invoke the continuation
(raising an exception, for example, will not invoke it). Reading and
updating states is handled for all computation contexts m :

instance Handler State m where
handle st Get k = k st st
handle st (Put n) k = k n ()

Finally, we promote State into a concrete effect STATE, and the
Get and Put operations into functions in Eff, as follows:

STATE : Type -> EFFECT
STATE t = MkEff t State

get : Eff m [STATE x] x
get = Get

put : x -> Eff m [STATE x] ()
put val = Put val

A concrete effect is simply an algebraic effect type p aired with
its current resource type. This, and other technical details, are
explained in full elsewhere [3]. For the purposes of this p aper, it
suffices to know how to describe and h andle new algebraic effects.

2.2 Resource Protocols as Effects

More generally, a program might modify the set ofeffects available.
This might b e desirable for several reasons, such as adding a new
effect, or to u pdate an index of a dependently typed state. In this
case, we describe programs u sing the EffM data type:

EffM : (m : Type -> Type) ->
(es : List EFFECT) -> (es ’ : List EFFECT) ->
(a : Type) -> Type

EffM is p arameterised over the context and type as before, but
separates input effects (es) from output effects (es ’). In fact, Eff

2013/11/18

{- { Input resource type } { Output resource type } { Value } -}

data FileIO : Effect w here
Open : String -> (m : Mode) -> FileIO () (Either () (OpenFile m)) ()
Close : FileIO (OpenFile m) () ()

ReadLine : FileIO (OpenFile Read) (OpenFile Read) String
WriteLine : String -> FileIO (OpenFile Write) (OpenFile Write) ()
EOF : FileIO (OpenFile Read) (OpenFile Read) Bool{d-ata ECWORFeilrpOiFaeolstndeeLeILiOin n:ee E:::: f:f S Setctrrtiinw nghge - r-e>>(m: M ode) ->F FFFFiiiiFillllliegeeeeIuIIIIOOOOOr{e 1I .npF (((((ui)OOlOtOeppppr e ePeeennnnrsFoFFFoiiitioullllcreeeeoclR m R eW Ee)eraaft ifdydte)p)ece)t} {(((((O O)OOEupppiteeetpnnnhFFFeuiiitrllleere (e)R R sW eeor(aauiOddrtp)c)eee)nFt iylpeem })){ S(B((tV)o))raoillnuge} - }

Figure 1. File Protocol Effect

is defined in terms of EffM, with equal input/output effects. We can
use this to describe how effects follow resource protocols. A simple
example is a file access protocol, where a file must be opened
before it is r ead or written, and a file must be closed on exit.

Figure 1 shows how the protocol is encoded as an effect. Note
that the types of the input and output r esources describes how
resource state changes in each operation: opening a file may fail,
so changes an empty resource to a resource containing either a unit
or an open file; reading a line is only possible if the resoource is
a file open for reading, etc. The handler for this effect for an IO
computation context will execute the required primitive I/O actions.

The following program type checks, and therefore implicitly
carries a proof that the file resource protocol is followed correctly:

testFile : Eff IO [FILE_IO () , STDIO] ()
testFile = do open "testFile " Read

if_valid then do str <- readLine
close
putStrLn str

else putStrLn "Error"

The type of testFile states that File I/O and console I/O are
available effects, and in particular that the resource associated with
the File I/O will be in the same state on entry and exit. We use
if valid to handle possible failure—this is a function provided
by the Effects library which checks whether a resource of type
Either a b indicates failure (Left a) or success (Right b) and

branches and updates the resource accordingly. Therefore, attempt-
ing to write to the file, failing to check for success, or failing to
open or close the file, would cause a compile-time error.

We will use this technique extensively throughout this paper:
describe a resource usage protocol in terms of state transitions;
implement an effect which captures that protocol; implement pro-
grams which, by using this effect, implicitly carry a proof that the
resource protocol has b een correctly followed.

3. Modelling resource usage protocols

In this section, we show how three effects (CGI, database access
and a simple session handler) may be implemented, and describe
the benefits of developing programs using this technique over sim-
ply handling them in IO or as monad transformers.

3.1 CGI

CGI is used to invoke an application on a web server, making use of
environment variables to convey information gained from an HTTP
request and using standard output to communicate with the remote
client. I mportantly, HTTP headers must be correctly written to the
browser p rior to any other output; failure to do so will result in an
internal server error being shown.

By modelling CGI as a resource-dependent algebraic effect, we
may enforce a resource usage protocol which prevents arbitrary
IO from b eing performed and therefore ensures that the headers
are written correctly. W e define an effect, Cgi, and an associated
resource, InitialisedCGI, p arameterised over the current state,

3

startUninitiailinsietdialise

InitialissetdartTask

TaskRunfinninigshTask
TaskComwprleitteedHeaders
HeadersWwrrititteenContent

ContentWritten
Figure 2. CGI States

CGIStep, and containing a CGIInfo record which contains infor-
mation from the request. W e represent an uninitialised CGI process
as the unit t ype, () .

data CGIStep = Initialised | TaskRunning
| TaskCompleted | H eadersWritten
| ContentWritten

data InitialisedCGI : CGIStep -> Type where
ICgi : CGIInfo -> InitialisedCGI s

Figure 2 shows the states through which the CGI program pro-
gresses, and Figure 3 shows how this is represented as a resource-
dependent algebraic effect. Each operation p erformed in an effect-
ful program requires the resource to b e of a certain type, and the
completion of the operation may alter the type or value of the re-
source. The Cgi effect declaration shows these resource updates in
the types of each operation, effectively specifying a state machine.

Upon creation, the CGI application is uninitialised, meaning
that environment variables have not b een queried to populate the
CGI state. The only operation that can be performed in this state is
initialisation: by calling initialise, a CGIInfo record is p opu-
lated, and the state transitions to Initialised. The Init opera-
tion is defined as part of the Cgi effect, and involves transitioning
from the uninitialised state to the initialised state.

Additional operations, including those to query POST and GET
variables, are omitted in the interest of brevity.

