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Abstract. Embedded languages in Haskell benefit from a range of type
extensions, such as type families, that are subsumed by dependent types.
However, even with those type extensions, embedded languages for data
parallel programming lack desirable static guarantees, such as static
bounds checks in indexing and collective permutation operations.
This observation raises the question whether an embedded language for
data parallel programming would benefit from fully-fledged dependent
types, such as those available in Agda. We explored that question by
designing and implementing an Agda frontend to Accelerate, a Haskell-
embedded language for data parallel programming aimed at GPUs. We
discuss the potential of dependent types in this domain, describe some
of the limitations that we encountered, and share some insights from our
preliminary implementation.
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1 Introduction

Generative approaches to programming parallel hardware promise to combine
high-level programming models with high performance. They are particularly at-
tractive for targeting restricted architectures that cannot efficiently execute code
aimed at conventional multicore CPUs. One prime example are GPUs (graphics
processor units), which require a high degree of data parallelism, restricted con-
trol flow, and custom tailored data access patterns to be efficient. Previous work
—for example, Accelerator [17], Copperhead [2], and Accelerate [3]— demon-
strates that embedded array languages with a custom code generator can meet
those GPU constraints with carefully designed language constructs.

Given a host language with an expressive type system, it is attractive to
leverage that type system to express static properties of the embedded language.
For example, Accelerate, an embedded array language for Haskell, uses Haskell’s
recent support for type-level programming like GADTs and type families in that
manner [3]. This design choice is desirable for approaches relying on run-time
code generation: each potential fault at application run time should be discovered
by a compile-time fault in the embedded language. Moreover, static guarantees
hold the potential to improve the predictability of parallel performance.
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Dependent types [9] are an established approach to certified programming,
where invariants are established in the form of types and proven at compile
time. Many of Haskell’s type-level extensions used in Accelerate approximate
aspects of dependently-typed programming. Hence, it is natural to ask whether
fully-fledged dependent types, such as those provided by Agda, improve the
specification of an embedded language like Accelerate, whether they increase
the scope of static guarantees, and whether they may be leveraged to predict
performance more accurately.

This paper is a first investigation into this topic. It reports on a partial port
of Accelerate to a new, dependently-typed host language, Agda [1, 10]. Agda
is particularly suited to this port because of its foreign function interface to
Haskell, which enables it to directly invoke the functionality of Accelerate. The
main contributions of this paper are the following:

– We identify and discuss the challenges of combining generative embedded
languages with dependent typing (Section 4).

– We propose predicated arrays to overcome some of these challenges (Sec-
tion 5).

– We outline an implementation of the main parts of Accelerate in Agda using
the Agda-Haskell FFI for code execution (Section 6).

Overall, our investigation has the following structure. After recalling some back-
ground on Agda and Accelerate in Section 2 and describing related work in
Section 3, Section 4 discusses potential uses of dependent types in an array-
oriented data parallel language and how they were realized in our implementa-
tion. Section 5 considers conceptual problems and limitations that we ran into
when constructing the Agda frontend for Accelerate. Section 6 explains some
technical details of the implementation and discusses some example code.
Source code is available at https://github.com/mchakravarty/accelerate-agda.

2 Background

2.1 Agda

Agda [1,10] is a dependently-typed functional programming language. Its basis is
a dependently-typed lambda calculus extended with inductive data type families,
dependent records, and parameterized modules. At the same time, Agda is also
a proof assistant for interactively constructing proofs in an intuitionistic type
theory based on the work of Per Martin-Löf [9].

