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Abstract
Assertions play an important role in the construction of robust soft-
ware. Their use in programming languages dates back to the 1970s.
Eiffel, an object-oriented programming language, wholeheartedly
adopted assertions and developed the “Design by Contract” philos-
ophy. Indeed, the entire object-oriented community r ecognizes the
value of assertion-based contracts on methods.

In contrast, languages with higher-order functions do not support
assertion-based contracts. Because p redicates on functions are,
in general, undecidable, specifying such p redicates appears to be
meaningless. Instead, the f unctional languages community de-
veloped type systems that statically approximate interesting pred-
icates.

In this p aper, we show how to support higher-order function con-
tracts in a theoretically well-founded and practically viable man-
ner. Specifically, we introduce λCON, a typed lambda calculus with
assertions for higher-order functions. The calculus models the as-
sertion monitoring system that we employ in DrScheme. We es-



tablish b asic p roperties of the model (type soundness, etc.) and
illustrate the usefulness of contract checking with examples from
DrScheme’s code b ase.

We believe that the development of an assertion system for higher-
order functions serves two purposes. On one hand, the system has
strong practical potential because existing type systems simply can-
not express many assertions that p rogrammers would like to state.
On the other hand, an inspection of a large b ase of invariants may
provide inspiration for the direction of practical future type system
research.

Categories & Subject D escriptors: D.3.3, D.2. 1; General Terms: De-
sign, L anguages, Reliability; Keywords: Contracts, Higher-order Func-
tions, Behavioral Specifications, Predicate Typing, Software Reliability
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1 Introduction



Dynamically enforced pre- and post-condition contracts have b een
widely used in p rocedural and object-oriented languages [11, 14,
17, 20, 21, 22, 25, 31]. As Rosenblum [27] has shown, for example,
these contracts have great practical value in improving the robust-
ness of systems inp rocedural languages. Eiffel [22] even developed
an entire p hilosophy of system design based on contracts (“Design
by Contract”). Although Java [12] does not support contracts, it is
one of the most requested extensions.1

With one exception, h igher-order languages have mostly ignored
assertion-style contracts. The exception is Bigloo Scheme [28],
where p rogrammers can write down first-order, type-like con-
straints on procedures. These constraints are used to generate more
efficient code when the compiler can prove they are correct and are
turned into runtime checks when the compiler cannot p rove them
correct.

First-order p rocedural contracts have a simple interpretation. Con-
sider this contract, written in an ML-like syntax:

f :i nt[> 9] →int[0,99]
val rec f =] →λ xi.n ·t ·[ ·

It states that the argument to f must b e an int greater than 9 and
that f produces an int between 0 and 99. To enforce this contract, a
contract compiler inserts code to check that x is in the proper range
when f is called and that f’s r esult is in the p roper range when f
returns. If x is not in the proper range, f’s caller is blamed for
a contractual violation. Symmetrically, if f’s r esult is not in the
proper r ange, the blame falls on f itself. In this world, detecting
contractual violations and assigning b lame merely means checking
appropriate predicates at well-defined points in the program’s eval-



uation.

This simple mechanism for checking contracts does not generalize
to languages with higher-order functions. Consider this contract:

g :(int[> 9] →int[0,99]) →int[0,99]
val rec g = ]λ→ p roc. · · ·

The contract’s domain states that g accepts int →int functions and
Tmhuestc oapnptlryac tth’sed mo tmo ainintss tlaatregset rh tahta ng a9.c cIenp ttusr nin, tt→ hesien ftuf nucntcitoionns sm aunsdt
produce ints between 0 and 99. The contract’s range obliges g to
produce ints between 0 and 99.

1http://developer.java.sun.com/developer/bugParade/top25rfes.html
Although g may b e given f, whose contract matches g’s domain
contract, g should also accept functions with stricter contracts:

h : int[> 9] →int[50,99]
val rec h =] →λ xi.n ·t ·[ ·

g(h),

functions without explicit contracts:

g(λ x. 50),

functions that process external data:

readn um :int[> 9] →int[0,99]
val rec readn um =] →λ ni.n ·t ·[ ·read the nth entry from a file · · ·

g(read num),



and functions whose behavior depends on the context:

val rec dualp urpose = λ x.
if · · ·predicate on some global state · · ·

·th·perne d5ic0
else 5000.

as long as the context is properly established when g applies its
argument.

