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Abstract

Most dependently-typed p rogramming languages either require
that all expressions terminate (e.g. Coq, Agda, and Epigram), or al-
low infinite loops but are inconsistent when viewed as logics (e.g.
Haskell, ATS, Ωmega). Here, we combine these two approaches
into a single dependently-typed core language. The language is
composed of two fragments t hat share a common syntax and over-
lapping semantics: a logic that guarantees total correctness, and a
call-by-value programming language that guarantees type safety
but not termination. The two fragments may interact: logical ex-
pressions may b e used as programs; the logic may soundly r eason
about potentially nonterminating p rograms; programs can require
logical proofs as arguments; and “mobile” program values, includ-
ing p roofs computed at runtime, may be used as evidence b y the
logic. This language allows programmers to work with total and
partial functions uniformly, p roviding a smooth path from func-
tional programming t o dependently-typed programming.



Categories and Subject D escriptors D.3. 1 [Programming L an-
guages]: Formal Definitions and T heory

Keywords Dependent types; Termination; General r ecursion

1. Introduction
Dependently typed languages have developed along two different
traditions, distinguished by their attitude towards nonterminating
programs. On the one h and, languages like Cayenne [6], ATS [13],
Ωmega [33] and Haskell [29] treat dependently-typed program-
ming as an extension of ordinary functional programming. These
languages enhance ordinary functional programs, defined by gen-
eral recursion, with more expressive types. On the other h and, lan-
guages like Coq [40], Agda [28] and Epigram [23] treat depen-
dently typed programming as a use-case of constructive theorem
proving. These systems disallow nontermination because an infi-
nite loop can b e given any type and would therefore make the logic
inconsistent.

We would like balance between proving and p rogramming, with
neither activity given preferential treatment. Although we are sym-
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pathetic t o the ideal that all programs should be proven correct, we



understand that there are practical reasons not to do so. Instead,
we desire a language for h eterogeneous verification, allowing pro-
grammers to devote their verification budget to critical sections.
Such a language must support general recursion as natively as a
functional programming language, yet at the same time must pro-
vide the expressive reasoning capabilities of a constructive logic
proof assistant.

In support of this goal, we propose a novel language that is com-
posed of two fragments: a logicalf ragment where every expression
is known to terminate, and a programmaticf ragment that does not
provide this assurance. The key idea of our work is to distinguish
between these fragments b y indexing the typing j udgement with a
consistency classifier θ that may b e L (“logic”) or P (“program”),
thus

Γ ‘θ a : A
When θ is L, the Curry-Howard Isomorphism applies, and we may
consider a a proof of the theorem A. When θ is P, the only inter-
pretation of a is as a functional program. Making this distinction
means that one language can subsume b oth functional program-
ming and constructive logic by embedding each in their respective
fragments. However, these activities are not too far apart—the syn-
tax and semantics of the two fragments overlap considerably, be-
cause the distinction between them is made through typing.

In this paper, we explore the consequences of this design in the
context of a dependently-typed programming language, focusing
on the following m echanisms that foster interaction between the
two fragments.

• First, we define the logical language as a sublanguage of the
programmatic language, so that all logical expressions can be
used as p rograms. (Of course, the p rogrammatic language in-
cludes forms that are not available t o the logic, including gen-



eral recursion and the elimination of iso-recursive types.)

• We allow uniform r easoning for logical and programmatic ex-
pressions through a heterogenous equality t ype. Two expres-
sions can b e shown to be equal based on their evaluation, which
is the same for b oth fragments. Equality p roofs can be used im-
plicitly b y the type system.

• We internalize the labeled typing judgment as a new type form
A@θ. This type can b e used by either fragment to manipulate
values b elonging to the other.

• We identify a set of “mobile types”—those whose values can
freely move between the fragments.

To demonstrate the soundness and consistency of these mecha-
nisms, we define a core dependently-typed language, called λθ, that
supports these interactions (see Sections 2 and 3). In addition to the



A@θ type, this language includes dependent functions, products,
propositional equality, natural numbers, sums, recursive functions
and iso-recursive types. We prove that this language is type safe and
that the L fragment is normalizing and logically consistent (Section
4). Our normalization proof uses a combination of traditional and
step-indexed logical relations. All of our metatheoretic results have
been completely machine-checked using the Coq proof assistant
and are available online1 .

We also explore how our ideas interact with other p rogramming

Zlmaoenmgnbutaaitiego,enb f ei ansateS udreceo stn.io t Wnhee5 .s h Zeaomvmeabni imtiecpselxeo tmfeneλ dnθst,eλ da θna dwp d irtiohstcof uetsaysptuet rhel asatnt hi gmautpaga leer-e,
convenient for dependently-typed programming: parametric poly-
morphism, type-level computation, user-defined datatypes, and im-
plicit arguments. We have developed a number of examples using
Zombie; the implementation is available online2.

We are not the first to consider the combination of total and par-
tial programming in the setting of dependently-typed languages.
Partial types [14] and the coinductive partiality monad [11] em-
bed general r ecursive programs into constructive logic by mod-
eling nontermination. Alternatively, languages such as Idris [10],
Aura [18], and F∗ [38] identify a restricted sublanguage of pure to-
tal functions. However, neither of these approaches provide equal
support for total and partial programming. We compare them to our
work in Section 6.

1.1 Combining Proofs and Programs

Before explaining the semantics of λθ, we conclude this section
with a number of examples to demonstrate the key ideas.

In Zombie, declarations must indicate whether they belong to
the logical or p rogrammatic fragment of the language. For exam-



ple, a boolean negation operation is trivially terminating, so it is
checkable in the logical fragment, as indicated by the tag log in its
definition:

log not : Bool → Bool
not b = if b th→en False else True

Likewise, addition for natural numbers can be shown terminat-
ing via natural number induction. In the case expression b elow,
plus may b e called on any subterm of its argument. The argument
n_eq is a proof that n ’ is a subterm of n.

log plus : Nat → Nat → Nat
ind plus n m =

case n [ n_eq ] of
Ze ro → m
Succ n ’ → Succ ( plus n ’ n_eq m )

Alternatively, the following natural number division function
diverges when m is 0, so it must be tagged with prog. The rec
keyword indicates that this function is implemented using general
recursion.

prog div : Nat → Nat → Nat
rec div n m = i→f lt n m then 0

else plus 1 (div (minus n m) m)

Subsumption. All proofs can be used as p rograms. In the above
example, even though the plus operation is logical, we can seam-
lessly use it (and other logical operations such as lt and minus)
directly in a p rogrammatic term, and call it on an argument whose

1 Proofs available at http ://www. cis . upenn .edu/~ccasin/papers/
combining - coq . tgz



2 Implementation available at https ://code . google . com/p/t rellys
in the b ranch branches/zombie - t rellys - POPL14/
termination behavior is unknown. Thus, the fact that we k now that
plus terminates does not restrict how it may be used—we do not
need to duplicate its definition for it t o be available to both frag-
ments.

Proofs c ontaining p rograms. The @-type allows values to be
embedded from one fragment into another. For example, the logical
language can safely manipulate p rogrammatic values as long as
their types indicate (with @P) that they are p rogrammatic. Below,
consider the definition of a Maybe datatype that could contain
arbitrary p rograms.

data Maybe (A : Type ) where
Nothing
Just of (A @ P)

As long as the p rogrammatic component is treated carefully, ex-
pressions in the logical fragment can work with this data structure.
This includes constructing values of the Maybe type, and pattern
matching on the data structure.

log md3 : Maybe ( Nat → Nat )
md3 = J ust ( \x . div 3→ x )

log foo : Maybe ( Nat → Nat ) → ( Nat → Nat @ P )
foo x = case x of

Just y → y
Nothing → \x . x

However, if the programmatic component is ever used, then
the definition must be marked as programmatic, as an embedded



function could cause divergence.

prog bar : Maybe ( Nat → Nat ) → Nat → Maybe Nat
ba r x y = case x of

J ust f → Just ( f y )
Nothing → Nothing

prog boom : Maybe Nat
boom = ba r md3 0

Proofs a bout programs. Having defined the programmatic func-
tion div, we might wish to verify facts about it. As a simple exam-
ple, we prove that div 6 3 evaluates to 2. We can state and prove
these facts using the logical language, even though the object of
study may not terminate.

log div63 : div 6 3 = 2
div63 = refl

The proof above (refl) is valid when b oth sides of an equality
proposition evaluate to the same result. (To avoid infinite loops, the
typechecker will give up and signal an error if the expression does
not r each a normal form within 1000 steps. If more evaluation is
required the programmer can write e.g. refl 5000). In languages
like A ura or F ∗ , this theorem cannot even be stated because non-
value expressions such as div 6 3 cannot appear in types. This
example illustrates an important property of our language, which
we callf reedom of speech: although proofs cannot themselves use
general r ecursion, they are allowed to refer to arbitrary program-
matic expressions.