2013/11/18

{- { Input resource type } { Output resource type } { Value } -}

data Cgi : Effect where
Init : Cgi () (InitialisedCGI Initialised) ()
StartRun : Cgi (InitialisedCGI Initialised) (InitialisedCGI TaskRunning) ()
FinishRun : Cgi (InitialisedCGI TaskRunning) (InitialisedCGI TaskCompleted) ()
WriteHeaders : Cgi (InitialisedCGI TaskCompleted) (InitialisedCGI HeadersWritten) ()
WriteContent : Cgi (InitialisedCGI HeadersWritten) (InitialisedCGI ContentWritten) ()
OutputData : String ->

Cgi (Init ialisedCGI TaskRunning) (InitialisedCGI TaskRunning) ()
RunAction : Env IO (CGI (InitialisedCGI TaskRunning) : : effs) -> CGIProg effs a ->

Cgi (InitialisedCGI TaskRunning) (InitialisedCGI TaskRunning) a

Figure 3. CGI Effect

User code executes in the TaskRunning state. Several opera-
tions, such as querying the POST and GET variables, are available
in this state, alongside functions to output data to the web p age and
append data to the response headers. It is important to note that
at this stage nothing is written to the p age, with the output and
addHeader functions instead modifying the CGIInfo record. This
data may then be printed at the end of the p rogram’s execution, in
accordance with the resource usage p rotocol.

After the user code has finished execution, control returns to the
library code. At this p oint, the state transitions to TaskCompleted,
and the headers are written. Finally, the headers and content are
written which completes the process. Since we parameterise the
resource over a state, we may ensure that certain operations only
happen in a particular prescribed order.

In IDRIS, types are first-class, meaning that they may be treated
like other terms in computations. We may therefore define the fol-
lowing type synonym, used within the CGI section of the frame-
work to denote an effectful CGI program:

CGIProg : List EFFECT -> T ype -> Type
CGIProg effs a =

Eff IO (CGI (InitialisedCGI TaskRunning) : : effs) a

This is then passed, along with initial values for other effects that
the user may wish to use, to the runAction function, which invokes
the RunAction operation and executes the user-specified action. A

simple “Hello, world!” program would b e defined as follows:
module Main
import Cgi

sayHello : CGIProg [] ()
sayHello = output "Hello , world ! "

main : IO ()
main = runCGI [initCGIState] sayHello

3.2 Database access with SQLite

SQLite1 is a lightweight SQL database engine often used as simple,
structured storage for larger applications. We make use of SQLite
to demonstrate a resource usage protocol for database access due to
its simplicity, although we envisage that these concepts would be
applicable to more complex database management systems.

The creation, p reparation and execution of SQL queries has
a specific usage protocol, with several possible points of failure.
Failure is handled in traditional web applications by the generation
of exceptions, which may b e handled in the program. Handling
such exceptions is often optional, however, and in some cases
unhandled errors may cause a deployed web application to display
an error to the user. Such errors can be used to determine the

1http: //www. sqlite .org

4

Figure 5.D atabaseR esourceU sageP rotocol

structure of an insecure SQL query, and are often used by attackers

to determine attack vectors for SQL injection attacks.
Figure 5 shows a resource usage protocol for database access,

which we h ave implemented for the SQLite library. Although some
additional states are used to capture failing computations, these are
omitted from the diagram. The effect implementation is given in
Figure 4. There are three main phases involved in the usage of
the SQLite protocol: connection to the database, p reparation of a
query, and execution of the query. We define several r esources to
encapsulate the state at any given point during the protocol.

We first define the SQLiteConnected resource, which signifies
that a successful connection has been made to the database. This
resource contains a pointer to the database structure which is used
in further computations.

data SQLiteConnected : Type w here
SQLConnection : ConnectionPtr -> SQLiteConnected

We secondly define resource types to capture success and fail-
ure states of binding a prepared statement: SQLitePSSuccess,
SQLitePSFail, and SQLiteFinishBindFail. The types are de-
clared as follows (we leave the definitions abstract):

2013/11/18

{- { Input resource type }
data Sqlite : Effect where

OpenDB : DBName ->
Sqlite ()

CloseDB : Sqlite (SQLiteConnected)
PrepareStatement : QueryString ->

Sqlite (SQLiteConnected)

BindInt : ArgPos -> Int ->
Sqlite (SQLitePSSuccess Binding)

FinishBind : Sqlite (SQLitePSSuccess Binding)

ExecuteStatement : Sqlite (SQLitePSSuccess Bound)

RowStep : Sqlite (SQLiteExecuting ValidRow)

GetColumnText : Column ->
Sqlite (SQLiteExecuting ValidRow)

CleanupPSFail : Sqlite (SQLitePSFail)
CleanupBindFail : Sqlite (SQLiteFinishBindFail)

{ Output resource type } { Value } -}

(Either () SQLiteConnected) (Either SQLiteCode ())
() ()

(Either (SQLitePSFail)
(SQLitePSSuccess Binding)) (Either SQLiteCode ())

(SQLitePSSuccess Binding) ()
(Either SQLiteFinishBindFail

(SQLitePSSuccess Bound)) (Maybe BindError)

(Either (SQLiteExecuting InvalidRow)
(SQLiteExecuting ValidRow) StepResult

(Either (SQLiteExecuting InvalidRow)
(SQLiteExecuting ValidRow)) StepResult

(SQLiteExecuting ValidRow) String

() ()
() ()
Figure 4.D atabaseE ffect

Figure 4. Database E ffect

data BindStep = Binding | Bound
data SQLitePSSuccess : BindStep -> Type where
data SQLitePSFail : Type where
data SQLiteFinishBindFail : Type where

The SQLitePSSuccess resource indicates that a prepared state-
ment has been correctly created b y the underlying library, given a
query string. The resource is parameterised b y the BindStep type,
which indicates whether the binding process has been completed.
Should the creation of a prepared statement fail, the resource will
be set to SQLitePSFail.

SQLite operates by loading database rows into a buffer, the con-
tents of which may then be accessed through several column access
functions. After all rows returned by a query have been processed,
no further calls to fetch more rows may b e made. Additionally, no
calls to column access functions may be made whilst there is no
row b eing currently p rocessed.

Through the use of dependent types, we may encode these in-
variants statically, using the SQLiteExecuting resource. This is
parameterised by the ExecutionResult data type, which indi-
cates whether there is currently a valid row in the buffer.

data ExecutionResult = ValidRow
| InvalidRow

data SQLiteExecuting : ExecutionResult -> Type w here
SQLiteE : ConnectionPtr ->

StmtPtr -> SQLiteExecuting a

Column access functions may only b e called when there is a valid
row in the buffer, as signified by the input r esources:

GetColumnText : Column ->
Sqlite (SQLiteExecuting ValidRow)

(SQLiteExecuting ValidRow)
String

In order to provide the necessary static guarantee that there is a
valid row to process in the buffer, we make use of the if valid
construct. The nextRow function will either fetch a row into the
buffer, or indicate that a row could not be loaded, as shown by its
type:

5
nextRow : EffM IO [SQLITE (SQLiteExecuting V alidRow)]

[SQLITE (Either (SQLiteExecuting InvalidRow)
(SQLiteExecuting ValidRow))] StepResult

The if valid construct provides failure checking functionality, al-
lowing different operations to be performed depending on whether
or not a row was successfully fetched for p rocessing.