One attractive feature of Agda’s inductive data type families is the ability
to construct indexed data types. A familiar example for such an indexed data
type is the type Vec A n of vectors of fixed length n and elements of type A.
This vector data types can be equipped with an access operation that restricts
the index to the actual length of the vector at compile time.3

3 An identifier can be an almost arbitrary string of Unicode characters except spaces,
parentheses, and curly braces. Agda also supports mixfix syntax with the position
of arguments indicated by underscores in the defining occurrence of an identifier.
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data Nat : Set where

zero : Nat

suc : Nat -> Nat

data Vec (A : Set) : Nat -> Set where

[] : Vec A zero

_::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n)

The above defines the type Nat of natural numbers and an indexed data type
Vec A n where A is a type and n is a natural number. The latter type comes
with two constructors, [] for the vector of length zero and _::_ for the infix
cons operator that increases the length by one.

One way of writing a safe access operation first defines an indexed type that
encodes the required less-than relation on natural numbers.

data _<_ : Nat -> Nat -> Set where

z<s : {n : Nat} -> zero < suc n

s<s : {m n : Nat} -> m < n -> suc m < suc n

Lines two and three of the definition encode named inference rules for the cases
that 0 < n + 1 (for all n) and that m + 1 < n + 1 if m < n (for all m,n).

The access operation takes a vector of length n, an index m, and a proof of
m < n (a derivation tree) to produce an element of the vector.

get : {A : Set} {n : Nat} -> Vec A n -> (m : Nat) -> m < n -> A

get [] _ () -- impossible case

get (x :: xs) zero z<s = x

get (x :: xs) (suc m) (s<s p) = get xs m p

This code cannot fail at run time because a caller has to construct the proof
tree for m < n before invoking get. Thus, an “index out of bounds” error cannot
happen. (In Agda, arguments in curly braces are implicit arguments that will be
inferred if omitted in an application.)

2.2 Accelerate

Accelerate [3] is a generative data-parallel array language embedded into Haskell,
which targets GPUs. Being generative, its data-parallel array operations are not
executed directly. Instead, Accelerate constructs abstract syntax trees (AST)
representing an entire data-parallel subcomputation. These computation repre-
sentations are executed using a run operation that accepts such a representation
(of type Acc a), compiles it to GPU kernels, uploads it to a device, executes it,
and retrieves the results.4

CUDA.run :: Arrays a => Acc a -> a

4 To distinguish Haskell code from Agda code, we display Haskell code in a blue box.
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The type class constraint Arrays a restricts the result type to a single array or
a tuple of arrays.

As computation representations of type Acc a are compiled at application
run time, all Acc compilation errors are effectively run-time errors of the appli-
cation. Hence, Accelerate uses a range of Haskell type system extensions to stat-
ically type Accelerate expressions, such that these run-time errors are avoided
where possible. In particular, Accelerate uses GADTs [7], associated types [4],
and type families [14].

As a simple example of an Accelerate program, consider a function imple-
menting a dot product:

dotp :: Vector Float -> Vector Float -> Acc (Scalar Float)

dotp xs ys = let { xs’ = use xs; ys’ = use ys }

in fold (+) 0 (zipWith (*) xs’ ys’)

The types Vector and Scalar represent one- and zero-dimensional arrays. Plain
arrays, such as Vector Float are conventional Haskell arrays, using an unboxed
representation to improve performance. However, when they are wrapped into
the constructor Acc, such as in Acc (Scalar Float), they represent arrays of
the embedded language and are allocated in GPU memory, which in current
high-performance GPUs is physically separate from CPU memory.

The use operation makes a Haskell array available in the embedded lan-
guage by wrapping it into the Acc constructor. It amounts to copying it to GPU
memory.5 The operations fold and zipWith represent collective operations on
Accelerate arrays, effectively producing a representation of an array computa-
tion yielding a single float value (Scalar Float). The code relies on (type class)
overloading: 0, (+), and (*) are overloaded to construct abstract syntax.

The types Scalar and Vector are type synonyms instantiating a shape-
parameterised array type to the special case of zero and one dimensional arrays:

type Scalar e = Array DIM0 e

type Vector e = Array DIM1 e

In the general type for use, the class Elt characterizes all types that may be
held in Accelerate arrays. These are currently primitive types and tuples.

use :: Elt e => Array sh e -> Acc (Array sh e)

Common dimensions, such as DIM0, DIM1, and so on, are predefined, but to enable
shape polymorphic computations, along the lines pioneered in the Haskell array
library Repa [8], shapes are inductively defined using type-level snoc lists built
from the data types Z and :.. The use of snoc lists simplifies the type signatures
of fold operations that reduce or abstract over the least significant dimensions.