As a more complicated example, we might wish to prove that if
the divisor is not zero, then the result is less than the dividend. In



other words:

log div_le : ( n : Nat ) → ( m : Nat ) → ( eq m 0 = False )
→ ( le ( div→ n m ) n = →True )



Above, eq is an equality function for natural numbers and le
m n determines whether m ≤ n. We do not show proof of the above
theorem here, though it is a≤vailable with our implementation. The
proof itself uses strong natural number induction to simultaneously
show both that division terminates and that the property above
holds for the result.

Note that we can only show properties that are provable via fi-
nite reduction sequences. For example, we cannot show that divi-
sion diverges when the dividend is 0, because that divergence is
not finitely observable. (The logic does not h ave a general principle
for r easoning about nonterminating programs, such as fixed-point
induction. We r eturn t o this issue in Section 6.)

Programs t hat r eturn proofs. An alternative to writing separate
proofs about nonterminating programs is to give the programs
themselves more specific types that express their correctness. For
example, consider writing a SAT solver that we do not want to
prove terminating.

A SAT solver takes a formula of n variables and, if the formula
is satisfiable, returns a satisfying assignment for some subset of
those variables. We can r epresent the r esult of a SAT solver using
the following datatype declaration. The r esult for a given formula
is either an assignment together with a proof that that assignment
satisfies the formula, or UNSAT when the formula is unsatisfiable.

data Ans ( n : Nat ) ( fo rm : Fo rmula n) : Type w here
SAT of ( assign : Vecto r (Maybe Bool ) n )

( proof : satisfies assign fo rm =
(Just True : Maybe Bool ) )

UNSAT

The main loop of the solver itselftakes a formula and the current
assignment and returns whether that assignment can be extended to



a satisfying one. Ifthe current assignment is known to be satisfying,
then that one is returned. Zombie can automatically fill in the
_below with the proof that assign satisfies the formula. If the
assignment is k nown to invalidate the formula, then the r esult is
UNSAT. Otherwise the algorithm must search for an extension to the
assignment using techniques such as unit propagation, p ure literal
assignment, or merely trying b oth possibilities for an unassigned
variable.

prog solve r : ( n : Nat ) → ( fo rmula : Fo rmula n)
→ Vecto r (Maybe Bool ) n
→ Ans n fo rmula @ L

solve r n fo r→mula assign =
case ( satisfies assign fo rmula ) of

Just True → SAT assign _
Just False → UNSAT
Nothing → . . . .

Since the solver is written in the programmatic fragment, it may
not terminate. It also may fail to find an assignment even though
the formula was satisfiable. However, the type of this function is
more informative than if it had been written in M L or Haskell. The
@L in its type indicates that if it does return a proof of satisfiability,
then that value was type checked in the logical fragment.

When a program contains subexpressions from b oth fragments,
values can b e handled more freely than expressions. For example,
a logical expression cannot call solve r directly because of the
possibility of divergence. However, if the result of that call has
already b een bound to a variable, then the logic has access to that
result.

let prog f = ( . . . : Fo rmula n) in
let log empty = repeat ( Nothing : Maybe Bool ) n in



let prog isSat = ( solve r n f empty : Ans n f @ L ) in
let log p rf = case isSat of

θ ::= L | P
a, b, A, B ::= ?L || (Px :A) → B | a = b

| ?N| at( |x :AA +) →B |B BΣ |xa a:A= .Bb | µx.A | A@θ
|| xN a| tλ |xA . Aa+ +| rBec | |f Σ xx. :aA A| iBnd| µ f xx..A aA || aA b@
|| rxef |l λ| xin.la aa| |r eincr f fbx
|| rscefalse| z in laa ao|f i{nirnlb x ⇒ a1; inr y ⇒ a2}
|| ha, bi | pcasez lax xo⇒ f { a(x,; ny)r y⇒⇒ ⇒b}a
|| hZa |, Sb ia| |p cncasaseeza aao off{ {(xZ, ⇒ y) a ⇒1 ; bS} x ⇒ a2 }
|| rZol |l aS |a u| n nrocalsl ae

v ::= ? | (x :A) → B | a = b
| ?N| at( |x :AA +) →B |B BΣ |xa a:A= .Bb | µx.A | A@θ
|| xN a| tλ |xA . Aa+ +| rBec | |f Σ xx. :aA A| iBnd| µ f xx..A aA || rAef@l
|| ixn|l vλ |x .inar |vr |e chvf 1 , .va2i || nZd d| fSx v.a a| |ror lel vl

a; b (λx.a) v; [ v/x]aSLAM

(recf  x.a)v ; [ v/x][recf x .a/f] aSFUN

(ind f x.a)v ; [ v/x][λy.λz.(indf x .a)y /f] aSIND

scasezinlvo f{ inlx ⇒ a 1;inrx ⇒ a 2}; [ refl/z][v/x]a1SCL

scasezinrvo f{ inlx ⇒ a 1;inrx ⇒ a 2}; [ refl/z][v/x]a2SCR

pcasezhv1,v2io f{ (x,y )⇒ a }; [ refl/z][v1/x][v2/y]aSCP



unroll(rollv); v SUNROLL

Figure 1. Expressions, values, and operational semantics (excerpt)

SAT assignment pf →

- - . . . use p ro→of of satisfiability . . .
UNSAT → . . .

Mobile t ypes Finally, some types have the same meaning in b oth
fragments, so they do not benefit from b eing tagged with a consis-
tency classifier. For example, a value of type Nat can never cause
divergence, so it is safe to be used in logical expressions even when
not marked as @L. Similarly, the Ans type above is also mobile, so
the @L annotation on the type of solve r is actually unnecessary.
This observation simplifies programming as the only function ar-
guments that must b e annotated with their fragment are those that
are not mobile.

2. The λθ language

We begin our technical development with an overview of the for-
mal language, λθ. T his language is based on a call-by-value (CBV)
variant of lambda calculus. Its syntax is shown in Figure 1. For
uniformity, terms, types and the single kind ? (the “type” of types)
are drawn from the same syntactic category, as in p ure type sys-
tems [7]. The first two lines of the figure list the type forms, the
following lines list the terms. By convention, we use lowercase
metavariables a, b for expressions that are terms and uppercase
metavariables A, B for expressions that are types.

The λθ values v and key rules of the operational semantics are



also shown in Figure 1. The reduction relation a ;b defines a
aslmsaolls -hstoewpn ncai nll-F biyg-uvraelu1 e. sTehmeanr etidcusc. Tiohne selliagthiotnly aun; usuab l dbeeftain reusl ea
for natural number induction (SIND) is described in Section 2.1. To



save space, most r ules have b een omitted. The f ull set of rules can
be found in Appendix A.

Values include the standard components of f unctional program-
ming: recursive functions rec f x.a, nonrecursive f unctions λx. a,
natural numbers (constructed by Z and S a and eliminated b y
ncase), disjoint unions (constructed b y inl a and inr a and elim-
inated by scase), dependently typed pairs (constructed b y ha, bi
iannadt eedlim byins acteads eb),y dpecpaesned),e anntldy rt eycpuerdsi vpea drast a(c (oinnsttrroudcutceeddb byy rao,llb ai

and eliminated by unroll a). Values also include ?, all type forms, a
trivial equality p roof refl, and variables. Including variables is safe
because CBV evaluation only substitutes values for variables and
it is useful because it allows the λθ type checker to reduce open
terms.

We chose CBV because of its simple cost model, but this choice
also affects the interaction between the logical and p rogrammatic
fragments. As shown in Sections 2.2 and 3.3, the type system takes
advantage of the fact that values cannot induce nontermination. As
a result, some typing rules apply only to values.

Note that expressions do not contain type annotations. Types
describe terms but do not interfere with equality. We do not want
terms with the same runtime behavior to b e considered unequalj ust
because t hey have different annotations.

Due to the lack of annotations, it is not possible to algorithmi-
cally compute the type of a λθ term. This i s not a problem because
we do not intend programmers to write these t erms directly. In-
stead, our implementation uses an annotated surface language t hat
the type checker elaborates into typing derivations (see Section 5).

The r est of this section describes the specific details of λθ, in-
cluding its b asic j udgements (Section 2.1), and treatment of equal-
ity (Section 2.2). In the next section, we introduce the novel fea-
tures of our language that p ermit the interaction between the logical
and programmatic fragments of the language.



2.1 Classifying terminating and nonterminating expressions

The starting p oint for λθ is a dependent type theory where the
typing judgment Γ ‘θ a : A is indexed b y a consistency classifier
tθy. pTinheg j juuddggmemeennttΓ Γis‘ ‘designed so that expressions that type check at
L always terminate.

Figure 2 shows the typing r ules for the b asic building b locks of
the language—variables, functions and various data structures and
their types. Because we work with a collapsed syntax, we use the

ftoyrpmes eyds ttyepmet i fo Γi d ‘eθntAify: w ? h.iche xpressionsa ret ypes:A i sa w ell-
mCeodntt eyxptse iafr eΓ l i‘sts of assumptions about the types of variables.