By incorporating pointers to open connections and prepared
statements into the resource associated with the effect, we introduce
a further layer of abstraction, which hides implementation details
from the developer and encourages less error-prone code.

3.2.1 Example

To demonstrate the library, we r eturn to the previous example of
selecting the names and addresses of all staff working in a given
department. We define a function textSel of type:
String -> Eff IO [SQLITE ()]

(Either QueryError (List (String , String)))

The program will b e run in IO, and starts and finishes with no
active resources. It returns either a list of (String , String)
pairs, r epresenting names and addresses in the database, or an error.

The program initially attempts to open a connection to the
people .db database. At this p oint, since the OpenDB operation has
been invoked, the program transitions to the ConnectionOpened
state. The openDB function returns either an error code, if the
connection fails, or a unit type should the connection succeed, as
shown in Figure 5.

A call to prepareStatement attempts to create a prepared
statement, and a subsequent call to beginExecution allows
data to b e retrieved from the database. CollectResults oper-
ates on the row currently held in the buffer. Firstly, the function
checks that there is a valid row in the buffer, and if so uses the
getColumnText and getColumnInt functions to retrieve the data
from the database. T his function is then called recursively until
there are no more r ows to process.
collectResults :

EffM IO [SQLITE (Either (SQLiteExecuting InvalidRow)
(SQLiteExecuting ValidRow))]

[SQLITE (SQLiteExecuting InvalidRow)]
(List (String , Int))

2013/11/18

testSelect : String -> Eff IO [SQLITE ()]
(Either QueryError (List (String , String)))

testSelect dept = do
db_res <- openDB "people .db"
if_valid then do

let sql = "SELECT name , address FROM ‘ staff ‘
WHERE dept = ? ;"

sql_prep_res <- prepareStatement sql
if_valid then do

bindText 1 dept
bind_res <- finishBind
if_valid then do

executeStatement
results <- collectResults
f inaliseInvalid
closeDB
Effects .pure $ Right results

else do
cleanupBindFail
Effects .pure $ Left (getBindError b ind_res)

else do
cleanupPSFail
Left $ getQueryError sql_prep_res

else do
Effects .pure $ Left (getQueryError db_res)

Figure 6. Example SQL program

collectResults =
if_valid then do n ame <- getColumnText 1

age <- getColumnInt 2
step_res <- nextRow
xs <- collectResults
return $ (name , age) : : xs

else return []

Using this, we can b uild a function to execute a full query:
executeSelect :

String -> String -> List (Int , DBVal) ->
(Eff IO [SQLITE (SQLiteExecuting V alidRow)]

(List DBVal)) ->
Eff IO [SQLITE ()] (Either QueryError ResultSet)

This returns either an error, or a set of results, defined as follows:
ResultSet : T ype
ResultSet = List (List DBVal)

data DBVal = DBInt Int | DBText String
| DBFloat Float | DBNull

3.3 A Simple Session Handler

Larger web applications require persistent state across separate
requests. T his can be achieved using a session, in which a cookie
is set on the remote host containing a unique session ID, which is
used to retrieve data. In this section, we describe a simple session
handler, and the resource protocol involved.

The Effects library allows for composition of individual, fine-
grained effects. By combining the CGI and SQLite components,
we can construct a simple session handler to provide a notion
of state across separate web requests. We implement this with a
SQLite database containing tables for storing session keys and
expiry dates, along with the data associated with the session.

Figure 8 shows the resource usage protocol associated with the
session handler, and F igure 7 the corresponding algebraic effect. In
this application, there are two states: In SessionClosed, the user
may load or create a session. In SessionOpen, the user may update
the representation of the session in memory, serialise the session
and write it t o the database, or delete the session and invalidate

6

updateSessionclroesatadatrSeteSsessisoinSSo,enessssioionnCOlposeendwddreiilstecetaTeroSdDeSBsess,isoinonChanges,
Figure 8. Session Handler Resource U sage Protocol

the user’s session k ey. T hese two states ensure that changes are
explicitly either written or discarded, eliminating the possibility
of a developer updating the session but neglecting to commit it to
persistent storage. This, of course, is under the assumption that the
process exits cleanly: we attempt to facilitate this by writing total
functions where p ossible.

Much like the SQLite effect, we encapsulate failure by reflect-
ing it in the resource associated with the effect.

data SessionStep = SessionClosed | SessionOpen
data SessionRes : SessionStep -> Type where

InvalidSession : SessionRes s
ValidSession : SessionID ->

SessionData ->
SessionRes s

4. Type-aware form handling

Programming web applications often involves processing user data,
which may then b e used in further effectful computations. Data
submitted u sing a form is transmitted as a string as part of an
HTTP request, which traditionally involves losing associated type
information.

This can in turn lead to r isks; developers may assume that data
is of a certain type, and therefore discount the p ossibility that it
may h ave been modified by an attacker. One example would be
the t raversal of p aginated data, in which a form is used to make a
request to retrieve the next p age of data. This may involve sending
an integer detailing the current page, which could be used in a query
such as:

’ SELECT ‘name ‘ , ‘ address ‘ FROM ‘ staff ‘ LIMIT ’ +
page + ’ , 5 ’ ;

The page variable is assumed to be an integer, but may instead be
modified by an attacker to include a malicious string which would
alter the semantics of the query, allowing an attacker to execute a
blind SQL injection attack.

In this section, we present a DSL for the creation of web
forms which preserve type information, implemented as a resource-
dependent algebraic effect. Once the form has b een submitted,
retrieved information is passed directly to a developer-specified
function for handling, without the need to manually check and
deserialise data.