5 Accelerate employs caching to avoid the transfer of arrays that are already available
in GPU memory.
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data Z = Z

data sh :. i = sh :. i

-- Types for often used dimensions

type DIM0 = Z

type DIM1 = DIM0 :. Int

-- and so on

3 Related Work

Peebles formalizes parts of the Repa API using Agda [11]. The formalisation
relies on the same shape structure as Accelerate, but array computations are
neither embedded nor can parallel high-performance code be generated.

Swierstra and Altenkirch investigated the use of dependent types for dis-
tributed array programming [15, 16]. Their notation for distributed arrays is
inspired by the X10 language [13]. They focus on expressing locality awareness.

Dependent ML is an ML dialect with a restricted form of dependent types,
which, among other applications, may be used to statically check array bounds [18].
However, only simple indexing and array updating are considered and not ag-
gregate array operations, such as those provided by Accelerate.

Accelerator [17] enables embedded GPU computations in C# programs; it
subsequently also added F# support. However, no attempt is made to track
properties of array programs statically. Similarly, Copperhead [2] embeds an
array language into Python, but does not attempt to track information statically.

4 Dependent Types for Accelerate

In this section, we investigate the potential uses of dependent typing in a lan-
guage like Accelerate and point out how they may be implemented in Agda.
First, we review some basics of the embedding.

4.1 Embedding of Haskell Types

Accelerate supports a wide range of numeric types, characterized by the type
class Elt, as base types for array computations. Almost all of these types lack
a suitable counterpart in Agda, which only supplies computationally expensive
encodings for natural and rational numbers. For that reason, our embedding
keeps the Haskell types abstract in Agda. To specify the types of functions that
are polymorphic in such a Haskell type or depend on it in some way, we have
reified the possible element types as an Agda type Elt:

data Elt : Set where

Bool : Elt

Int : Elt
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Float : Elt

Double : Elt

Pair : Elt -> Elt -> Elt

-- and so on

Corresponding to Haskell type classes that are used in Accelerate, our embedding
supplies predicates that characterize subsets. For example, the set of numeric
types is defined by a predicate Numeric:6

Numeric : Elt -> Set

Numeric Int = >
Numeric Float = >
Numeric Double = >
Numeric _ = ⊥

The embedding declares further subsets all in the same style.

4.2 Array Types

To demonstrate the Agda embedding in action, we translate the dot product
example from Section 2.2 to Agda.7

dotp : forall {E : Elt} {{p : Numeric E}} {n : Nat}

-> PreVector n E -> PreVector n E -> Scalar E

dotp{E} xs ys =

let xs’ = use xs

ys’ = use ys

in fold _+_ ("0" ::: E) (zipWith _*_ xs’ ys’)

Unlike the Accelerate code, this function is polymorphic with respect to the
array element type, provided it is numeric. The length parameter n ensures that
the two input vectors have the same size. The PreVector type of the arguments
corresponds to the plain Vector type in Accelerate, whereas the result type
Scalar E corresponds to Acc (Scalar E)—a piece of abstract syntax.

The use function works as before, but its type includes more information:

use : {sh : Shape}{E : Elt} -> PreArray sh E -> Array sh E

Like E, the index sh is now an element of an ordinary type instead of having to
rely on type-level snoc lists:8

data Shape : Set where

Z : Shape

_:<_> : Shape -> Nat -> Shape

6 > is a one-element type, whereas ⊥ is a type without elements. These types custom-
arily represent truth and falsity.

7 In Agda, arguments in double curly braces are instance arguments [5] that are ag-
gressively inferred. We use them like type class constraints in Haskell.