Γ ::= ∅ | Γ, x :θ A

Each variable in the context is tagged with θ to indicate its frag-
ment, and this tag is checked in the TVAR typing r ule. A context
is valid, written ‘ Γ, if each type A is valid in the corresponding
ifrsav gamliden,tw.

The r ules TARR, TSIGMA, T SUM, and TMU check types
for well-kindedness. For example, TARR checks a function type
by checking the the domain and r ange. We discuss the premise
Mobile (A), which asserts that A is a mobile type, in Section 3.3.

There are three ways to define functions in λθ . Rule T LAM
types non-recursive λ-expressions in the logical fragment, whereas
rule TREC types general recursive rec-expressions and can only b e
used in the programmatic fragment.

Additionally, terminating r ecursion over natural numbers is pro-
vided in the logical fragment by r ule T IND. W hen typechecking the
body of a terminating recursive function (ind f x.b), the recursive
call f t akes an extra argument proving that it is being applied to



the p redecessor of the initial argument x. This ensures termination.
When beta-reducing such an expression, this argument is ignored

‘Γ ‘Γ ‘Γ Γ‘ θA: ?

‘· CNIL ‘ Γ,‘xΓ : θ?CSTAR ‘ Γ‘ Γ,Γx‘ : θACTYPE

Γ‘ θa: A Γ‘ θA: ? Mobile(A)

(x :θA)θ∈ xΓ : A ‘Γ TVAR Γ,Γx ‘: θθA(x‘ : Aθ)B→ : ? B : ? TARR

Γ ‘θ b : (x :A) → B

Γ ‘θaΓ:  ‘A θb aΓ :‘  [θa/[ax]/Bx]B: ? TAPP

Γ, x :L A ‘L b : B

ΓΓ‘ L‘ λLx(.xb : A:( )x→  :AB )→  :? B TLAM

Γ,f :P (x : A) → B, x :P A ‘P b : B

Γ ‘ΓP(‘ xP :rAe)c→  fx B .b :: ? ( x: A)→ B TREC

Γ, x :L Nat, f :L (y :Nat) → (z :S y = x) → B ‘L b : B

Γ ‘L(x :NatΓ)→ ‘ L Bind: ? f x .b: ( x: Nat)→ B TIND

Γ ‘θ A : ?



ΓΓ ‘‘θ B : ?

Γ Γ‘θ‘ A+ B :  ?TSUM

Γ ‘θ a : A Γ ‘θ b : B
ΓΓ ‘‘θ A + B : ? ΓΓ ‘‘θ A + B : ?

ΓΓ‘ ‘θ inla: A + B TINL ΓΓ‘ ‘θ inrb: A + B TINR

Γ ‘θ a : A1 + A2 Γ ‘θ B : ?

Γ, x :θ A1, z :L inl x = a ‘θ b1 : B

Γ ‘θΓsc,axse: zθAa 2of,z {:i nLlinx r ⇒x= b 1;a in‘ rθ xb⇒ 2:B b 2}: B TSCASE

Γ ‘θ Σx :A.B : ?

Γ ‘θ A : ? ΓΓ ‘‘θ a : A

MΓ,oxbθ :ilθΣe(AxA ‘: A)θ.BB: : ? ? TSIGMA Γ‘Γ Γθ  ‘‘hθθab,[ab: /ix[ a: ]B/Σ xx] :B: ? A.BTPAIR
Γ ‘θ a : Σx :A1.A2 Γ ‘θ B : ?

Γ,xΓ: θ ‘Aθ1p,yca: sθezAa2, ozf{ : L(xhx,,y y)i ⇒= b a }‘ : θB b: B TPCASE

Γ,Γx‘ : LL?µx‘ .ALA: :  ?? TMUΓΓΓ ‘ ‘‘ θθθµarx: o.lA[ lµax: .: ? Aµ /xx.A]ATROLL
Γ ‘PaΓ:  ‘ µPxu.AnrollΓa: ‘  [µPx[µ.Ax/.Ax/]Ax]A: ? TUNROLL



Figure 2. Typing: variables, functions, and datatypes (rules for
Nat omitted)



by wrapping the function in an extra l ambda (rule SIND from Fig-
ure 1).

The rule for function application, TAPP, differs from the usual
application r ule in pure dependently-typed languages in the addi-
tional third premise Γ ‘θ [a/x]B : s, which checks that the re-
stuioltn atyl tphei rids pwreemll-ifsoermΓ ed‘ . Some rules of the language (such as β-
reduction) are sensitive to whether terms are values. Because values
include variables, substituting an expression a for a value x could
cause B to no longer type check.

Any dependently typed language that combines pure and effect-
ful code will likely h ave to restrict the application r ule in some
way. Previous work [18, 21, 38] uses a more restrictive typing for
applications, by splitting it into two rules: one which permits only
value dependency and requires the argument to be a value, and one
which allows a non-dependent function to be applied to an arbitrary
argument. Since substituting a value can never violate a value re-
striction in B, our application rule subsumes the value-dependent
version. Likewise, in the case of no dependency, the premise can
never fail because the substitution has no effect on B.

Being able to call dependent functions with non-value argu-
ments is useful when writing explicit proofs. For example, a pro-
grammer may want to first prove a lemma about addition

log plus_ze ro : ( n : Nat ) → plus n 0 = n

and then instantiate the lemma to p rove a theorem about a p articular
expression in the logical fragment.

plus_ze ro ( f x) : plus ( f x) 0 = ( f x)

The rules for sum types (TSUM, TINL, TINR, and TSCASE)
provide dependent case analysis. The term scase b inds the logical
variable z inside b oth branches of the case. This variable provides



an equality between the scrutinee and the pattern of the b ranch so
that type checking is flow-sensitive. At runtime, this variable is
replaced b y refl because the scrutinee must match the pattern for
the branch to b e taken.

The r ules for dependent products (TSIGMA, TPAIR, TPCASE)
allow the type of the second component of the pair to depend on
the value of the first component. As with function application, the
premise Γ ‘θ [a/x] B : ? ensures that substituting the expression a
dporeems nisoet Γvio ‘late any assumptions made about the value x in the type
of the second component. Analogously to sums, the eliminator for
pairs makes available a logical p roof z that equates the scrutinee to
the pattern in the b ody of the match. The availability of this equality
means that the strong elimination forms (projections) for Σ-types
are derivable.

Finally, the rules TMU, TROLL and TUNROLL deal with
general r ecursive types. T hese are the standard rules for iso-
recursive types (see, e.g., [30]). But recursive types with negative
occurrences—that is, with the r ecursive variable appearing to the
left of an arrow, such as µx.(x → Nat)—are a p otential source of
nleofnto tefrma nina artrioown,. Tsuoc hen assurµ ex n.o(xrm →aliN zaatito)n—, aitr esua ffp icoetse ttoia lre ssotruicrct eto hef
the elimination rule TUNROLL to be in P. The introduction rule
TROLL can be used in b oth fragments. This reflects the fact that it
is not dangerous to construct negative datatype values; the p otential
nontermination comes from their elimination.

2.2 Reasoning about equivalence

A big benefit of combining termination-checking with dependent
types is that it is possible to write proofs about programs. For ex-
ample, in the introduction we showed a proof that when the divisor
is not zero, natural number division produces a r esult less than the
dividend. Our r ules for propositional equality (Figure 3) are de-
signed to support such r easoning uniformly, b ased only on the r un-



time behavior of the expressions being equated, and independent of
the fragment that they are defined in.

Γ‘ θa: A Γ‘ Pa: LA a =Γb ‘ : P? b :B TEQ
a V∗ c b V∗ c
Γ ‘θ1 a : A Γ ‘θ2 b : B

Γ ‘Γ‘ Lrefl :Γa ‘ = b TREFL

Γ ‘L b : b1 = b2 Γ ‘θ a : [b1/x]A

Γ ‘θ[b2/Γx]A‘ θ: a? : [ b2/x]ATCONV

Figure 3. Typing: equality

Γ‘ θa: A
Γ ‘L a : A Γ ‘θ0 A :?

ΓΓ‘ ‘ Pa: A TSUB ΓΓ‘ ‘θ A@θ0:? TAT

Γ ‘θ v : A@θ0 Γ ‘θ a : A
Γ ‘‘θ0 A : ? ΓΓ ‘‘θ A :?

ΓΓ‘ ‘ θ0v: A TUNBOXVAL ΓΓ ‘P‘ a: A @θTBOXP

Γ ‘L a : A Γ ‘P v : A
ΓΓ ‘‘θ A : ? ΓΓ ‘‘P A : ?