Clearly, t here is no algorithm to statically determine whether p roc
matches its contract, and it is not even possible to dynamically
check the contract when g is applied. E ven worse, it is not enough
to monitor applications of p roc that occur in g’s b ody, because g
may pass p roc to another function or store it i n a global variable.

Additionally, higher-order functions complicate b lame assignment.
With first-order functions, blame assignment is directly linked to
pre- and p ost-condition violations. A p re-condition violation is the
fault of the caller and a post-condition violation is the fault of the
callee. In a higher-order world, however, promises and obligations
are tangled in a more complex manner, mostly due to function-
valued arguments.

In this p aper, we present a contract system for a h igher-order world.
The key observation is that a contract checker cannot ensure that g’s
argument meets its contract when g is called. Instead, it must wait
until p roc is applied. At that p oint, it can ensure that p roc’s argu-
ment is greater than 9. Similarly, when p roc returns, it can ensure
that p roc’s result is in the range from 0 to 99. Enforcing contracts in
this manner ensures that the contract violation is signaled as soon as
the contract checker can establish that the contract has indeed b een



violated. The contract checker provides a first-order value as a wit-
ness to the contract violation. Additionally, the witness enables the
contract checker to properly assign b lame for the contract violation
to the guilty party.

The next section introduces the subtleties of assigning b lame for

hSicghheemr-eor [d8e,r1 c 6o].ntr Sacetct vioionla 3tiop nresset nhtrsouλ gChONa ,s a ert iyepsedo ,f he ixgahmerp-loersdie nr
functional programming language with c ontracts. Section 4 speci-
fies the meaning of λCON, and section 5 provides an implementation
of it. Section 6 contains a type soundness r esult and proves that the
implementation in section 5 matches the calculus. Section 7 shows
how to extend the calculus with function contracts whose range de-
pends on the input to the function, and section 8 discusses the inter-
actions between contracts and tail r ecursion.

2 Example Contracts

We begin our p resentation with a series of Scheme examples that
explain how contracts are written, why they are useful, and how to
check them. The first few examples illustrate the syntax and the ba-
sic principles of contract checking. Sections 2.2 and 2.3 discuss the
problems of contract checking in a higher-order world. Section 2.4
explains why it is important for contracts to b e first-class values.
Section 2.5 demonstrates how contracts can help with callbacks,
the most common use of higher-order functions in a stateful world.
To illustrate these points, each section also includes examples from
the DrScheme [5] code base.

2.1 Contracts: A First Look



The first example is the sqrt function:

;; sqrt :number →number
;(d; esqfrinte: /cn ounmtrbaecrt s→qrntu

((λ (x) (≥ x 0)) −→ (λ (x) (≥ x 0)))
(((λλ ( (xx) )· ·( ≥·))

Following the tradition of How to D esign Programs [3], the sqrt
function is proceeded by an ML-like [23] type specification (in a
comment). Like Scheme’s define, a define/contract expression
consists of a variable and an expression for its initial value, a func-
tion in this case. In addition, the second subterm of define/contract
specifies a contract for the variable.

Contracts are either simple p redicates or function contracts. Func-
tion contracts, in turn, consist of a pair of contracts (each either a
predicate or another function contract), one for the domain of the
function and one for the range of the function:

CD −→ CR.

The domain portion of sqrt’s contract requires that it always re-
ceives a non-negative number. Similarly, the range portion of the
contract guarantees that the result is non-negative. The example
also illustrates that, in general, contracts check only certain aspects
of a f unction’s behavior, r ather than the complete semantics of the
function.