8 Recent work on Haskell’s type system manages to avoid this issue [19].
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Asking for arrays of equal shape, as in the signature of use, means that the
arrays have to have the exact same layout. The PreVector and Vector types
are just synonyms as in Haskell:

PreVector n E = PreArray (Z :< n >) E

Vector n E = Array (Z :< n >) E

The functions fold, zipWith, and ::: are discussed in the subsequent subsec-
tions. The functions _+_ and _*_ both have the same type:

_+_ _*_ : {E : Elt} {{p : Numeric E}} -> Exp E -> Exp E -> Exp E

They are restricted to arguments of numeric type and construct abstract syntax
for an addition or a multiplication by delegating to the corresponding Accelerate
functions. The type Exp E denotes an AST of an expression of type E.

4.3 Exact Checking of Array Bounds

Accelerate’s API features expressive type constraints that describe the shape of
the array arguments and results. These constraints ensure that no shape mis-
matches occur (e.g., a 1D array cannot be considered 2D), but they do not ensure
at compile time that the sizes of the dimensions match up. Such a mismatch re-
sults in a run-time error.

As an example, consider the function reshape. It takes a target shape sh

and an array of source shape sh’ and changes the layout of that array to sh.

reshape :: Exp sh -> Acc (Array sh’ e) -> Acc (Array sh e)

For this reshaping to work correctly, the underlying number of elements must
remain the same. For example, while it makes sense to reshape a two-dimensional
3 × 4-array to a vector of size 12 or to a three-dimensional 3 × 2 × 2-array, an
attempt to reshape to a 2× 5-array should be rejected at compile time.

As Shape is an ordinary data type in Agda, we can define a size function
that computes the number of elements stored in an array of a certain shape.

size : Shape -> Nat

size Z = 1

size (sh :< n >) = size sh * n

Now we can state an accurate type for reshape in Agda, which involves an extra
argument with a proof that the source and target shapes have the same size.

reshape : {sh : Shape} {E : Elt}
-> (sh’ : Shape) -> Array sh E -> (size sh ≡ size sh’)

-> Array sh’ E

There is a subtle difference to the original signature. In Accelerate, the first
argument is an expression that produces a value of type sh at run time, whereas
the Agda reshape requires a Shape as its first argument. Hence, Agda reshape
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computes the shape in the host language on the CPU, whereas the original
signature admits to compute the new shape in the embedded language as part
of a GPU computation. In other words, we slightly restrict expressiveness here
to gain more static information, we will get back to that issue when discussing
filtering.

In Agda, functions like map and zipWith obtain more precise types. The type
of map tells us that the input shape is identical to the output shape:

map : {A B} {sh} -> (Exp A -> Exp B) -> Array sh A -> Array sh B

Similarly, the type of zipWith restricts its input arrays to identical shapes:

zipWith : {A B C} {sh} -> (Exp A -> Exp B -> Exp C)

-> Array sh A -> Array sh B -> Array sh C

The latter type is more restrictive than the Accelerate implementation of zipWith.
Instead of checking the sizes of the input arrays, it truncates them to the respec-
tive minima. We also developed an Agda type that directly corresponds to this
implementation. It requires a binary function isect that computes the minimum
of two shapes of the same rank, which we leave as an exercise to the reader.

zipWith’ : {A B C} {shA shB} {p : rank shA ≡ rank shB}
-> (A -> B -> C)

-> Array shA A -> Array shB B -> Array (isect shA shB p) C

4.4 Associativity of Operations

Some parallel reduction operations require their base operation to be associative
to return a predictable result. Here are two examples from Accelerate.

fold :: (Shape ix, Elt a) =>

(Exp a -> Exp a -> Exp a) -> Exp a ->

Acc (Array (ix :. Int) a) -> Acc (Array ix a)

fold1 :: (Shape ix, Elt a) =>

(Exp a -> Exp a -> Exp a) ->

Acc (Array (ix :. Int) a) -> Acc (Array ix a)