ΓΓ ‘L‘ a: A @θTBOXL ΓΓ ‘L‘ v: A @PTBOXLV



Figure 4 . Typing: subsumption and internalized consistency clas-
sification

Therefore, the rule TEQ shows that the type a = b is well-
formed and in the logical fragment even when a and b can be type
checked only programmatically. T his is freedom of speech: p roofs
can r efer t o nonterminating programs.

The term refl is the p rimitive p roof of equality. Rule TREFL
says that refl is a p roof of a = b j ust when a and b r educe to
a common expression. The notion of r eduction u sed in the rule
is parallel reduction, denoted a V b. T his relation extends the
ordinary evaluation a ;b by allowing r eduction under binders,
eo.rgd.i n(λaryx.e1 +al u1a)t oVn a(λ; x.2)b b evyea nl tlhowouinggh r(eλdxuc. 1t o+n 1 u)n dise ra lbreinaddeyr sa,
value. H aving this extra flexibility makes equality more expressive
and simplifies the proof of preservation.

Proven equalities are used to substitute expressions in types b y
the elimination rule T CONV. The proof term is checked in L to
ensure it is a valid p roof. We demand that the equality proof used
in conversion type checks in the logical fragment for type safety.
All types are inhabited in the programmatic fragment, so if we
permitted the user to convert using a p rogrammatic proof of, say,
Nat = Nat → Nat, it would be easy to create a stuck term.
SNiamtila= r tNo aT tA →PP, Nwae ,nei tedw toou lcdhe bcke ethasaty bt o2 cdroeeast enoa t svtuioclaktet any
value restrictions, so the last premise checks the well-formedness of
the type given to the converted term. Rule TCONV is quite general,
and may b e used to change some small p art of A or the entire type
by picking x for A.

This treatment of equality is a variant of Sjöberg et al. [34].
However, t hat setting did not include a logical sublanguage; instead



it enforced soundness b y requiring the proof term used in conver-
sion to b e a value.

Uses of TCONV are not marked in the term because they are not
relevant at runtime. Again, types should describe terms without in-
terfering with equality; we do not want terms with the same runtime
behavior t o be considered unequal due to uses of conversion.



3. Interactions between the fragments

What is interesting about λθ is how its two fragments interact. In
the introduction, we discussed ways in which logical and program-
matic terms work together. Below, we discuss the technical machin-
ery of the type system that supports this interaction.

3.1 Subsumption

Every logical expression can b e safely used programmatically. We
reflect this fact into the type system by the rule TSUB, which
says that if a term a type checks logically, then it will also type
check programmatically. For example, a logical term can always
be supplied to a function expecting a p rogrammatic argument. T his
rule is useful to avoid code duplication. A function defined in the
logical fragment can be used without penalty in the p rogrammatic
fragment.

Subsumption also eliminates duplication in the design of the
language. For example, we need only one type a = b to talk about
when two p rogrammatic or two logical terms are equal. In fact, we
can also equate logical and p rogrammatic expressions.

3.2 Internalized Consistency Classification

To provide a general mechanism for logical expressions to appear
in programs and programmatic values to appear in proofs, we in-
troduce a type that internalizes the typing j udgment, written A@θ.
Nonterminating programs can take logical p roofs as preconditions
(with functions of type (x : A@L) → B), return them as post-
(cowindthitf iounnsc i(ownitsho ffutn ycptieon (sx o :f Aty@peL )(x→ →: A B) ,→r t(uBr@nLt h)e)m, a ands sptoosrte-
tchoenmdi itino dnast a(w sitthrucf utunrcetsi o(wnsito hf p tyaiprse (ofx t: y pAe) Σ →x →:( (AB. @(BL@))L,a) )n. dAs tt tohree
same t ime, logical lemmas can use @ to manipulate values from the
programmatic fragment.



judgTmheen rutΓl es ‘ foθr1t ahe: A A @@θθ ty2pheoa lpdpsei fart hi en fF riaggumreen4 t.θ I n1tumitaivyels ya,ft ehley
ojubdsegrmveen ttha Γt Γ‘ ‘θ2 a : A. This intuition is captured b y the three
oinbtsroedrvuectt ihoant Γr  ul e‘s. The programmatic fragment can internalize any
typing j udgement (TBOXP), but in the logical fragment (TBOXL
and TBOXLV) we sometimes need a restriction to ensure termina-
tion. Therefore, rule TBOXLV only applies when the subject of the
typing rule is a value. (The r ule T BOXL can introduce A@θ for any
θ since logical terms are also p rogrammatic). Both introduction and
elimination of @ is unmarked in the syntax, so the reduction behav-
ior ofan expression is unaffected by whether the type system deems
it to b e provably terminating or not.

For example, a recursive function f can require an argument
to be a p roof by marking it @L, e.g., A@L → B, forcing that
taorgu bema enp t rtooo fb eb cyhme ckarekdi ning fi rta@ gmL,ene t. gL.,. SA i@miLlar→ ly, aB l,ogf iocracli nlgem tmhaat
g can be applied to a programmatic value b y marking it @P:

Γ ‘Pf :A @ΓL ‘ →PfB  a :Γ BΓ‘ P‘ aLa: : A A @LTTABPOPXP

Γ ‘Lg: A @ΓP‘ → LgB v : ΓB Γ‘ L‘ vP: vA : A @PTTABPOPXLV
Of course, g can only be defined in the logical fragment if it is
careful to not use its argument in unsafe ways. For example, using
TCONV we can prove a lemma of type

( n : Nat ) → ( f : (Nat → Nat )@P ) → ( f ( plus n 0 ) = f n )

because reasoning about f does not require calling f at runtime.



There is no way to apply a logical lemma to a p rogrammatic
non-value expression. If an expression a may diverge then so may

Mobile(A) Mobile(A@θ)MAT

Mobile(a= b )MEQ MobMileob(iAle)(ΣxM :Aob.iBle)(B)MSIGMA

Mobile(Nat)MNAT MobiMleo(bAil)e(AM+ oB bil)e(B)MSUM

Γ‘ θa: A
Γ ‘Pv :A Γ ‘LLAv : :A ? Mobile(A)TMVAL

Γ ‘θ a : (A1 + A2)@θ0 Γ ‘θ B : ?

Γ, x :θ0 A1, z :L inl x = a ‘Γθ b1 : B

Γ ‘θΓs,cxas: θe0zaA2 o,fz{  i:Lnlinx r⇒ x= b 1a ;in‘ rθx b2 ⇒:B b 2}: B TSCASE’

Γ ‘θ a : (Σx: A1.A2)@θ0 Γ ‘θ B : ?

Γ,x :Γθ0‘ Aθ1p,cya: sθe0zAa2o ,fz {: L(xh,x,y )yi⇒ = b a }‘ : B θb: B TPCASE’

Figure 5. Typing: mobile types and cross-fragment case expres-
sions



f a, so we must not assign it a type in the logical fragment.3 How-
ever, we can work around this r estriction by either first e valuating
a to a value in the programmatic fragment or b y thunking.

The @-types are eliminated b y the rule TUNBOXVAL. To p re-
serve termination, the rule is restricted to apply only to values. We
believe it is possible to extend the system with three “unbox” rules,
the symmetric twins of our three “box” r ules, and are exploring this
direction in our current work.

Recall the function solve r of type

prog solve r : ( n : Nat ) → ( f : Fo rmula n )
→ Vecto r (Maybe Bool ) n → (Ans n f )@L

In the introduction, we asserted that the following code type checks.

let prog isSat = ( solver n f empty : Ans n f @L) in
let log p rf = case isSat of

SAT a pf → - - . . . he re pf is logical . . .
UNSAT → - - . . .

In this example, the logical program p rf cannot directly treat
solve r n f empty as a proof because it may diverge. However,
once it has been evaluated to a value, it can be safely u sed b y
the logical fragment. Above, the let binding f orces evaluation of
the e xpression solve r n f empty, introducing a new program-
matic variable isSat : Ans n f @ L into the context. Because
variables are values, any logical context can freely use the vari-
able through T UNBOXVAL even though it was computed by the
programmatic language.

3.3 Mobile types

The consistency classifier tracks which expressions are k nown to



come from a normalizing language. For some types of values, how-
ever, the r ules described so far can be unnecessarily conservative.
For example, while a p rogrammatic expression of type Nat may
diverge, a programmatic value of that type is j ust a number, so we

3 This is one drawback of working in a strict r ather than a l azy l anguage. If
we know that f is nonstrict, then this application is indeed safe.



can treat it as if it were logical. On the other hand, we can not treat
a programmatic function value as logical, since it might cause non-
termination when applied.

The rule T MVAL (Figure 5) allows values to be moved from
the p rogrammatic to the logical fragment. I t r elies on an auxiliary
judgment Mobile (A).. Intuitively, a type is mobile if the same set
of values inhabit the type when θ = L and when θ = P. In
particular, these types do not include functions (though any type
may b e made mobile by tagging its fragment with @).