The contract position of a definition can b e an arbitrary expression
that evaluates to a contract. This allows u s to clarify the contract
on sqrt b y defining a bigger-than-zero? predicate and u sing it in the
definition of sqrt’s contract:

;; bigger-than-zero? :number →boolean



(;d; ebfigingee br-tighganer--ztehraon?-z: e rnou?m (bλe (rx→ ) (b≥o oxl 0ea))n)

;; sqrt :number →number
;(d; esqfrinte: /cn ounmtrbaecrt s→qrntu

(bigger-than-zero? −→ bigger-than-zero?)
((bλi (gxg)e ·r -·t h·))a

The contract on sqrt can be strengthened by relating sqrt’s result to
its argument. The dependent function contract constructor allows
the programmer to specify range contracts that depend on the value
of the function’s argument. T his constructor is similar to −→, ex-
ocefp tht ethf aut nthctei range pgousmitieontn. o Tfh htihse ccoonnsttrraucctt oisr n isots ismimilparly t ao c7 −o→ntr,ae cxt.-
Instead, it is a function that accepts the argument to the original
function and returns a contract:

CD −→d (λ (arg) CR)

(module p references scheme/contract
(provide add-panel open-dialog)

;; add-panel : (panel →panel) →void
(;d; eafdidn-ep/caonneltr: a (pcta aneddl-→ panpaeln

((λ−(7a(( m→λnya ((akn  l7−eeneyt→-w(( p)e[-aqccnh?heii( lllcd)da)rernc h( silednredn( g)seen tn-ecwdh-n icledhwriel-dnc)h))]i))l)dg et-parent)
(set! make-panels (cons make-panel make-panels))))

;; make-panels : (listof (panel →panel))
(;d; emfiankee -mpaakneel-spa: n( leilsst o nuf l(lp)a

;; open-dialog :→void



(de(fλin (e)o pen-dialog
(let∗ ([d (instantiate dialog% () · · ·)]

[[sdp ( i(innstsatannttiiaatteed siianlgogle%-p a(n)e· l·%·)] () (parent d))]
[children (map (call-make-panel sp) make-panels)])

· · ·)))

;; call-make-panel :p anel →(panel →panel) →panel
(;d;e cfailnl-em caaklel--mpaankee-lp: ap naenl

(λ(( sλp)( make-panel)
(make-panel sp)))))

Figure 1. Contract Specified with add-panel

Here is an example of a dependent contract for sqrt:

;; sqrt :number →number
;(d; esqfrinte: /cn ounmtrbaecrt s→qrntu

(bigger-than-zero? −→d
(λ (x)

(λ (res)
(and (bigger-than-zero? res)

(≤ (abs (− x (∗ res res))) 0.01)))))
(λ (x) · · ·))

This contract, in addition to stating that the result of sqrt is p ositive,
also guarantees that the square of the r esult is within 0.01 of the
argument.

2.2 Enforcement at First-Order Types



The key to checking higher-order assertion contracts i s to p ost-
pone contract enforcement until some function receives a first-order
value as an argument or produces a first-order value as a result.
This section demonstrates why these delays are necessary and dis-
cusses some r amifications of delaying the contracts. Consider this
toy module:

(module delayed scheme/contract
(provide save use)

;; saved :integer →integer
(;;d esafvineed s :a vinedte g(eλr r(→x ) i5n0t)e)g

;; save : (integer →integer) →void
(;d;e safvinee/: c( oinnttregaecrt →s avien

((bigger-than-zero? →bigger-than-zero?) →any)
(((λb (igf)g e(sr-etth! sna-vzeedro f?))→ )

;; use : integer →integer
;(d; eufseine :/ci notnetgrearc→t uisnet

(module p references scheme
(provide add-panel open-dialog)

;; add-panel : (panel →panel) →void
(;d; eafdidn-ep aandde-lp: a (npealn

(λ (make-panel)
(set! make-panels (cons make-panel make-panels))))

;; make-panels : (listof (panel →panel))
(;d; emfiankee -mpaakneel-spa: n( leilsst nouf (llp)a

;; open-dialog :→void

(de(fλin (e)o pen-dialog
(let∗ ([d (instantiate dialog% () · · ·)]



[[sdp ( i(innstsatannttiiaatteed siianlgogle%-p a(n)e· l·%·)] () (parent d))]
[children (map (call-make-panel sp) make-panels)])

· · ·)))

;; call-make-panel :p anel →(panel →panel) →panel
(;d;e cfailnl-em caaklel--mpaankee-lp: ap naenl

(λ(( sλp)( make-panel)

F(igleut(rnu( ee[[nncw(hle2 c-.owecilsCh nds-tcrilhe (ordeanni)qlc?dt( ts-re (eacr( nramcodrtrac M g (ksm heeeitn-a-alpdckdnarheenun i-nelpead)wlarllnsn  e-ynepeclhw ))D)]i)l-)icsd]htirg liedbt-)uptaerednt)))))
(bigger-than-zero? →bigger-than-zero?)
((bλi (gng)e (rs-tahvaend- ne)ro))?)