We b egin with a simple example of a form which requests a
user’s name, and echoes it b ack. Firstly, we define a form handler
which echoes b ack a string provided b y the form handler. It has one
argument of type Maybe String, which accounts for the possibil-

ity that the user may have provided invalid data:

echo : Maybe String ->
FormHandler [CGI (InitialisedCGI TaskRunning)]

echo (Just n ame) = output ("Hello , " ++ n ame ++ " !")
echo _ = output "Error ! "

We then specify this in a list of handlers, detailing the arguments,
available effects, handler function and unique identifier:

2013/11/18

{- { Input resource type }

data Session : Effect where
LoadSession : SessionID ->

Session (SessionRes SessionClosed)
UpdateSession : SessionData ->

Session (SessionRes SessionOpen)
CreateSession : SessionData ->

Session (SessionRes SessionClosed)
DeleteSession : Session (SessionRes SessionOpen)
WriteToDB : Session (SessionRes SessionOpen)
DiscardSessionChanges : Session (SessionRes SessionOpen)
GetSessionID : Session (SessionRes SessionOpen)
GetSessionData : Session (SessionRes SessionOpen)

{ Output resource type } { Value } -}

(SessionRes SessionOpen) (Maybe SessionData)

(SessionRes SessionOpen) ()

(SessionRes SessionOpen) (Maybe SessionID)

(SessionRes SessionClosed) Bool

(SessionRes SessionClosed) Bool

(SessionRes SessionClosed) ()
(SessionRes SessionOpen) (Maybe SessionID)

(SessionRes SessionOpen) (Maybe SessionData)
Figure 7.S essionE ffect

Figure 7. Session Effect

handlers : H andlerList
handlers = [handler args= [FormString] ,

effects= [CgiEffect] ,
fn=echo ,
name= "echo "]

We also define a form to take in a name from the user, and specify
that it should use the echo handler.

showHelloForm : UserForm
showHelloForm = do

addTextBox "Name " FormString Nothing
useEffects [CgiEffect]
addSubmit echo handlers

Finally, we specify that if data has b een submitted for processing,
then it should b e passed to the f orm handler. If n ot, t hen the form
should be shown.

cgiHello : CGIProg [] ()
cgiHello = do

handler_set <- isHandlerSet
if handler_set then do

handleForm handlers
return ()

else do
addForm "nameform" "helloform" showHelloForm
return ()

main : IO ()
main = runCGI [initCGIState] cgiHello

When this CGI application i s invoked, it will begin b y outputting a
form to the page, requesting a name from the user. Upon submis-
sion of the form, the form handler will be invoked, and the name
will be used in the output.

In Sections 4.1 and 4.2, we examine implementation of the
form-handling system: namely, the effect which allows the creation
of forms, and the handling code which deserialises the data and
passes it to the user-specified handler function.

4.1 Form Construction

Each form element is specified to hold a p articular type of data,
which, assuming that the correct type of data is specified b y the
user, is passed directly to the handler function. In order to encap-
sulate this, we firstly define the allowed data types as part of an
algebraic data type, FormTy.

data FormTy = FormString | FormInt
| FormBool | FormFloat
| FormList FormTy

Since types in IDRIS are first-class, we may use this to convert be-
tween abstract and concrete representations of allowed form types:

7
interpFormTy : FormTy -> Type
interpFormTy FormString = String
interpFormTy FormInt = Int
interpFormTy FormBool = Bool
interpFormTy FormFloat = Float
interpFormTy (FormList a) = List (interpFormTy a)

Again, we use Effects to build a form. By recording the type
of each form element as it is added in the type of the form, we
may statically ensure that the u ser-supplied handler function is of
the correct type t o handle the data supplied by the form: using an
incompatible handler will result in a compile-time type error. The
Form effect and associated resource FormRes is given in Figure 9.
The u sing notation here indicates that within the block, where G

and E occur they are implicit arguments with the given type.
The general process of form construction is illustrated by the

AddTextBox and Submit operations of the Form effect:
data Form : Effect where

AddTextBox : (label : String) -> (fty : FormTy) ->
Maybe (interpFormTy fty) ->
Form (FormRes G E)

(FormRes (fty : : G) E) ()
. . .

Submit : (mkHandlerFn ((reverse G) , E)) -> String ->
Form (FormRes G E) (FormRes [] []) String

These use the resource associated with the effect, FormRes, to
construct the form. Adding a field such as a text box adds a new
type, fty to the list of field types, carried in the resource. W hen
the form is complete, the Submit operation adds a submit button
and returns the HTML text for the form, flushing the list of field
types, and using it to construct the type for an appropriate handler
function. To specify a form instance, we define a function of type
UserForm:

UserForm : Type
UserForm = EffM m [FORM (FormRes [])

(FormRes [])] String

The input and output resource contains an empty list of types,
which means that any form which includes fields must also include
a submit button. Adding fields adds to the list of types, and only
adding a submit button empties that list. N ote that there is no need
to restrict this effect to running in the IO monad since creating a
form merely returns HTML text, with no side-effects by default.

Handlers may only be associated with a form if they have
argument types corresponding to the types associated with the form
elements. Additionally, we wish to name the function in order for it

to b e serialised, whilst r equiring a proof that the specified name is

associated with the function. If this were not required, it would be

2013/11/18

using (G : List FormTy , E : List WebEffect)
data FormRes : List FormTy -> List WebEffect -> Type where

FR : Nat -> List FormTy -> List WebEffect -> String -> FormRes G E

data Form : Effect w here
AddTextBox : (label : String) -> (fty : FormTy) -> (Maybe (interpFormTy fty)) ->

Form (FormRes G E) (FormRes (fty :: G) E) ()
AddSelectionBox : (label : String) -> (fty : FormTy) -> (vals : Vect m (interpFormTy fty)) ->

(names : Vect m String) ->
Form (FormRes G E) (FormRes (fty : : G) E) ()

AddRadioGroup : (label : String) -> (fty : FormTy) -> (vals : Vect m (interpFormTy fty)) ->
(names : Vect m String) -> (default : Int) ->
Form (FormRes G E) (FormRes (fty : : G) E) ()

AddCheckBoxes : (label : String) -> (fty : FormTy) -> (vals : Vect m (interpFormTy fty)) ->
(names : Vect m String) -> (checked_boxes : Vect m Bool) ->
Form (FormRes G E) (FormRes ((FormList fty) : : G) E) ()

Submit : (mkHandlerFn ((reverse G) , E)) -> String ->
Form (FormRes G E) (FormRes [] []) String

Figure 9.

possible to use a function satisfying the type requirement, without

guaranteeing that the serialised data corresponded to that function.

Before associating a handler function with the form, we must

specify the effects available to the handler. T his is done with

useEffects, which updates the list of effects in the type of the

form resource. By doing this, we may subsequently use the effects

in calculations at the type level, in p articular when calculating the

type of the handler function for the form.

useEffects : (effs : List WebEffect) ->
EffM m [FORM (FormRes G E)]

[FORM (FormRes G effs)] ()
useEffects effs = (UseEffects effs)

A WebEffect is an effect which is u sable in a web application, and

can be converted to an EFFECT using:

webEffect : WebEffect -> EFFECT

Whilst it is not possible to serialise arbitrary effects due to
the associated difficulties with serialising initial resource environ-
ments, we allow for three effects to be serialised: CGI, SQLITE
and SESSION. This is, however, not an inherent limitation as the
Effects library permits introduction of additional effects within
an effectful computation. We may specify a handler function of
type FormHandler:

FormHandler : List EFFECT -> Type
FormHandler effs = Eff IO effs ()

In order to associate a handler with a form, we may call the
addSubmit function:

addSubmit : (f : mkHandlerFn ((reverse G) , E)) ->
(fns : HandlerList) ->
{default tactics

{ applyTactic findFn 100 ; solve ; }
prf : FnElem f fns} ->

EffM m [FORM (FormRes G E)]
[FORM (FormRes [] [])]

addSubmit f handlerSst r{ipnrgf} = (Submit f name)
where name : String

name = getString’ ’ f handlers prf

This function takes a handler function and a list of available h an-
dlers, along with an automatically constructed proof (using the a
default argument) that the handler is available. Let us look at each
aspect of this function in turn. Firstly, the m kHandlerFn function
calculates the required type of the handler function from the list of

Form Effect

types associated with the form elements, and the effects we speci-
fied with u seEffects. Note that since we prepend types to the list
of FormTys as opposed to appending them, we must reverse the list.