In both cases, the text of the documentation says that “the first argument needs
to be associative” and furthermore the fold1 documentation “requires the re-
duced array to be non-empty”. The second requirement can be enforced by
asking for a suitable proof object on each call of fold1:

fold1 : ... -> Array (sh :< n >) E -> (size sh * n > 0)

-> Array sh E

The first requirement can be rephrased to saying that the first two parameters
of fold together form a monoid, which requires an associative operation with
a unit element. The concept of a monoid can be formalized in Agda, which has
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indeed been done in the standard library. Unfortunately, the formalization from
the library cannot be used because Accelerate deals with ASTs, not with values.
So, a formalization is required that states that the meaning of an AST-encoded
function is associative and the meaning of another AST-encoded constant is its
unit element. Given that Accelerate encodes AST construction using higher-
order abstract syntax, such a formalization is not straightforward. Moreover,
even given expressions with a fixed meaning, associativity has to be proved on
a case by case basis.

In any case, providing such information would be done by including an ad-
ditional argument that holds a suitable proof object, as in

fold : forall {E}{sh}{n}

-> (f : Exp E -> Exp E -> Exp E) -> (e : Exp E)

-> Array (sh :< n >) E -> IsMonoid f e -> Array sh E

where

IsMonoid : forall {E} -> (Exp E -> Exp E -> Exp E) -> Exp E -> Set

IsMonoid f e = ( IsAssociative f , IsUnit f e)

Some readers may object that neither addition nor multiplication of float-
ing point numbers is associative [6]. However, for advanced optimizations, the
exploitation of algebraic laws is a necessity and the involved degradation of preci-
sion or change of result is accepted or accounted for in the error estimates. More-
over, there are other operations, like min or max, that are commonly used with
fold-like operations, which are truly associative. Last, but not least, the associa-
tivity declarations serve as important documentation that passing an inherently
non-associative function will produce unpredictable, implementation-dependent
results.

4.5 Embedding of Constants

Accelerate relies on Haskell’s built-in support for the type classes Num and
Fractional to embed constants. The Haskell compiler reads each integer literal
as a value of type Integer, which is a built-in type of arbitrary precision integers.
To this value, Haskell applies the function fromInteger that converts to the type
expected by the context. Similarly, floating point constants are read as values
of type Rational (Integer fractions) and then converted using fromRational.
Accelerate provides instances of these type classes that define fromInteger and
fromRational to produce suitable AST fragments.

Because of Agda’s lack of support for overloaded numeric literals, we embed
numeric literals for integers and floating point numbers using a string with an
explicit type annotation that determines the parsing of the string. Here are some
example embeddings:

"3.1415926" ::: Float

"6.0221415E23" ::: Double
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Recall that Float and Double are not types, but rather values of type Elt. The
::: operation is the workhorse of the embedding:

_:::_ : (s : String) -> (E : Elt)

-> {{nu : Numeric E}} -> {p : T (s parsesAs E)} -> Exp E

s ::: E = Ex (constantFromString (EltDict E) (ReadDict E) s)

The arguments s and E are explicit, but the remaining ones are inferred by Agda.
As mentioned, the argument nu is an instance argument; it is automatically filled-
in with a suitably typed value in scope [5]. As before, the predicate Numeric plays
the role of a type class that characterizes the numeric types.

The function parsesAs dispatches on its “type” argument and parses the
string to check whether it is an acceptable literal of the expected type. The
function constantFromString is imported from Accelerate. It is an overloaded
function that requires two type dictionaries, which are computed from E using
the functions EltDict and ReadDict. This results in a flexible way of handling
literals, which worked well in our examples.

5 Limitations

In a number of places, Accelerate’s generativity limits the applicability of de-
pendent typing. We already mentioned that the formalization of associativity or
of the concept of a monoid cannot be verified in Agda because such properties
have to be asserted for abstract syntax.