The module [8, 9] declaration consists of a name for the module,
the language in which the module is written, a provide declaration
and a series of definitions. This module provides save and use. The
variable saved holds a function that should map positive numbers
to positive numbers. Since it is not exported from the module, i t
has no contract. The getter (use) and setter (save) are the two vis-
ible accessors of saved. The function save stores a new function
and use invokes the saved function. Naturally, it is impossible for
save to detect if the value of saved is always applied t o positive



numbers since it cannot determine every argument to use. W orse,
save cannot guarantee that each time saved’s value is applied that
it will return a positive result. T hus, the contract checker delays the
enforcement of save’s contract until save’s argument is actually ap-
plied and returns. Accordingly, violations of save’s contract might
not b e detected until use is called.

In general, a higher-order contract checker must be able to track
contracts during evaluation from the p oint where the contract is es-
tablished (the call site for save) to the discovery of the contract
violation (the r eturn site for use), p otentially much l ater in the eval-
uation. To assign blame, the contract checker must also b e able to
report both where the violation was discovered and where the con-
tract was established.

The toy example is clearly contrived. The underlying p he-
nomenon, however, is common. For a p ractical example, consider
DrScheme’s preferences panel. DrScheme’s plugins can add addi-
tional panels t o the preferences dialog. To this end, plugins register
callbacks that add new p anels containing GUI controls (buttons,
list-boxes, p op-up menus, etc.) to the preferences dialog.

;; make/c : (α α →bool) →α →α →bool
(;d; emfiankee /(cm :a(k αe/αc →op)b o(λo ()x→ ) (αλ →(y)α ( →opb y oxl))))
;; ≥/c, ≤/c : number →number →bool
;(;de ≥fi/nc,e≤ ≤≥/c/c: :(m nuamkeb/cer r≥→ ))n
((ddeeffiinnee ≤≥//cc ((mmaakkee//cc ≤≥))))

;; eq/c, equal/c :any →any →bool
(;d; eefqi/nce, eeqqu/ca l/(mca: ka en/yc →eq?an))y
(define equal/c (make/c equal?))
;; any :any →bool



(;d; eafnyine : any (→λ (bxo)o #lt))

Figure 3. Abstraction for Predicate Contracts

Every GUI control needs two values: a parent, and a callback that is
invoked when the control is manipulated. Some GUI controls need
additional control-specific values, such as a label or a list ofchoices.
In order to add new preference panels, extensions define a function
that accepts a parent p anel, creates a sub-panel of the p arent panel,
fills the sub-panel with controls that configure the extension, and
returns the sub-panel. T hese functions are then registered b y call-
ing add-panel. Each time the user opens DrScheme’s p references
dialog, DrScheme constructs the p references dialog from the regis-
tered functions.

Figure 1shows the definition of add-panel and its contract (boxed
in the figure). The contract requires t hat add-panel’s arguments are
functions that accept a single argument. In addition, the contract
guarantees that the result of each call to add-panel’s argument is a
panel and is the first child in its parent p anel. Together, these checks
ensure that the order of the p anels in the p references dialog matches
the order of the calls to add-panel.

The b ody of add-panel saves the p anel making function in a list.
Later, when the user opens the p references dialog, the open-dialog
function is called, which calls the make-panel functions, and the
contracts are checked. The dialog% and single-panel% classes are
part of the primitive GUI library and instantiate creates instances
of them.



In comparison, figure 2 contains the checking code, written as if
there were no higher-order contract checking. The boxed portion of
the figure, excluding the inner b ox, is the contract checking code.
The code that enforces the contracts is co-mingled with the code
that implements the p references dialog. Co-mingling these two de-
creases the readability of both the contract and call-make-panel,
since client programmers now need to determine which portion of
the code concerns the contract checking and which performs the
function’s work. In addition, the author of the p references module
must find every call-site for each h igher-order function. Finding
these sites in general is impossible, and in practice the call sites are
often in collaborators’ c ode, whose source might not b e available.