MkHandlerFnTy : Type
MkHandlerFnTy = (List FormTy , List WebEffect)

mkHandlerFn ’ : List FormTy -> List WebEffect -> Type
mkHandlerFn ’ [] effs = FormHandler (map webEffect effs)
mkHandlerFn ’ (x : : xs) effs = Maybe (interpFormTy x) ->

mkHandlerFn : MkHandlerFnTy ->m kTHyapnedlerFn’ xs effs
mkHandlerFn (tys , effs) = m kHandlerFn’ ’ tys effs

The m kHandlerFn function takes a tuple describing the arguments
and web effects available to the handler function. When construct-
ing the function type, we wrap all arguments in a Maybe, in order
to handle failure should the supplied data fail to p arse as the re-
quired type. To store a reference to a handler function, we use the
HandlerFn t ype:

HandlerFn : Type
HandlerFn = (ft ** (mkHandlerFn ft , String))

The ** notation denotes a dependent pair, in which the type of the
second element of the p air is parameterised over the value of the
first element. It is an existential binding: the notation (x ** P x)
can b e r ead as “there exists an x such that P x holds”. Therefore a
HandlerFn states that there exists a function type ft such that we
have a handler for it, and a unique string identifier which is used to
serialise a r eference to the handler function.

In order to abstract away from this implementation detail, we
make use of IDRIS syntax rewriting r ules. This allows us to define
the following:

syntax
"handler args=" [args] " , effects= " [effs] " , fn= " [fn]
" , name= " [name] = ((args , effs) ** (fn , name))

We may then define handlers in a more intuitive fashion, without
being concerned with the implementation details. This allows us to
write a handler with one String argument, making use of the CGI
effect, associated with the echo handler function as follows:

handler args= [FormString] ,
effects= [CgiEffect] ,
fn=echo ,
name= " echo "

We then store each HandlerFn in a HandlerList.

8 2013/11/18

HandlerList : Type
HandlerList = List H andlerFn

To enforce the r equirement that a supplied handler function
must b e in the list of available handlers, and therefore allow u s to
retrieve the name with which to serialise the handler, we require a
list membership p roof, FnElem f fns, which statically guarantees
that a given item resides in a list.

using (xs : H anderList , f : m kHandler (reverse G, E))
data FnElem : m kHandlerFn ((reverse G) , E) ->

HandlerList -> Type w here
FnHere : FnElem f (((reverse G, E) **

(f , fStr)) : : xs)
FnThere : FnElem f xs -> FnElem f (x : : xs)

FnElem is parameterised over G and E , the types of the form
elements and the effects used b y the handler function. FnHere is a
proof that the element is at the h ead of the current p oint of the list,
whereas FnThere is a proof that the element is in the tail of the
list. We then use an automatic p roof search to generate the proof
at compile time, should one exist. The proof may then b e used in
subsequent computations: we use it to retrieve the unique identifier
for the function. If the automated proof search fails, compilation
will fail.

Finally, we serialise the argument types, supported effects, and
return type of the handler, to allow the form data to be deserialised
and ensure that the correct handler is executed on the server.

Although sending details of the handler function to the client
may appear t o be a security r isk, we envisage that the use of
symmetric encryption or a cryptographic nonce would mitigate
this. U ltimately, we hope to implement a web server with persistent
state, which would eliminate the need for serialisation altogether.

Running form construction is achieved as an operation of the
CGI effect, AddForm, which then outputs the generated HTML to

the page. The generated metadata describing the handler function
is serialised as a h idden HTML field.

4.2 Form Handling

Once the form has been submitted, a web application may h an-
dle the submitted data by invoking HandleForm. This will check
for the e xistence of the hidden handler field, which contains the
previously serialised metadata about the f orm handler, b efore dese-
rialising the data into a MkHandlerFnTy.

With this data, we then look up the function in the list of regis-
tered handlers b y using the u nique handler i dentifier. In order to ap-
ply the handler function to the data submitted in the form, we must
first prove to the type checker that the deserialised MkHandlerFnTy
is the same as the one retrieved from the list of registered handlers.
We do this b y making use of the decEq function, which determines
whether two types are equal, returning a proof of equality if so, and
a proof of inequality if not.

decEq : DecEq t => (x : t) -> (y : t) -> Dec (x = y)

We then use the with construct, inspired b y views in Epi-
gram [9], to rewrite the arguments on the left hand side. T his
allows us to construct a function which, given the stored h an-
dler, the data required to construct the function type and the
MkHandlerFnTy deserialised from the form, determines whether
the two MkHandlerFnTys are decidably equal. If so, we rewrite
this on the left hand side since the equality p roof demonstrates that
the recorded function may also be used to handle the form data. If
not, the computation fails.

checkFunctions : (reg_fn_ty : MkHandlerFnTy) ->
(frm_fn_ty : MkHandlerFnTy) ->
mkHandlerFn reg_fn_ty ->
Maybe (mkHandlerFn frm_fn_ty)

9

checkFunctions reg_ty frm_ty reg_fn with
(decEq reg_ty frm_ty)

checkFunctions frm_ty frm_ty reg_fn
| Yes refl = Just reg_fn

checkFunctions reg_ty frm_ty reg_fn
| No _ = Nothing

We may then parse the arguments according to the types specified
by the handler function, and then apply the arguments to the handler
function. Finally, we may run the handler function, ensuring that all
updates made to the CGI state are propagated.

5. Extended Example: Message Board

In this section we consider a larger example—a message board
application which allows users to register, log in, view and create
threads, and list and create new p osts in threads.

Firstly, we create a database schema in which to r ecord in-
formation stored by the message b oard. We create three tables:
Users, which contains a unique User ID, usernames and pass-
words; Threads, which contains a unique thread ID, a title, and the
ID of the u ser who created the thread; and Posts, which contains
a unique p ost ID, the ID of the thread to which each p ost belongs,
the content of the p ost, and the ID of the u ser that created the post.