For a related problem, consider an implementation of the filter operation
that takes a predicate and a source array and returns an array that only contains
the elements of the source array fulfilling the predicate. First of all, filtering only
makes sense for one-dimensional arrays, that is, for vectors. To see the second
catch, let’s try to write down a dependent type signature for filter.

filter : forall {n m : Nat}{E : Elt}

-> Vector n E -> (Exp E -> Exp Bool) -> Vector m E

The problem is that the size of the result cannot be determined statically — that
is, we cannot simplify define a type-level function that determines the length of
a vector. Why? Vector m E is not a representation of a vector. Instead, it is a
representation of a computation that, once run, produces a vector.

Similarly, we cannot define a function that uses the predicate passed to
filter to count the number of elements that will appear in filter’s result.
Such a function would need access to the elements of the filtered vector, but,
as discussed, we cannot even get its length. Moreover, such a counting func-
tion would need to evaluate the predicate. We cannot do that as the predicate
of type Exp E -> Exp Bool maps abstract syntax to abstract syntax; it does
not directly implement a Boolean predicate. We might consider to include an
evaluator for abstract syntax to lift these restrictions. However, that evaluator
would not be the code actually executed on the GPU, and hence, it doesn’t seem
to be any more valuable than simply asserting an axiom concerning the size of
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filter’s result. That is the price we pay for a generative approach, where at
program runtime, we dynamically generate the code to be executed on the GPU.

We encounter similar restrictions if we try to, at least, establish that m must
be less than or equal to n for filter. We cannot prove this constraint as the
GPU code of filter is not available to us — it is generated by the underlying
Haskell library. Even if we had access to that code, any statements about its
properties would need to be based on the semantics of CUDA (i.e., NVIDIA’s C
dialect for GPU programming).

We might contemplate employing an existential type like

exists Nat (\ m -> m <= n -> Vector m E)

but it is not possible to build such an existential package because the evidence
m is not available when the existential package has to be constructed.

However, we may use an alternative encoding of arrays that is compatible
with filtering. The idea is to keep all elements but mark those which are no
longer present because they have been filtered out. There are several ways of
implementing this idea. The simplest approach is to pair up each element with
a boolean flag that indicates its presence, which we call predicated arrays:9

FVector : Nat -> Elt -> Set

FVector n E = Vector n (Pair Bool E)

In this encoding, filtering is quite simple because the length of the FVector

does not change. Furthermore, filtering could be extended to multi-dimensional
arrays, although the result might require careful interpretation.

filterF : forall {n : Nat}{E : Elt}

-> (Exp E -> Exp Bool) -> FVector n E -> FVector n E

filterF {n}{E} pred vec = map g vec

where g : Exp (Pair Bool E) -> Exp (Pair Bool E)

g bx = pair ((fst bx) && p (snd bx)) x

Mapping, which applies a function to each element of an array, becomes more
complicated as it either has to materialize a dummy result for each absent ele-
ment in the argument vector or apply the function to absent elements, too. This
makes filter reminiscent of the where statement of the SIMD language C∗ [12].

mapF : forall {n : Nat}{E F : Elt}

-> Exp F -> (Exp E -> Exp F) -> FVector n E -> FVector n F

mapF {n}{E}{F} defaultF f vec = map g vec

where g : Exp (Pair Bool E) -> Exp (Pair Bool F)

g bx = if (fst bx) then (pair (fst bx) (f (snd bx)))

else (pair (fst bx) defaultF)

Some operations can get rid of absent elements. A fold operation which reduces
a filtered vector with a monoid returns a single value. In Accelerate, such a value
has type Scalar, which is a synonym for an array of dimension 0.

9 Accelerate currently does not support Maybe types as array elements.
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foldF : forall {n : Nat}{E : Elt}

-> (Exp E -> Exp E -> Exp E) -> Exp E

-> FVector n E -> Scalar E

foldF f e vec =

fold f e (map (\ bx -> if (fst bx) then (snd bx) else e) vec)

Operations like fold1 and the scan operations extend to this representation, but
they cannot revert to a non-filtered representation.