2.3 Blame and Contravariance
Assigning blame for contractual violations in the world offirst-class
functions is complex. The boundaries between cooperating compo-
nents are more obscure than in the world with only first-order func-
tions. In addition to invoking a component’s exported functions,
one component may invoke a function passed to it from another
component. Applying such first-class f unctions corresponds to a
flow of values between components. Accordingly, the blame for a
corresponding contract violation must lie with the supplier of the
bad value, no matter if the bad value was passed by directly apply-
ing an exported function or by applying a first-class function.

As with first-order function contract checking, two parties are in-
volved for each contract: the function and its caller. Unlike first-
order function contract checking, a more general rule applies for
blame assignment. The r ule is based on the number of times that



each base contract appears to the left of an arrow in the higher-order
contract. If the base contract appears an even number of times, the
function itself is r esponsible for establishing the contract. If it ap-
pears an odd number of times, the function’s caller is responsible.
This even-odd r ule captures which p arty supplies the values and
corresponds to the standard notions of covariance (even positions)
and contravariance (odd positions).

Consider the abstract example from the introduction again, but with
a little more detail. Imagine that the body of g is a call to f with 0:

;;g : (integer →integer) →integer
;(;d egf:i n (ei/nctoengetrra→ ct g

((greater-than-nine? −→ between-zero-and-ninety-nine?)
(−g→rea

−be→tween-zero-and-ninety-nine?)
(λ (f) (f 0)))

At the point when g invokes f, the greater-than-nine? portion of
g’s contract fails. According to the even-odd r ule, this must be g’s
fault. In fact, g does supply the bad value, so g must b e blamed.

Imagine a variation of the above example where g applies f to 10
instead of 0. Further, imagine that f returns −1 0. This is a violation
of the result. pFourrttihoenr, oi mf gag’si naerg thuamtef nr et’tsu rcnosn−t ract and, following the
even-odd rule, the fault lies with g’s caller. Accordingly, the con-
tract enforcement mechanism must track the even and odd p ositions
of a contract to determine the guilty party for contract violations.

This problem of assigning blame naturally appears in contracts
from D rScheme’s implementation. For example, DrScheme creates
a separate thread to evaluate user’s p rograms. Typically, extensions
to DrScheme need to initialize thread-specific hidden state before



the user’s program is run. The accessors and mutators for this state
implicitly accept the current thread as a p arameter, so the code that
initializes the state must run on the user’s thread.2

To enable DrScheme’s extensions to run code on the user’s thread,
DrScheme provides the p rimitive run-on-user-thread. It accepts a
thunk, queues the thunk to be run on the user’s thread and returns.
It has a contract that promises that when the argument thunk is ap-
plied, the current thread is the u ser’s thread:

;; run-on-user-thread : (→void) →void
(;;der ufnin-eo/nc-ounsetrr-atchtr reuand-:o n (-→usveor-itdh)r→ eadvo

(((λ () (eq? (current-thread) user-thread)) −→ any)
−((λ→(

a−n→y)
(λ (thunk)

· · ·))

This contract is a h igher-order function contract. It only has one
interesting aspect: the p re-condition of the function passed to run-
on-user-thread. This is a covariant (even) position of the function
contract which, according to the rule for b lame assignment, means
that run-on-user-thread is r esponsible for establishing this contract.

2This statei sn ota vailablet ou ser’sp rogramb ecauset he accessors and
mutators are not lexically available to the user’s program.

(module p references s cheme/contract
(provide add-panel · · ·)
(;;p prorevfiedreena cdeds-:paadnde-pla· n·e·)l : (panel →panel) →void
(;;dep rfeinfee/rceonncetrs:aacdtd a-pdadn-pelan :e(l



(set! make-panels (cons make-panel make-panels))))
· · ·

;; copy-spine : (listof α) →(listof α)
(;d; ecfoipnye- s(pcoinpey: -sp( liinsteo lf)α α(m) →ap( l(isλt (oxf) α x)) l)))

Figure 4. Preferences Panel Contract, P rotecting the Panel

Therefore, run-on-user-thread contractually promises clients of this
function that the thunks they supply are applied on the user’s thread
and t hat t hese thunks can initialize the user’s thread’s state.