Secondly, we use a GET variable, action, to indicate which
page of the message board should be displayed, and pattern-match
on these to call the appropriate function which displays the page.
Some p ages, such as the page which shows all of the posts in a
thread, require a second argument, thread id.

5.1 Handling requests

The entry point to any CGI application is the m ain function. From
here, we run the remainder ofthe program through a call to runCGI,
which we initialise with empty initial environments for the CGI,
Session and SQLite effects, so they may be used in further com-
putations.

main : IO ()
main = do (runCGI [initCGIState ,

InvalidSession , ()]
handleRequest)

return ()

We define a function, handleRequest, which firstly determines
whether submitted form data must be handled, by checking whether
a handler variable exists. If so, then the form handling routine
is called, which executes the corresponding handler function as
specified in Section 4.2. If not, then the h andleNonFormRequest
function is called, which inspects the GET variables in order to
display the correct page.

handleRequest : CGIProg
[SESSION (SessionRes SessionUninitialised) ,
SQLITE ()] ()

handleRequest = do
handler_set <- isHandlerSet
if handler_set then do
lift ’ (handleForm handlers)
Effects .return ()

else do
action <- lift ’ (queryGetVar "action")
thread_id <- lift ’ (queryGetVar "thread_id")
handleNonFormRequest action (map strToInt thread_id)

5.2 Thread Creation

We create four forms: one to handle registration, one to h andle

logging in, one to handle the creation of new threads, and one to
handle the creation of new p osts. For example, the form used to

2013/11/18

create a new thread contains elements for the title of the new thread
and the content of the first post of the new thread:

newThreadForm : UserForm
newThreadForm = do

addTextBox "Title" FormString Nothing
addTextBox "Post Content " FormString Nothing
useEffects [CgiEffect , SessionEffect , SqliteEffect]
addSubmit handleNewThread handlers

This consists of two text boxes: one for the title of the thread,
and one for the content of the first p ost. Both are of type String,
as denoted by the FormString argument, and both have no de-
fault value. The handler function may make use of the CGI,
SESSION and SQLITE effects, and the handler function is speci-
fied as handleNewThread. The handlers argument refers to the
list of form handlers, and is of the following form:
handlers : HandlerList
handlers = [

(handler args= [FormString , FormString] ,
effects= [CgiEffect , SessionEffect , SqliteEffect] ,
fn=handleRegisterForm ,
name="handleRegisterForm") ,

(handler args= [FormString , FormString] ,
effects= [CgiEffect , SessionEffect , SqliteEffect] ,
fn=handleNewThread,
name= "handleNewThread") ,

. . .]
Creating a new t hread (shown in Figure 10) requires a user to
be logged in, so that the thread starter may b e recorded in the
database. In order to do this, we make use of the session handler.
We define a function withSession, which attempts to retrieve the
session associated with the current request, and if it exists, executes
a function which is passed the associated session data. If not, then a

failure function is called instead. Should the f orm handler function
be called with invalid arguments, an error is shown.

handleNewThread :

Maybe String -> M aybe String ->
FormHandler [CGI (InitialisedCGI TaskRunning) ,

SESSION (SessionRes SessionUninitialised) ,
SQLITE ()]

handleNewThread (Just title) (Just content) = do
withSession (addNewThread title content) notLoggedIn
return ()

handleNewThread _ _ = do
outputWithPreamble "<h1>Error</h1>
There was

an error posting your thread ."
return ()

Figure 10. Thread Creation

Once we have loaded the session data from the database, we then
check whether the U serID variable is set, which demonstrates that
a user has successfully logged into the system, and allows us to use
the ID in subsequent computations. The database operation to insert
the thread into the database is performed by threadInsert, shown
in Figure 11. This uses a library function executeInsert, which
abstracts over the low-level resource usage p rotocol, enabling for
provably-correct database access without the excess boilerplate
code. In addition, executeInsert returns the unique row ID of
the last item which was inserted, which may be used in subsequent
computations. In the case of the message board, we use this to
associate the first post of the thread with the thread being inserted.

5.3 Listing Threads

Listing the threads in the database is achieved using executeSelect,
which returns either a ResultSet or an error:

10
threadInsert : Int -> String -> String ->

Eff IO [SQLITE ()] Bool
threadInsert uid title content = do

let query = " INSERT INTO ‘ Threads ‘
(‘UserID ‘ , ‘ Title ‘) VALUES (? , ?) "

insert_res <- (executeInsert DB_NAME query
[(1, DBInt u id) , (2 , DBText title)]

case insert_res of
Left err => return False
Right thread_id => postInsert uid thread_id content

Figure 11. Thread Insertion

getThreads : Eff IO [SQLITE ()] (Either String ResultSet)
getThreads =

executeSelect DB_NAME query [] collectThreadResults
where query = "SELECT ‘ThreadID ‘ , ‘Title ‘ , ‘UserID ‘ ,

‘Username ‘ FROM ‘ Threads ‘ NATURAL JOIN ‘Users ‘ "

Once the result set has been retrieved, we may iterate through the
results and output them to the page, including a link to a page which
shows the p osts associated with the thread. This is shown in Figure
12. Since we know the structure of the returned row from designing
the query, we may pattern match on each returned row to make use
of the returned values.

traverseThreads : R esultSet ->
Eff IO [CGI (InitialisedCGI TaskRunning)] ()

traverseThreads [] = return ()
traverseThreads (x : :xs) = do traverseRow x

traverseThreads xs
where traverseRow : List DBVal ->

Eff IO [CGI (InitialisedCGI TaskRunning)] ()
traverseRow ((DBInt thread_id) : :

(DBText title) : :
(DBInt user_id) : :
(DBText u sername) : : []) =

(output $ "<tr><td>
<a href=\" ?action=showthread&thread_id=" ++
(show thread_id) ++ "\ ">" ++
title ++ "</td><td>" ++
username ++ "</td></tr>")

traverseRow _ = return ()

Figure 12. Thread Insertion

5.4 Authentication

Once a u ser submits the login form, the associated handler queries
the database to ascertain whether a user with the given username
and password exists through a call to the authUser function. This
is shown in Figure 13. If so, then the session handler is invoked, and
a session is initialised with the user ID retrieved from the database.
The session ID is then set as a cookie using the CGI effect, so that
it may be used in subsequent requests. Any failures, for example
with creating a new session or querying the database, are reported
to the user.

Implementations for the insertion and display of p osts, along-
side r egistration, follow the same structure.