Concretely, the natural number type Nat is mobile, as is the
primitive equality type (which is inhabited by the single constructor
refl, as discussed in Section 2.2). Any @-type is mobile, since it
fixes a p articular θ independent of the one on the typing j udgment.
Sum and p air t ypes are mobile if their component types are.

Even if a sum type is not mobile, it is always safe to do one level
of pattern matching on one of its values, since such a value must
start with a constructor. W e reflect that in the r ule TSCASE’ ,which
generalizes TSCASE from the previous section. This rule allows a
scrutinee that type checks in one fragment θ0 to be eliminated in
another fragment θ. This lets the logical language reason by case
analysis on programmatic values. Similarly, TPCASE’ is a more
general version of the rule TPCASE. The two rules shown here are
the ones actually included in our formalization.

The mobile rule lets the p rogrammer write simpler types, be-
cause mobile types never need to be tagged with logical classifiers.
For example, without loss of generality we can give a function the
type (a = b) → B instead of ((a = b)@L) → B, since when
tnyepedee( da, =t he bb)od →y o Bf thi nes tfuenadctio ofn( (caan =treba t) @thLe) )a→r gumB e,n sti nasc elow gihceanl
through TMVAL. Similarly, multiple @’s have no effect beyond the
innermost @ in a type. Values of type A@P@L@P@L@P can be
used as if they had type A@P.

In fact, the arguments to functions must always have mobile



types. This restriction, enforced b y rule TARR, means that higher-
order functions must use @-types to specify which fragment their
arguments b elong to. For example, the type (Nat → Nat) → A is
naorgtu uwmeelln-tfso rbmeleodn,g s too .thF eo programmer emt uyspt ec( hoNoaste → →eitN heart ()(→ NatA → is
Nnoattw )@elLl-)f →orm Aed o,rs o(( tNhaetp →ro Nraamt)m@ePr) m →us tAc .h

tI)n@ @eiLt)he→ r caA se o, programmers bte)@nePfi)t f→romA .implicit unboxing. For
example, checking well-formedness of a type like

( f : ( Nat → Nat )@P) → f ( plus n 0 ) = f n

implicitly uses TUNBOXVAL. But the equation still talks about
the expression f n. If we instead had to use explicit unboxing to
eliminate the @-type, as in ( unbox f ) n, there would b e no way
to write a logical lemma proving the original equation. By contrast,
mobile arguments do not need nor benefit from tagging.

The reason that function arguments must b e mobile is to ac-
count for contravariance. Through subsumption, we can introduce
a function in the logical fragment and use it in the p rogrammatic:

Γ, x :L A ‘L b : B

ΓΓ  ‘‘LP((λλxx..bb)A): : ‘ ( ( xx: : AA)) →→ BB  TTLSAUMB
Here, the definition of b assumed x was logical, yet when the
function is called it can be given a programmatic argument. For
this derivation to be sound, we need to know that A means the
same thing in the two fragments, which is exactly what Mobile (A)
checks.

4. Metatheory

We now describe the metatheory of λθ. We are interested in two
properties. First, that the entire language is type safe, including



both the L and P f ragments. Second, that any closed term in the
L fragment normalizes, which implies logical consistency.

Type safety is p roven using standard progress and p reservation
theorems. Since the rules T CONV and TCONTRA allow stuck terms
to type check given a contradiction, the progress theorem depends
on logical consistency. For this reason, we first prove preservation,
then normalization and consistency, and finally p rogress.

The theorems in this p aper have been checked in Coq. To prove
certain f acts about our logical relation we needed a standard axiom
of functional extensionality. This axiom is known to b e consistent
with Coq’s logic [41].

4.1 Preservation

As usual, the p reservation p roof relies on weakening, substitution
and inversion lemmas. The weakening lemma is standard. Due to
the value restrictions in the type system, the substitution lemma is
restricted to values:

LEMMA 1 (Substitution). IfΓ 1, x :θ0 B, Γ2 ‘θ a : A and Γ1 ‘θ0
v : B, then Γ1 , [v/x]Γ2 ‘θ [v/x] a : [v/x]A.‘

bHeocwaeuvseer o,no euro if n tvheers dioesnigl enmg moaalssa o freλ m θoisret hc aotm typpliicnagter dult ehsan wiu thsuoault,
runtime effects should not require annotation. In particular, u ses of
TCONV and TBOXP/L/LV are not marked.

For example, consider inversion for λ-expressions. Usually, it is
the case that if Γ ‘ (λx.b) : A, then A is β-convertible with some
arrow type (txi : BΓ1‘ ) ( →λ xB.b2) a :n dA Γ,t ,h x : BA1i s‘β b- : Bnv2e. rItinb lλeθ wthitish s iso mnoet
true: if t here were a h ypothesis (x :L (Na‘t b→: BNat) = Nat) ∈ Γ,
the expression could also have b een gi(vNena tty→ pe NNaatt ) u= singN Ta tC)O∈ NV Γ.,
(Restricting preservation to empty contexts would not help, since
at this point in the p roof—before proving consistency—we cannot



rule out that this equality is provable). Alternatively, if the BOX
rules were used, A may be an @-type. T aking this into account, our
inversion lemma r eads:

LEMMA 2 (Inversion for λ-expressions). I f Γ ‘θ (λx. b) : B,
then there2 2is( Isnovmeers p nanf do r(λx -: eBxp1 )r →ssi Bon2s )s.u cIfh Γtha‘ t either

1. Γ ‘L p : B = ((x : B1) → B2) andΓ , x :θ B1 ‘θ b : B2,
2. or there are some θ0 . . . →θ00B such that Γ ‘L p : B = (((x :

B1) → B2)@θ0 ...@θ00) a ndΓ , x h:aθ0t B1 ‘‘θ0 b : B2.

With this and other similar inversion lemmas, we can p rove preser-
vation.

THEθOaR0E:MA 3. (Preservation).I fΓ ‘θ a :A a nda ;a0, then

The proof of the preservation theorem requires the addition
of type constructor discrimination and injectivity rules (Figure 6)
to the type system. The discrimination rule TCONTRA eliminates
contradictory equalities. If we can prove a contradiction we must be
in unreachable code, so we allow giving any typeable expression a
any wellformed type B at any θ0.

An equation B1 = B2 counts as contradictory if the headf orms
of both sides are defined and unequal. The head form of a type is its
outermost constructor. For example, the head form of (x :A) → B
oisu t→er,m manosdt tchoen shetraudc tfoorr.mF o oorf e Nxaamt pisl eN, tahte. T hehea dcof omrpmle otfe (dxef :iAni)ti o→n oBf
ihsd → →(A,) a appears e ina dAf popremnd oifxN NAa.

The injectivity r ules invert equality p roofs between type forms.
For example, from a proof Γ ‘L p : ((x : A1) → A2) = ((x :
BFo1r) e→xa mB2pl)e we can aalp soro odfer iΓve‘ Γ ‘L p : A1 = )B→1 . SA imilar typing
rule)s→ →areB av)ai wlaeblc ea nfoa rl s@o, dsuermiv aenΓ d ‘pair types. These are elided h ere
for space, but appear in the appendix.



These rules are necessitated b y the weak inversion lemmas.
Consider, e.g., the case when a function application b eta reduces,

t(hλaxt. Γb) ‘ vθ; (λ[ xv./bx)]: b. (F xro: m At 1h)e→ p reA m2isaensdo fΓ t h‘ eθr uvle :T A A1PP,wa nedk f nroowm



Γ‘ θa: A hΓd‘ (BLa1)16 =:B  hd1(=B2B )2
ΓΓ  ‘‘θθaA1: = ((x B: Γ1A: ‘1 ?)θ →a: A  A2)1== ( B (x1: B1)→ B 2)TARRINV1ΓΓ‘ ‘ θθAaΓ: : ‘ A ? θ0aΓ: ‘ B θ0B: ? TCONTRA

Γ ‘θ a : ((x : A1) → A2) = ((x : B1) → B2)

Γ ‘θ0vΓ : A‘ θ1a :Γ[ v ‘/θx][Av/2x=]A[ 2v/=x][ vB/2x]B2:? TARRINV2

Figure 6. Typing: discrimination and injectivity of type constructors (injectivity rules for @-, µ-, pair- and sum-types omitted).

inversion we know either Γ ‘L p : ((x : A1) → A2) = ((x :
iBnv1)e →sio nBw 2)e a knndo wΓ, x h:θe B Γ1 ‘‘θ b : B1, or el)se→ →(x : A1) → A2
is p)r→ ovabB ly equal to an @-ty‘pe. In the first case we ap)p→ ly Athe
substitution lemma, using TARRINV 1 to p rove A1 = B1, while
in the second case we use TCONTRA.