2.4 First-class Contracts
Experience with DrScheme has shown that certain patterns of con-
tracts recur frequently. To abstract over these p atterns, contracts



must be values t hat can be passed to and from functions. For exam-
ple, curried comparision operators are common (see figure 3).

More interestingly, patterns of higher-order function contracts are
also common. For example, DrScheme’s code manipulates mix-
ins [7, 10] as values. These mixins are functions that accept a class
and returns a class derived from the argument. Since extensions of
DrScheme supply mixins to DrScheme, it is important to verify t hat
the mixin’s result truly is derived from its input. Since this contract
is so common, it is defined in D rScheme’s contract library:

;; mixin-contract :(class →class) contract
;(d; emfiinxein m-coixnintra-ccotn: tr( acclta

(class? −→d (λ (arg) (λ (res) (subclass? res arg)))))

This contract is a dependent contract. It states that the input to the
function is a class and its r esult is a subclass of the input.

Further, it is common for the contracts on these mixins to guar-
antee that the b ase class passed to the mixin i s not j ust any class,
but a class that implements a p articular interface. To support these
contracts, DrScheme’s contract library provides this function that
constructs a contract:

;;mixin-contract/intf :interface →(class →class) contract
;(d; emfiinxein -mcioxnitnr-accot/nitnrtafc t:/ii nnttfe

(λ (interface)
((λ (x) (implements? x interface))

−→d

−(λ→ →(arg) (λ (res) (subclass? res arg))))))
The mixin-contract/intf function accepts an interface as an argu-
ment and produces a contract similar to mixin-contract, except that
the contract guarantees that input to the function i s a class that im-



plements the given i nterface.

Although the mixin contract is, in principle, checkable b y a type
system, no such type system is currently implemented. OCaml [18,
19, 26] and OML [26] are rich enough to express mixins, but type-
checking fails for any interesting use of mixins [7], since the type
system does not allow subsumption for imported classes. T his con-
tract is an example where the expressiveness of contracts leads to
an opportunity to improve existing type systems. Hopefully this
example will encourage type system designers to b uild r icher type
systems that support practical mixins.

2.5 Callbacks and Stateful Contracts
Callbacks are notorious for causing problems in p reserving invari-
ants. Szyperski [32] shows why callbacks are important and how
they cause p roblems. In short, code that invokes the callback must
guarantee that certain state is not modified d uring the dynamic ex-
tent of the callback. T ypically, this invariant is maintained by ex-

tahmeisn tiantgeta  hfete srtat htee cb aelflobreac tkhe rec taulrlnbsa.3cki si nvokeda ndc omparing itt o

Consider this simple library for r egistering and invoking callbacks.

(module callbacks scheme/contract
(provide register-callback invoke-callback)

;; register-callback :(→void) →void
(;d;er efginiest/ecro-ncatlrlbaacct rk e g:i s(→terv-coaidll)ba→ cvko

((7−→d

→(λ ()
(let ([old-state · · ·save the relevant state · · ·])

(tλ( [(orleds-)s



· · ·compare the new state to the old state · · ·))))
−→

a−n→y)
(λ (c)

(set! callback c)))

;; invoke-callback :→void
(;;d einfvinoek ei-nvcaollkbe-accakllb: →a ckv

(λ ()
(callback)))

;; callback : →void
(;d;e cfailnlbea cckall b:a→ ckv o(iλd () (void))))

The function register-callback accepts a callback function and r eg-
isters it as the current callback. The invoke-callback function calls
the callback. The contract on register-callback makes use of the
dependent contract constructor in a new way. The contract checker
applies the dependent contract to the original function’s arguments
before the function itself is applied. Therefore, the r ange portion
of a dependent contract can determine key aspects of the state and
save them in the closure of the r esulting p redicate. W hen that p red-
icate is called with the result of the function, it can compare the
current version of the state with the original version of the state,
thus ensuring t hat the callback i s well-behaved.