In the end, such a representation may not even lead to reduced efficiency on
a GPU. As long as all computations take the same path, all processing elements
work in unison. As soon as there are different paths in the same computation
step, then some elements will be idle for part of the computation step. So it would
be most advantageous to organize work as uniformly as possible by reorganizing
the array so that the present and the absent elements are grouped together. A
segmented array might be a suitable representation.

6 Implementation

Ordinarily, Agda is an interactive tool for constructing proofs and verified pro-
grams. Programs may be run, which amounts to normalizing Agda expressions,
but this process is not very efficient.

Alternatively, an interactively developed program may be compiled to Haskell
using the Alonzo compiler. It supports a Haskell foreign function interface (FFI),
for Agda programs to invoke Haskell functions. Using this interface amounts to
declaring a typed identifier in Agda and then binding the identifier to a suitably
typed Haskell function. As an example, consider the import of the use function.

postulate

useHs : {E : Set}

-> HsEltDict E -> HsArray HsDIM1 E -> Acc (AccArray HsDIM1 E)

{-# COMPILED useHs (\ _ -> Accel.use) #-}

The first three lines introduce the typed identifier useHs and the last line is
a pragma for the Alonzo compiler that binds the Agda identifier useHs to the
Haskell expression on the right. But wait, this type looks very unpleasant and
quite different to the one mentioned in Section 4.2. This difference arises as the
type translation of Alonzo is unable to cope with the index type Shape. Hence,
the interface uses a simplified array type and adapter functions are required, in
the worst case, both on the Agda side and on the Haskell side of the interface.

At the foreign function interface level, all arrays are considered as one-
dimensional arrays. Additional arguments are passed to encode the shape in-
formation as far as it is needed. The Agda adapter provides the encoding of this
structure and the Haskell adapter decodes it again.

We believe that these adaptations only have a minor performance impact
because (1) most functions just manipulate abstract syntax, so that only AST
construction is affected, and (2) internally, Accelerate considers all arrays as
one-dimensional so that operations like reshape are no-ops at run time.
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Here is the Agda adapter for use:

use : forall {sh : Shape}{E : Elt} -> PreArray sh E -> Array sh E

use {sh}{E} (PA y) = Ar (useHs (EltDict E) y)

It makes use of two wrapper types. PreArray wraps a one-dimensional Haskell
array using the constant HsDIM1 (the DIM1 type shown in Section 2.2 imported
from Haskell via FFI) and the function EltType (not shown), which interprets a
value of type Elt as a Haskell type. The latter types are also imported via FFI.

data PreArray (E : Elt) : Shape -> Set where

PA : {sh : Shape} -> HsArray HsDIM1 (EltType E) -> PreArray sh E

The Array type wraps an AST reference for an Accelerate array, where Acc and
AccArray are types imported from Haskell.

data Array (E : Elt) : Shape -> Set where

Ar : {sh : Shape} -> Acc (AccArray HsDIM1 (EltType E)) -> Array sh E

The EltDict function translates a value (E : Elt) into a Haskell expression
that evaluates to a dictionary for the Haskell type of E for the Haskell type class
Elt. Such a dictionary is passed, whenever the corresponding Haskell function
has type class constraints.

EltDict : (E : Elt) -> HsEltDict (EltType E)

The Haskell side of the adapter has several purposes. First, it materializes
the type class dictionaries from the encoding that we just discussed. Second, it
reconstructs sufficient information about the array shape so that the intended
operation can execute. Here is the code for Accel.use, where the module name
A is a shorthand for Data.Array.Accelerate.

use :: EltDict e -> Array A.DIM1 e -> A.Acc (A.Array A.DIM1 e)

use EltDict (ARRAY ar) = (A.use ar)

It does not have to reconstruct any information except the type class constraint.
This constraint is materialized using the type EltDict below.