Although we have described a relatively simple application, we
have shown that through the use of embedded domain-specific lan-
guages, and p articularly b y encapsulating resource usage protocols
in the types, we can write verified code that fails to compile should
resources b e incorrectly accessed. Additionally, we have used the
form handling mechanism to simply h andle the arguments passed

by the user. Importantly, we have shown that dependent types can
be used to increase confidence in an (albeit simplified) r eal-world
application, without requiring developers to supply proofs or in-
deed work explicitly with dependent types.

2013/11/18

handleLoginForm (Just name) (Just p wd) = do
auth_res <- lift ’ (authUser name p wd)
case auth_res of

Right (Just uid) => do
set_sess_res <- setSess ion uid
if set_sess_res then do
lift ’ (output $ "Welcome , " ++ name)
return ()

else do
lift ’ (output "Could not set session")
return ()

Right Nothing => do
lift ’ (output " Invalid username or password")
return ()

Left err => do
lift ’ (output $ "Error : " ++ err)
return ()

Figure 13. Thread Insertion

6. Related Work

Meijer [10] implemented a CGI library which was among the first
libraries to handle web scripting monadically, and allows the user
to implement application logic without having to consider the low-
level details such as parsing in CGI data from the environment, or
printing headers to the remote browser. The library also provides
support for cookies and b asic form handling.

Thiemann [18] adds the notion of a CGI Session for maintaining
state, and provides more sophisticated form-handling methods. In
particular, callbacks may be associated with submit buttons, with
nameless representations for form inputs. Due to the unavailability
of full dependent types in Haskell, however, this implementation
does not statically verify the suitability of the callback function for
the form inputs. Both implementations of the CGI library, b eing

built upon monads, mean that the use of additional effects such as
database access is achieved either through monad transformers or
performing arbitrary IO operations. Both of these approaches are
limited—the former does not scale well to multiple effects, and the
latter allows for the introduction of errors by allowing the violation
of resource u sage protocols.

Plasmeijer and Achten [13] describe an alternative approach to
type-safe form handling through the interactive D ata, or iData ab-
straction. Instead of processing being triggered by form submis-
sion, as in the approach described in this paper, applications created
in the iData toolkit are edit-driven. This means that upon a com-
ponent being edited, a computation occurs, given the state of the
current form. This is saved for future computations. Should a user
enter invalid data, for example by entering text in a field designated
for integers, the change will b e reverted. This is demonstrated p rac-
tically through the use of iData to implement a conference manage-
ment system [14].

The concept of iData is taken further b y the introduction of
iTasks [15], which make use of a workflow system to allow mul-
tiple iData forms to interact with one another. This is achieved
using high-level combinators which allow the implementation of
concepts such as recursion, sequence and choice in a scalable fash-
ion. T hese high-level abstractions are elegant, but the style and syn-
tax differ substantially from a traditional web application. Our ap-
proach takes the concept of type-safe input handling and u ses it in
a more traditional fashion, whilst r etaining the type-retention guar-
antees afforded by iData elements.

UrWeb [5] is a library built for the Ur language, which does
not use full dependent types but does have an expressive type
system with record types and type-level computation. By using
these concepts, UrWeb may generate provably correct and unex-
ploitable DOM code and SQL queries from records, without re-

11

quiring developers to supply proofs. In contrast to using runtime
code generation, which is p rone to obscure code generation er-
rors, UrWeb makes use of its static type system to guarantee t hat
metaprograms—in this case, generated SQL and DOM code—must
be correct and secure. Such ideas r egarding the use of static check-
ing of metaprogram generation will be extremely useful when con-
sidering an object-relational mapping system, which we hope to
implement in the near future. It will also be interesting to see how
such concepts may be applied with a yet more expressive type sys-
tem involving full dependent types.

WebDSL [19] is a domain-specific language written p rimarily
to introduce new abstractions which aim to reduce the amount of
boilerplate code that must be written and maintained by develop-
eres. W ebDSL is b uilt on top of J ava, which often includes a large
amount of r edundant code such as accessor and mutator functions
within entity classes. The J ava Persistence API (JPA) [1] provides
an object-relational mapping through the use of Java 5 annotations,
which may then be used to construct database tables. These anno-
tations soon b ecome complex, however, and coupled with redun-
dant boilerplate code, data model declarations may soon become
unwieldy. Through the use of WebDSL, these data model declara-
tions can be much more compactly declared, and elaborated into
Java code b y parsing the data-modelling DSL into an abstract syn-
tax tree, applying rewrite rules, and pretty-printing. W ebDSL also
applies similar concepts to implement a template system for such
objects, which allows the data to be used in code generation. We
look to implement many of these ideas, but as effects within the
IdrisWeb framework, as with the form construction effect.

7. Conclusions

Dependently-typed languages promise to support machine check-
able program correctness proofs, but to date they have remained rel-
atively unused for practical p urposes. By using embedded domain-
specific languages, we can abstract away some of the complexities
of creating correctness proofs and provide expressive libraries, giv-
ing guarantees by the successful compilation of a program (assum-
ing the use of specific enough types) without additional proofs.

Our framework provides several static guarantees. D ata submit-
ted b y users is inherently unsafe and means systems are vulnera-
ble to attacks such as SQL i njection. This particular threat is ame-
liorated due to elements being associated with specific types dur-
ing form construction. This immediately eliminates the possibili-
ties of SQL injection attacks on n on-string types. Since failures are
handled transparently, no runtime errors are output to the browser,
meaning that attackers may not use such information to aid attacks.
Additionally, since checking is p erformed on the types of the form
elements and the types of arguments accepted by the handler, it is
impossible to associate a form with a handler incompatible with the
submitted data.

Many external libraries also follow (unchecked or dynamically
checked) resource usage protocols. Incorrect usage is however still
possible, for example b y forgetting to release acquired resources or
failing to initialise a library correctly. By creating high-level b ind-
ings to these libraries, however, we may statically enforce these
resource-usage p rotocols, ensuring that the libraries are used cor-
rectly. W hilst previous work has demonstrated that t his is possible
through the use of embedded DSLs [4] and dependent algebraic
effects [3], this p aper has provided more substantial examples of
real-world applications.

In particular, the f ramework guarantees t hat it is not possible for
a CGI application to produce an internal server error due to content

being written to the r emote host p rior to headers. With r egard to
database access, we may statically guarantee that library calls are
made in the correct order, and calls to retrieve rows ofdata are made
only when more data is available. Additionally, by encoding desired

2013/11/18

invariants within operation types, we may gain static guarantees
about adherence to resource u sage protocols and failure handling.
Enforcing resource usage p rotocols also guards against common
programmer errors, saving debugging time b y identifying errors at
compile time.