This technique is useful in the contract for DrScheme’s p references
panel, whose contract we have already considered. Consider the

3In p ractice, lock variables are often used for this; the technique p re-
sented h ere adapts to a lock-variable b ased solution to the callback problem.



core syntax

p = d · · ·e
dp == dva· l· ·reec x : e = e
e = λ x. e | e e | x | fix x.e

|λ λnx |. ee aop e| |x xe| rop e.e
|| en:| :ee e| a[]o p| h ed |(ee ) r |o ptl(e e) | mt(e)
|| eif: :ee t| h []en| eh de (lese) e| |l (treu)e| |m fatl(ese) | str
|| ief e− → th een n| e coe lnstera ec|t (e)
|| efla7 −tp→(e)e || pc orendt(rea)c |t (deo)m(e) | rng(e) | blame(e)

str =| l"a "t p| "ea)" | |p r"ebd"( |e ·)| ··d| "oama("e )| |"r anbg"( |e )·|· |·

rop == "+" "|| ∗" | "−||  " "/
aop == ≥+ || ∗=|

axo =p =va≥r iab| l =es
n = 0 | 1 | · · ·| −1 | −2 | · · ·

types

t = t →t | t list | int | bool | s tring | t contract

evaluation contexts

P = val rec x :V = V · · ·

vvaall rreecc x x :: V E == Ve

d ·· ·

ed

| val rec x : V = V · · ·

vvaall rreecc xx :: VV == EV
d · · ·

ed

| val rec x : V = V · · ·

vEa

E = E e | V E
|= =EE aop eV V| EV aop E | E rop e | V rop E
|| EE a::o ep e| V| V:: aEo |p h Ed( |EE ) |r otpl( Ee)|
|| iEf : E: eth e|Vn Ve: :eE lse| he

|| iEf E−→t h een n| eVe −lse→e E | contract(E)



|| Edo m7−→(Ee) || r Vng −7(→E) |E E pr| ec do(nEtr) a| ftla(Etp)(E) | blame(E)
|| d2o

values

V = V :: V | λ x. e | str | n | true | false | V −→ V | contract(V)

Vp=vV alr ecx : V = V
Figure 5. λCON Syntax, Types, E valuation Contexts, and Values

revision of add-panel ’s contract in figure 4. The revision does more
than j ust ensure that the new child is the first child. In addition, it
guarantees that the original children ofthe preferences panel remain
in the panel in the same order, thus p reventing an extension from
removing the other preference panels.

3 Contract Calculus

Although contracts can guarantee stronger p roperties than types
about program execution, their guarantees hold only for particular
program executions. In contrast, the type checker’s weaker guaran-
tees hold for all program executions. As such, contracts and types
play synergistic r oles in program development and maintenance so
practical p rogramming languages must support both. In that spirit,
this section contains a calculus with b oth types and contracts to
show how they interact.

Figure 5 contains the syntax for the contract calculus. Each p ro-
gram consists of a series of definitions, followed b y a single expres-
sion. E ach definition consists of a variable, a contract expression



and an expression for initializing the variable. All of the variables

P[dn1e / 0] −→ error(/)
dn1e + dn2e −;→ dn1 + n2e
dn1e ∗ dn2e ; dn1 ∗ n2e
dn1e /∗ dn2e ; dn1 /∗ nn 2e

dn1 e − dn2e ; dn1 − n2e
dn1e ≥− dn2e ; true

dn1e ≥dn2e if; n1 ≥n fa2lse
if n1 < n2

dn1e = dn2e ; true

dn1e=dn2e i;fn 1= fna2lse
λx .eV i;f n1=6en [2x /V ]

fix x.e ; e[x / fix x.e]
P[x] −→ P[e2]

−wh→ere P contains val rec x : e1 = e2

if true then e1 else e2 ; e1

iffalse then e1 else e2 ; e2

hd(V1 :: V2) ; V1
P[hd([])] −→ error(hd)

tl(V1 :: V2) −;→ V2
P[tl([])] −→ error(tl)

mt([]) −;→ true
mt(V1 :: V2) ; false

flatp(contract(V)) ; true
flatp(V1 −→ V2) ; false

pred(contr7−a→ct(VV )) ; V
P[pred(V1 −→ V2)] −→ error(pred)

dom( V1 −→→V V2) −;→ V1
P[dom(contr7−ac→t(VV ))] −→ error(dom)



rng(V1 −→ V2) −;→ V2

P[rng(contr7−ac→t(VV ))] −→ error(rng)
P[blame(p)] −−→→ error(p)

where P[e] −→ P[e0] if e;e0

Figure 6. Reduction Semantics of λCON

bound by val rec in a single program must b e distinct. All of the
definitions are mutually r ecursive, except that the contract p ositions
of a definition may only refer to defined variables that appear earlier
in the program.