4.2 Normalization and Progress

Our p roof of normalization b uilds upon the standard Girard-Tait
reducibility method [17, 39] in a CBV-style formulation. The crux
of this method is to define a “type interpretation”. For each type
A we define a set of values Vρ [A]]kθ that check in fragment θ (the
Aaddw ietiod neafli nienp auts es ρ fanv da uke asrVe discussed below). The definition of
the type interpretation (Figure 7) is a logical relation and follows
the structure of A.

Our main theorem is that the interpretation is “sound”: any
closed logical expression a of type A reduces to a value in Vρ [[A]]kL.
cTlohes erdu lleosg TicaUlN exBpOrXesVsiAoLn aa n dof Tt yMpeVA ALr cdaunc emso tovea vvaalluuees i nfro Vm P to
L, so for the proof to go through we must generalize the soundness
theorem to also characterize expressions in P. For these values we
prove a partial correctness property: if a closed programmatic ex-
pression a oftype A reduces to a value, then the value is in Vρ [[A]]kP.



Titasht ideoesnfei Cni nρedv[[Aa mri]u]akθtnu,t swala hlriyceh ws ui idthmemn Vtaiρfr[i[ieAzse]]ds kθe.tb syo a f( c noomn-pvuatlautieo)ne axlpt ryepsesii onntesr,pa rned-
Tehfien etydp me uitnutealrlpyrew taitthioV n for p rogrammatic expressions must ac-

count for recursive functions and recursive types, which means
that it cannot b e defined by recursion on A. Instead, we use step-
indexing [1, 5]. The interpretation is indexed by a number k. Any
value v i n Vρ [[A]]kP will b e “well-behaved” for at least k steps of
evxaleuceutv ioni n. TVhe interpretation is defined by well-founded r ecursion
on the lexicographically ordered triple (k, A,I),where Iis one of
oCn not rh Ve ewxiithco oVg a<p Chic.

rH Voww evitehrV, Vth< e u Cs.ual formulation of a step-indexed type interpre-
tation only lends itself to proving safety p roperties—it tells us that
an expression will not do anything bad for the next k steps. By con-
trast, normalization is a liveness p roperty: every expression will
eventually do something good (namely reduce to a value). In our
definition, we take a hybrid approach by only counting steps that
happen in the P fragment. The difference can b e seen b y compar-
ing the definitions of Vρ [[(x : A) → B]]kL and Vρ [[(x : A) → B]]kP,
winghict hhe say “inji i≤o ks”o afnV d “[[(j x<: Ak”) r→esp Bec]]tivaenlyd. VIf [a[(llx xθ: sA Ain) a→ →deB riv]]a-
wtiohnic ahres aLy, t“hje n≤ n ko” ”ia nnedqu“ ajlit< iesk a”rer esstpriecct,t vsoe tyh.e I fs atellpθ -csoiu nna t kd nereivvae-r

needs to decrease.
The input ρ is a substitution mapping free variables of A to

values. We use ρ when interpreting equality types. The type a1 =
a2 is interpreted as the singleton set {refl} if ρ a1 and ρ a2 parallel-
reduisc ien tteor par ectoemda msot hn eex sinpgrelsestoionns, eatn {dr eafls }ti hfeρ ρeampty set otherwise.
We inductively define the judgment Γ |=k ρ, which asserts that ρ

maps dtou vctailvueelys i dne tfhinee ecto hrreej cutd digntmerepnrte tΓati| =on, by

·| =k∅ENIL Γ |=kρΓ,xv :θ ∈A Vρ| =[[Akρ]][kθx→7 Γv ‘ ]θA: ? ECONS



Intuitively, Γ |=k ρ asserts that ρ maps term variables to well-
bInehtuaivtieved yv,al uΓes| .= Because of the premise Γ ‘θ A : ? it also asserts
tbheahta vΓe ddov easl uneost. c Boenctaaiuns any tthyeppe rveamriiasebl eΓs.‘ This is vacuously true
for the empty context, and preserved b y each case of the type
interpretation.

In a normalization p roof for System F or for CC [16], the type
interpretation would t ake an input ρ which specifies the interpreta-
tion of type variables in A, but not one which specifies the values
of term variables. Since we do not h ave p olymorphism in our lan-
guage, we do not need to account for type variables. But unlike
CC, because of the p rimitive equality t ype we can not j ust ignore
term variables in t ypes. Our ρ is similar t o normalization proofs for
systems that have large elimination of datatypes, such as CIC [43].

The soundness theorem relies on a few key lemmas about the
interpretation. The first is a standard “downward closure” property
for step-indexed relations: it says that requiring values to stay
well-behaved for a larger number of steps creates a more precise
interpretation.

LEMMA 4. For any A, θ and ρ, if j ≤ k then Vρ [[A]]kθ ⊆ Vρ [[A]]jθ.

The next two lemmas are specific to λθ because they relate the L
and P interpretations of a type. They are used to handle the TSUB
and TMVAL rules, respectively. The first says that the set of logical
values is a subset of the corresponding programmatic sets.

CLρE[M[AM]]LkA⊆5.C F ρo[[rA]a ]kPn.yA , k, θ andρ , Vρ[[A]]kL ⊆ Vρ[[A]]kP and
The second says that for mobile types, the reverse containment

also holds. For these types, the interpretations contain the same
values in both fragments.



LEMMA 6. For any k and ρ, if Mobile (A) then Vρ [[A]]kP ⊆

Vρ[[A]]kL.
Finally, for the TCONV rule, we need equal types to h ave the same
interpretation.

LEMMA 7 . Suppose ρ B1 V∗ A and ρ B2 V∗ A and Γ ‘θ B1 :?
andΓ ‘θ B2 : ? andΓ |=k ρ. Then a ∈ Iρ[[B1]]Akθ ai fnfa d Γ∈ ‘I ρ[[B2]]kθ.

We can now prove soundness by induction on Γ ‘θ a : A. Normal-
Wizaet icoann i ns awn pimromveeds ioautne dconerossllb aryy.i nW duec atlioson ognet Γa ‘characterization of
which terms can b e p roven equal in the empty context. W e need
such a characterization to prove progress.

THEOREM 8 (Soundness). I f Γ ‘θ a : A and Γ |=k ρ, then
ρ a ∈ C ρ[[A8]]θk.(

COROLLARY 9 (Normalization).
If · ‘L a : A, then there exists a value v such that a ; ∗ v.

COROLaL: ARA Y, 1h 0e ( Sthoeruend enxiesstss oaf v v parloupeov sits iuocnhalt heaqtuaa l;i ty).
If · ‘L a : A1 = A2, then there exists some A such that A1 V∗ A

aInf d· A‘2 V∗ A.



Vρ[[?]]kθ = {v | · ‘θ v : ?}

Vρ[[Nat]]kθ = {v | v is of the form Sn Z}

Vρ[[A@θ0]]kθ = {v | ·‘ θ0 ρA : ? and v ∈ Vρ[[A]]kθ0}

Vρ[[(x :A) → B]]kL = {λx.b | · ‘L λx.b : ρ ((x :A) → B)
xa.nbd ∀j ≤ k, ibf v ∈ Vρ :[[AA)]]jL→ →thB en) [v/x] b ∈ Cρ[x→7v] [B]]jL}

∪{ indand f x ∀.jb ≤|  ·k ‘ ,L iifn vd ∈f  x V.ρb[[A:  ]ρ]jL(t(hxe: nA[ v)→ /x]B [λ)y.λz.(indf x .b)y /f] b∈ C ρ[x→7v][[B]]jL}
Vρ[[(x :A)→ B ]]kP = {λxan.bd |∀ · j‘  <Pλk x,.i bfv : ρ ∈ ( V(xρ[: [AA])]jP→ theB n)[ v/x]b∈ C ρ[x→7v][[B]]jP}

∪ {reacnf d x∀ .jb<  |· k ‘ ,P irfe vc ∈f  x V.ρb[[: A ]ρ]jP((thxe: nA[ )v→ /x]B [r)ecf x .b/f] b∈ C ρ[x→7v][[B]]jP}
∪ {inadndf  x ∀.jb<  |· k ‘ ,P iifn vd ∈f  x V.ρb[[A:  ]ρ]jP(t(hxe: nA[ v)→ /x]B [in)df x .b/f] b∈ C ρ[x→7v][[B]]jP}

Vρ[[A+ B ]]kθ =∪ {{iinnrlvv ||  · ·‘  ‘θθρρ((AA+ + B B )):  :? ? a a nnddv v ∈ ∈ V V ρρ[[[[AB]]]k]θkθ}}
Vρ[[Σx :A.B]]θk = {hv1, v2i | · ‘θ ρ (Σx :A.B) : ? and v1 ∈ Vρ[[A]]kθ and v2 ∈ Vρ[x→7v1] [[B]]kθ}

Vρ[[µx.A]]kθ0 = {roll v | · ‘θ0 roll v : ρ (µx.A) and ∀j < k,v ∈ Vρ[[[µx.A/x]A]]jθ}