data EltDict e where

EltDict :: (A.Elt e) => EltDict e

This datatype is built such that each value captures the Elt dictionary of type
e. It remains to build such values for all types that we want to transport across
the FFI. These are the values used by the (Agda) EltDict function. Here are
two examples.

eltDictBool :: EltDict Bool

eltDictBool = EltDict

eltDictInt :: EltDict Int

eltDictInt = EltDict
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As an example for a function that requires more work on both sides, consider
the fold operation.

fold : forall {E}{sh}{n}

-> (Exp E -> Exp E -> Exp E)

-> Exp E

-> Array (sh :< n >) E

-> Array sh E

fold {E}{sh}{n} f (Ex e) (Ar a) =

Ar (foldHs (EltDict E) (toHsInt (size sh)) (toHsInt n)

(unwrap2 f) e a)

As values of type Exp also need a wrapper type in Agda (it is not possible to
import type constructors via the FFI), there is some unwrapping going on for the
e and f arguments. The implementation of fold just calls the foldHs function
and encodes the information about the shape in two integer arguments. Here,
size sh is the size of the result and n is the size of the dimension that is folded.
As these values are initially available as Agda natural numbers, they need to be
converted to Haskell numbers using the function toHsInt.

The foldHs function is defined via the FFI.

postulate

foldHs : {A : Set}

-> HsEltDict A

-> HsInt

-> HsInt

-> (AccExp A -> AccExp A -> AccExp A)

-> AccExp A

-> Acc (AccArray HsDIM1 A)

-> Acc (AccArray HsDIM1 A)

{-# COMPILED foldHs (\_ -> Accel.fold) #-}

The Haskell adapter reconstructs the Elt dictionary as before, but it also needs
to reshape the one-dimensional array representation into a two-dimensional one
for executing the fold operation. The two size arguments are required for exactly
this reshape operation. With that insight, the code is straightforward.

fold :: EltDict a

-> Int -> Int

-> (A.Exp a -> A.Exp a -> A.Exp a)

-> A.Exp a

-> A.Acc (A.Array A.DIM1 a)

-> A.Acc (A.Array A.DIM1 a)

fold EltDict size2 size1 f e a =

(A.reshape (A.lift (A.Z A.:. size2))

(A.fold f e

(A.reshape (A.lift (A.Z A.:. size2 A.:. size1)) a)))

14



Fortunately, the fold example is about as complicated as the adapter code
gets. There are also many cases where at least one side of the adapter code is
trivial. However, each case must be considered separately.

7 Conclusion

We have built an experimental Agda frontend for the Accelerate language. The
goal of this experiment was to explore potential uses of dependently-typed pro-
gramming for data-parallel languages.

At the moment, the outcome of the experiment is mixed. It is successful,
because we have been able to construct Agda functions for a representative
sample of Accelerate’s functionality. However, there was less scope for encoding
extra information in the dependent types than we had hoped for. Exact matching
of array bounds works, but results in restrictions (like the problems with zipWith

and filtering) that were not anticipated.
Exploiting algebraic properties did not work out in the intended way, mainly

because it boils down to asserting that some AST denotes an associative function.
However, these assertions cannot be proven: the proof would have to apply the
semantics to the AST, but the AST is an abstract type in our implementation.
An AST representation in Agda might give us a better handle at this problem.

In some places, the Agda frontend is less dynamic than Accelerate. In a
number of places, Accelerate accepts a run-time value of type Exp sh for a
shape argument, where the Agda frontend requires a value of type Shape. To
address this problem, we would have to include a Shape-indexed encoding of the
Shape type in the Elt type so that we can describe the type of an expression
whose value has a certain shape.

Finally, the type translation of Agda’s FFI has a number of shortcomings
that cause problems when transporting information between Agda and Haskell.
One part of the problem is, unfortunately, the rich type structure of Accelerate’s
API which already encodes many useful constraints. An alternative, untyped
(or less-typed) interface to Accelerate would make the adaptation to an Agda
frontend simpler.
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