7.1 Further Work

We have shown that embedded domain-specific languages using
dependent types and algebraic effects can be u sed to increase con-
fidence in web applications b y providing additional static guaran-
tees about runtime b ehaviour, but much more can be done using the
same approach.

There are many other applications which make use of specific
resource u sage protocols, for example popular libraries such as
libgcrypt2. Applying a similar approach would allow for sensitive
programs requiring cryptographic routines to be written using a
language with full dependent types, in turn adding an extra layer
of confidence in their security.

Whilst the use of CGI allows for experimenting with the use
of dependent types in a r eal-world scenario such as web program-
ming, there r emain practical considerations about its scalability, as
a separate process must be created for each individual request. W e
believe that the use of FastCGI may alleviate this, but ultimately,
we would like to create a web server written in IDRIS, which would
make more efficient u sage of r esources.

Since at this stage we have concentrated on the use of depen-
dent types for enforcing resource usage protocols and type-safe
form handling, we currently handle the generation of HTML in an
unstructured manner. Future work will entail a DOM library to fa-
cilitate the generation and manipulation of HTML, in turn giving
stronger guarantees about its correctness. Other planned features
include a template system, allowing for web pages to be automati-
cally generated from data, and an object-relational mapping system
which will allow users to manipulate records which can then be

automatically written to the database, instead of having to update
tables manually via SQL queries.

Type p roviders, as originally implemented in F# [17], are an in-
teresting method by which external data sources may be used to
import external information, such that it may be used during com-
pilation. In this way, it becomes possible to use the extra type in-
formation to statically ensure the validity of artefacts such as SQL
queries and data structures. If data structures within the program
do not conform to a given database schema, for example, then the
program will not type-check. This has been implemented for IDRIS
[6], exploiting the fact that types can be calculated by functions
to avoid generating extra code in the type provider step. Depen-
dent type p roviders additionally have stronger safety guarantees
as they may not generate u nchecked code, but at the same time
this is matched by a decrease in expressiveness. Nonetheless, such
techniques provide a promising mechanism to verify the semantic
soundness of programs and we look to investigate their integration
in further work.

Dependently-typed languages provide great promise for the
construction of secure and correct programs. Through the use of
embedded domain-specific languages, we hope that more develop-
ers may benefit from the extra guarantees afforded b y dependent
types, r esulting in more stable, secure applications.

Acknowledgments

This work has been supported b y the Scottish Informatics and
Computer Science Alliance (SICSA) and the E PSRC. The authors
would like to thank contributors to the IDRIS language, especially
the authors of the original Network .Cgi and SQLite libraries.

2 http ://directory .fsf .org/wiki/Libgcrypt

12

References
[1] Heiko B o¨ck. Java p ersistence api. In The D efinitive Guide to NetBeans

Platform 7, pages 315–320. Springer, 2011.

[2] Edwin Brady. Idris, a general-purpose dependently typed program-
ming language: D esign and implementation. Journal of Functional
Programming, 23:552–593, 9 2013. ISSN 1469-7653. . URL http :
//j ournals . cambridge .org/article_S095679681300018X.

[3] Edwin Brady. Programming and reasoning with algebraic effects and
dependent types. In Proceedings of the 18th ACM SIGPLAN Interna-
tional Conference on Functional P rogramming, 2013. To appear.

[4] Edwin Brady and Kevin Hammond. Resource-safe systems program-
ming with embedded domain specific languages. In Practical Aspects
of Declarative L anguages, pages 242–257. Springer, 2012.

[5] Adam Chlipala. Ur: statically-typed metaprogramming with type-level
record computation. In ACM Sigplan Notices, volume 45, p ages 122–
133. A CM, 2010.

[6] David Raymond Christiansen. Dependent type providers. In Workshop
on Generic P rogramming (WGP ’13), 2013.

[7] Lee Garber. Security, privacy, and policy roundup. I EEE Security &
Privacy, 10(2):15–17, 2012. ISSN 1540-7993. .

[8] Imperva. Lessons Learned From the Yahoo! Hack. 2013. URL
http : //www . imperva. .com/download. .asp?id=299.

[9] C. McBride and J . McKinna. The view from the left. Journal of
Functional P rogramming, 14(1):69–1 11, 2004.

[10] Erik Meijer. Server side web scripting in haskell. Journal of Func-
tional Programming, 10:1–18, 12000. ISSN 1469-7653. . URL http :
//j ournals . cambridge .org/article_S0956796899003561.

[11] OWASP. Cross-site Scripting (XSS). URL https ://www .owasp .
org/index .php/Cross- site_scripting.

[12] OWASP. SQL Injection, 2013. URL https : //www .owasp .org/
index .php/SQL_inj ection.

[13] Rinus Plasmeijer and Peter Achten. idata for the world wide web–
programming interconnected web forms. In Functional and L ogic
Programming, pages 242–258. Springer, 2006.

[14] Rinus Plasmeijer and Peter Achten. A conference management system
based on the idata toolkit. In Implementation and A pplication of
Functional L anguages, pages 108–125. Springer, 2007.

[15] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. itasks: exe-
cutable specifications of interactive work flow systems for the web.
SIGPLANN ot, 42: 141–152, 2007.

[16] Gordon Plotkin and Matija Pretnar. Handlers of Algebraic Effects. In
ESOP 09: P roceedings of the 18th European Symposium on Program-
ming L anguages and Systems, p ages 80—-94, 2009.

[17] Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, Jomo
Fisher, Jack Hu, Tao Liu, Brian McNamara, Daniel Quirk, Matteo
Taveggia, et al. Strongly-typed language support for internet-scale
information sources. Technical report, Technical Report. Microsoft
Research, 2012.

[18] Peter Thiemann. W ash/cgi: Server-side web scripting with sessions
and typed, compositional forms. In P ractical Aspects of Declarative
Languages, p ages 192–208. Springer, 2002.

[19] Eelco Visser. Webdsl: A case study in domain-specific language engi-
neering. In Generative and Transformational Techniques in Software
Engineering II, pages 291–373. Springer, 2008.

[20] W3Techs. Usage of server-side programming languages for web-
sites, July 2013. URL http ://w3techs .com/technologies/
overview/programming_language/all.

2013/11/18

	Introduction
	Contributions

	An overview of the Effects framework
	Implementing Effects
	Resource Protocols as Effects

	Modelling resource usage protocols
	CGI
	Database access with SQLite
	Example

	A Simple Session Handler

	Type-aware form handling
	Form Construction
	Form Handling

	Extended Example: Message Board
	Handling requests
	Thread Creation
	Listing Threads
	Authentication

	Related Work
	Conclusions
	Further Work