Vρ [[a1 = a2]]kθ = {refl | · ‘θ ρ (a1 = a2) : ? and ρ a1 V∗ a and ρ a2 V∗ a for some a}

Vρ [[A]]kθ = ∅ otherwise

Cρ[[A]]kP = {a | · ‘P a : ρA and ∀j ≤ k, if a ; j v then v ∈ Vρ[[A]](Pk−j)}

Cρ [[A]]kL = {a | · ‘L aa :: ρ AA aanndd a∀ j; ≤ ∗ kv, ∈ if Vaρ ; ;[[A]]Lk}

Figure 7. Type interpretation

Normalization h olds only for closed terms. This is a result of the
fact that uses of the TCONV rule are unmarked in the syntax. It is
possible to assume a contradictory equality and use it to typecheck
a non-terminating term in the logical fragment. For example, the
following statement is derivable:

y :L Nat = (Nat → Nat) ‘L (λx.x x) (λx.x x) : Nat

This distinguishes λθ from intensional type theories like Coq and
Agda. In those systems, our rule TCONV arises as the pattern-
matching elimination form for a defined equality datatype. U ses of
this eliminator would appear in the term above, and their r eduction
would get “stuck” on the variable y, since it does not reduce to the



appropriate constructor.
The benefit of giving up normalization of open terms is a more

generous equality. Since uses of conversion appear in terms in Coq
and Agda, they often get i n the way of judging two terms which
use such conversions equal. In our system, this can not happen. The
drawback is that the typechecker can not automatically normalize
expressions (since they may diverge), so u ses of refl must be ex-
plicit and annotated with a maximum step count. However, in a lan-
guage with general recursion some explicit p roofs are unavoidable,
since checking a logical term can involve reducing a programmatic
term that appears in its type. Since our language must accommodate
such proofs in any case, making conversion unmarked is appealing.

The progress theorem r elies on a canonical forms lemma
(elided). In the TCONV and TCONTRA cases we n eed to k now
that there are no proofs of inconsistent equalities such as (Nat →
Nthaatt)t e=r Na aret. Tohp erroeofforseo , fti hnics olensmimstean tree lqieusa loitnie sCos ruoclhla arys 1N0.a tT→h e
progress theorem is t hen an easy induction on · ‘θ a : A.

Surface language (Zombie)

⇓ (elaboration)

Annotated language (ZT derivations)

⇓ (erasure)

Core language (ZT)

Figure 8. Implementation

THEOREM 11 (Progress). I f · ‘θ a : A, then either a is a value,



or there exis1ts1 a( P0 rsuogchre tshs)at. Iaf ;·  ‘ a0.

5. Implementation

We have implemented a p rototype dependently-typed language,
called Zombie, based on λθ. We h ave used this implementation to
gain experience with the features described in this paper. Indeed,
all of the example code in this paper can be t ype-checked b y
our implementation. These, and other examples are available for
download.

Our language includes several features which were left out of
λθ to k eep the normalization proof simple. Instead of a single sort
?, Zombie includes a f ull predicative hierarchy [22], which al-
lows b oth polymorphism and type-level functions. We also include
a general form for parameterized r ecursive datatypes, which sub-
sumes Nat, A + B, Σx :A.B and µx.A. Datatypes are always
mobile, and Zombie provides structural induction for all strictly



positive datatypes (not j ust Nat) following [20]. Finally, Zombie
distinguishes between computationally relevant and irrelevant ar-
guments [24], and includes a multiplace conversion operator, called
multiconversion [34].

Adding these features to λθ would complicate the type interpre-
tation, increasing the complexity of our machine-checked p roof far
beyond its current state. In p articular, to add predicative polymor-
phism and type-level computation we would have to redefine our
type interpretation as an induction over typing derivations, which
is very painful to do in Coq. However, b ased on work in p rogress,
we are optimistic that the metatheoretic requirements of these ad-
ditional features will have little interaction with the fundamental
consistency mechanism proposed here.

The general structure of our implementation appears in Fig-

bulrees8  λ.θ Tihse thp eari tnteo rfno alurl an imgpulaegmeeZ nTta.tT iohnist  lhaantgm uaogsetd c elofisneelsyt r heeseo mp--
erational behavior of Zombie expressions. However, like λθ, type
checking is not decidable for Z T expressions. T herefore, the imple-
mentation also includes an annotated version of ZT that supports
syntax-directed type checking, an approach we have explored in
previous work [34]. Annotated Z T is a direct r epresentation of Z T
typing derivations, marking all uses of conversion, subsumption,
cumulativity, and coercion to and from A@θ types. Furthermore,
because r eduction may not terminate, annotations on refl control
and limit the search for a common reduct when proving that two
terms are equal.

Directly working with ZT derivations incurs a considerable an-
notation burden for p rogrammers. Therefore, the Zombie surface
language makes these annotations optional. We are currently exper-
imenting with a number of elaboration strategies to infer these an-
notations. These include using bidirectional type checking [3 1] to
propagate type information through terms, unification to automati-



cally infer some dependent arguments, and congruence closure [27]
to automatically infer equality proofs u sed in conversions.

For example, consider the p rojection functions (fst and snd)
for dependent p airs shown below. T hese functions pattern match
their argument and r eturn its first and second components respec-
tively.

data Sigma (A : Type ) ( B :A → Type) : Type w here
Pai r of ( x :A) ( y : B x )

log fst : [A :Type] ⇒ [ B :A → Type] ⇒ Sigma A B → A
fst [A] [ B] p = case p of

Pai r x y → x

log snd : [A :Type] ⇒ [ B :A → Type] ⇒ ( p : Sigma A B)
→ B ( f⇒st p )

snd [A] [ B] p = case p of
Pai r x y → unfold ( fst p) in y

In the implementation of snd, unification can infer the arguments A
and B to fst (which were marked inferable b y the fat arrow⇒in the
declaration of fst). Because not all expressions terminate, ⇒the p ro-
grammer must explicitly ask the type checker to u nfold ( fst p )
by β-reduction, which introduces the equation ( fst p ) = x into
the context. That equation is then automatically used to convert the
type of y from B x to B ( fst p) .

The examples we h ave implemented fall into two categories.
The first includes the division and SAT-solving programs described
in Section 1. These examples illustrate how one can write proofs
about general r ecursive programs, and how general r ecursive pro-
grams can r eturn proofs. Second, we h ave implemented functions
for length-indexed lists (Vectors), finite sets represented as binary



search trees, and data compression using run-length encoding, to-
gether with proofs of their correctness. Since these functions use
simple structural recursion, they can b e done entirely in the logi-
cal fragment. T hey show that although our core language requires
annotations on refl and conv, the overhead of t hese annotations is
manageable.

6. Related Work

In previous work, we introduced the p roof technique of h ybrid
step-indexed/traditional logical relations, but for a simply-typed
language [12]. This p aper extends the normalization proof to a
more expressive type system with dependent function types, an
equality type, and conversion. It also improves the treatment of @-
types by making them implicit. This change complicates the meta-
theory (see Lemma 2) but makes the language more expressive and
simplifies the application rule.

Terminating S ublanguage. There are other dependently-typed
languages which allow general recursion but identify a sublanguage
of terminating expressions. Aura [18] and F∗ [38] do this using the
kind system: expressions whose type has kind Prop are checked for
normalization. Types can contain values but not non-value expres-
sions, so there is no way to write separate p roofs about p rograms.
There also is no facility to treat programmatic values as proofs, e.g.
a logical case expression cannot destruct a value from the nonter-
minating fragment. 3

ATS [13], GURU [36], and Sep3 [20] are dependently-typed
languages where the logical and p rogrammatic fragments are syn-
tactically separate—in effect rejecting the r ule TSUB. One of the
gains of this separation is that the logical language can be made
CBN even though the programmatic one is CBV, avoiding the need



for thunking (as discussed in Section 3.3). To do inductive reason-
ing, the Sep3 language adds an explicit “terminates” predicate.

Idris [10] is a full-spectrum dependently typed p rogramming
language that permits non-total definitions. Internally, it applies a
syntactic test to check if function definitions are structurally de-
creasing, and p rogrammers may ask whether p articular definitions
have been j udged total. The type checker will only reduce expres-
sions that have b een proved terminating, again precluding separate
equational reasoning about partial p rograms. Idris’ metatheory has
not b een studied formally.

Partiality M onad. Capretta’s partiality monad [11] u ses coin-
ductive types to embed general recursion into Type Theory. This
approach treats pure functions as the default and nontermination
less conveniently. Nonterminating programs must be written using
monadic combinators (and are therefore n ever syntactically equal
to p ure programs). The partiality monad provides r ecursive func-
tion definitions but not general r ecursive types.

Furthermore, the coinductive approach requires a separate no-
tion of equivalence to reason about partial programs. In, e.g., Coq,
one would compare p ure expressions according to the standard op-
erational semantics, but define a coarser equivalence relation for
partial terms t hat ignores the number of steps they t ake to nor-
malize. Equations like ((rec f x.b) v) = [v/x] [rec f x.b/f] b
do not hold with the u sual Coq equality because the step counts
differ. Conveniently p rogramming with equivalence relations like
this, which are not directly j ustified by the reduction behavior of
expressions, is an active area of research involving topics such as
setoids [8], quotient t ypes, and the univalence axiom [42].

Non-constructive fixpoint s emantics. The work of Bertot and
Komendantsky [9] describes a way to embed general recursive
functions into Coq that does not use coinduction. They define a



datatype partial A that is isomorphic to the usual Maybe A but
is understood as r epresenting a lifted CPO A⊥, and use classical
logic axioms to provide a fixpoint combinator fixp. When defining
a recursive function the user must prove continuity side-conditions.



Since recursive functions are defined nonconstructively they can
not be reduced directly, so instead one must r eason about them
using the fix-point equation.

Partial Types. Nuprl has at its core an untyped lambda calculus,
capable ofdefining a general fixed point combinator for defining re-
cursive computations. In the core type theory, all expressions must
be proven terminating when used. Constable and Smith [14] inte-
grated potentially nonterminating computations through the addi-

ttoiornt ho efna h t ayspt eyp Ae( o Afp → artiA al) te→ rmA s.o H fot ywpeeveA r,.t T oh peref sixerpvoeint theo pc eoran--
tsoirstet nhceyn ohafs stht ey leog( Aic, →the Aty)p e→ →A Am.u Hsot wbee v reers,trt oictep dre tseor vadem thiess icbolne.-
types. Crary [15] provides an expressive axiomatization of admissi-
ble types, but these conditions lead to significant proof obligations,
especially when using Σ-types.

Smith [35] provides an example which shows that Nuprl n eeds
this restriction. Writing a ↓ for “a terminates”, define a Σ-type T
othfi fsu rnescttrioicntiso wnh. iWchr tainreg n ao t↓ tfo otarl,“ aant de mreicnuarsteisve”l,yd defeifnineea aΣ p ywpheicT h
inhabits T.

Total (f : N → N ) =def (n :N) → (f n)↓

T =def Σ(f : N → N).Total f → False

(p : T) =def fix (λp.hg, λh.—i)

g =def λx.if x = 0 then 0 else π1(p)(x − 1)

Here the dash is an (elided) proof which sneakily derives a con-
tradiction using π2 (p) and the hypothesis h that g is total. On the
other hand, a separate induction shows that π1 (p) is total; it returns
0 for all arguments. This is a contradiction.

λθ has almost all the ingredients for this paradox. Instead of a
recursively defined pair we can use a r ecursive function Unit → T,
arnecdu rwsiev cealny edenfciondede apa↓i raws Σec (ya n: uAse) .aa e=c y. Wivehfa ut snactvieosn u Us nisi tth→ at t The,
aprndoow f ienc athne e snceocodneda ↓coa mspΣ o(nyen: tA Ao)f. p u=sey s. Wtheh aftols laovweisnu gs riseat hsoantti hneg



principle: if π1 (p) terminates, then p t erminates. In Nuprl a ↓ is
a p rimitive pre(dipc)att ee amnidn athteiss, ti hnveenrsp iot ne mpriinncaitpesle. Iins bN uuipltr lina . B↓i uts
using our encoding, a function (π1 (p) ↓) → (p ↓) would have to
magically guess the second compon(epn)t ↓o)f a→ →pa( irp k↓ n)ow woinugld oh nalyve etht eo
first component. If we assume this function as an axiom we can
encode the paradox and derive inconsistency , so our consistency
proof shows that there is no way to write such a function.

Hoare Type Theory. HTT [26, 37] is another embedding of gen-
eral programs into a type theory like Coq, which goes beyond non-
termination to also handle memory effects. Instead of a unary type
constructor A , it adds the indexed type {P}x : A{Q} r epresenting
cano nesftfreuccttfourl Aco,mi tpa udtadtsiot hne er e intdurenxiendg tyAp ean{ dP Pw}ixth: pre- a}nr de pprosetscenotnindgi-
tions P and Q. The assertions P and Q can use all of Coq, so the
type of a computation can specify its behavior precisely. However,
computations can not b e evaluated during type checking (the fix-
point combinator and memory access primitives are implemented
as Coq axioms with types but no r eduction rules).

Fixpoint i nduction Domain-theory based formalisms provide
two b asic reasoning p rinciples for proving properties about re-
cursive functions: unfolding a function definition, and fixpoint in-
duction. The latter p rinciple (see e.g. [44]) states that to prove a
property about a function, one may assume it as an induction hy-
pothesis for the recursive calls of the function. For t his to be valid,
the property must b e “admissible”, and it most h old for infinite
loops. An equivalent variant [9] is to allow induction on the num-
ber of r ecursive steps an expression takes to normalize.

λθ currently provides no such principle. If a theorem can not be
proved j ust from unfolding, there are two ways to proceed. In order
to prove div_le in Section 1 we used (strong) natural-number
induction. For this strategy to work the p rogrammer has to find a
termination metric for the function in question, so it only works



for functions that are in fact terminating. However, it can still be
convenient to give a direct r ecursive definition of the function. For
functions that genuinely do not terminate, one can instead change
them to return a Σ-type asserting the property, so t hat the property
is automatically available for recursive calls. This is what we did
for solve r in Section 1, and it is the only option i n Hoare Type
Theory.

Modal t ypes for d istributed c omputation. Modal logic reasons
about statements whose truth varies in different “possible worlds”.
Our type system is formally similar, with the possible worlds b eing
L and P. Modal logic has previously been u sed to design type
systems for distributed computation [19, 25]. In particular, λθ was
inspired b y ML5 [25], in which the typing judgment is indexed
by what “world” (computer in a distributed system) a program
is running on, and which includes a type A@θ internalizing that
judgment. Our rule T MVAL is similar to the GET rule in M L5, and
our Mobile (A) is similar t o the judgment A mobile i n ML5. On
the other hand, unlike λθ, ML5 does not require that the domain of
an arrow type be mobile. As we explained in Section 3.1 we make
that restriction to accommodate our rule TSUB, a r ule which does
not make sense in the context of distributed computation.

7. Future work

In future work, we hope to extend the metatheory of λθ to include
more of ZT. We plan to allow polymorphic types and type-level
functions in b oth the L and P f ragments, extending our proof us-
ing ideas from normalization proofs for the Calculus of Construc-
tions [16]. F ollowing the ideas of Ahn and Sheard [2] and their



language Nax [3], we also hope to add combinators to define re-
cursive functions over recursive data to the logical language. Nax
places no restriction on what sorts of datatypes can b e defined or
how they can b e constructed. Instead, it limits the analysis of data
structures to ensure the soundness of the logic. M ore generally, we
would like to extend our p roofs to a general theory of datatype def-
initions, maybe encoded via recursion, sums, and products as in
ΠΣ [4]. One p otential worry is that we assume injectivity for all
type constructors, which can b e used to encode Cantor-like p ara-
doxes. We h ope to avoid inconsistency b y forbidding i mpredicative
polymorphism and datatypes with “large” indices.

Adding these features will require substantial additional work
in the normalization p roof, but we do not anticipate any changes to
the novel typing r ules that connect the L and P fragments.

Reasoning a bout general recursivef unctions Currently λθ em-
phasizes lightweight verification. In order to turn it into a tool for
full verification of potentially nonterminating programs, we would
add stronger r easoning principles.

First, the value restrictions in;can get in the way ofequational
reasFoirnistn,gt.h eIfv aal uise arens terxicptrioensssiionn ;in cPa nthgeertei nist hneow wayayo ftoe q puraovtieo naanl

equation like (let x = a in f x) = (f a), even though the two sides
are in fact contextually equivalent. T o make it provable we could
add termination-case—a case analysis on whether a p rogrammatic
expression evaluates to a value or diverges [20]. Unfortunately, t his
operator is unimplementable, so we would not want to allow p roofs
that use this reasoning to b e used as programs. One solution is to
introduce a new consistency c lassifier O, for oracular, in addition
to L and P. By not allowing O expressions to b e used as p rograms,
we could control and track the use of termination case.

Second, we would like to i nvestigate whether some (perhaps



weakened) form of fixpoint induction can be consistently added.
The experience with partial types in Nuprl suggests that t his may
require a notion of admissible predicates.



8. Conclusion

This p aper presents a framework for interacting logics and pro-
gramming languages. The consistency classifiers, θ, describe the
set of typing r ules that determine the properties of each well-typed
expression. At the same time, many standard typing r ules are p oly-
morphic in this classifier, leading to uniformity between the sys-
tems. I nternalizing thisj udgment as a type and observing that some
values can move freely allows the fragments to interact in nontriv-
ial ways, leading to an expressive foundation for dependently-typed
programming.
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