Expressions (e) include abstractions, applications, variables, fix ex-
pressions, numbers and numeric p rimitives, lists and list p rimitives,
if expressions, b ooleans, and strings. The final e xpression forms
specify contracts. The contract(e) and e −→ e expressions con-
sstpreuccitf yflac to anntrda cftusn.cTt iohne ccoonnttrraacctst,( r )eas npdece tiv−7 el→y. eA xflaprtpe esxiopnrsesc sioonn-
returns true if its argument is a flat contract and false if its argument
is a function contract. The p red, dom, and rng expressions select
the fields of a contract. The blame primitive is used to assign blame
to a definition that violates its contract. It aborts the program. T his
first model omits dependent contracts; we return to them later.

The types for λCON are those of core ML (without polymorphism),
plus types for contract e xpressions. The typing rules for contracts
are given in figure 7. The first typing r ule is for complete p rograms.
A program’s type is a r ecord of types, written:

h t · · ·i



where the first types are the types of the definitions and the last type
is the type of the final expression.

Contracts on flat values are tagged b y the contract value construc-

Γ +{ x j= tj|0≤j <  i} ‘ e 1i: ticontract· ··Γ+ { x i=t i,· ··}‘ e 2i:t i···Γ+ { x i=t i,· ··}‘ e : t
Γ ‘ val rec xi : e1i = e2i · · ·e : h ti · ··t i

Γ ‘ e :t →bool Γ ‘ e1 : t1contract Γ ‘ e2 : t2 contract Γ ‘ e : string
Γ‘  contract(e): t c ontract Γ ‘( e1−7→e 2) :t 1→t2contract Γ‘  blame(e):  t

Γ ‘ e :t1 →t2 contract Γ ‘ e :t1 →t2 contract Γ ‘ e : t contract Γ ‘ e : t contract
Γ‘ d om(e): t 1contract Γ‘ r ng(e): t 2contract Γ‘ p red(e): t → bool Γ‘ f latp(e):  bool

Γ + {x : t1} ‘ e : t2 Γ ‘ e1 : t1 →t2 Γ ‘ e2 : t1 Γ + {x :t} ‘ e : t
Γ ‘λ x .e : t 1→t2 Γ‘ ( e1e2): t 2 Γ+ { x :t }‘ x : t ΓΓ+ ‘ { fx ix:  t x}. ‘ e :e  t: t

Γ ‘ e1 : int Γ ‘ e2 :int Γ ‘ e1 :int Γ ‘ e2 : int
Γ‘ n : i nt Γ ‘e 1aope 2:b ool Γ ‘ e1rope 2:i nt

Γ ‘ e1 : t Γ ‘ e2 :t list Γ ‘ e :t list Γ ‘ e :t list Γ ‘ e : t list
Γ‘  eΓ‘ e 1::e Γ2: ‘t e l ist Γ‘ [ ] :t l ist Γ ‘ mt(e): b ool Γ‘ h d(e): t Γ‘ t l(e): t l ist

Γ ‘ e1 : b ool Γ ‘ e2 : t Γ ‘ e3 :t
Γ ‘e Γ ‘i fe 1thΓen ‘e e 2elsee 3:Γt ‘ e Γ‘ true:b ool Γ‘ false:b ool Γ‘ s tr: s tring

Figure 7. λCON Type Rules

tor and must b e predicates that operate on the appropriate type.
Contracts for functions consist of two contracts, one for the domain
and one for the range of the function. The typing rule for defini-
tions ensures that the type of the contract matches the type of the
definition. The rest of the typing rules are standard.

Consider this definition of the sqrt function:

val rec sqrt : contract(λ x.x ≥ 0) −→ contract(λ x.x ≥ 0) =
lλr enc. ·s ·q q·r

The b ody of the sqrt function has been elided. The contract on sqrt
must be an −→ contract because the type of sqrt is a function type.
mFuursthteb er, athne −7 d→omc aoinnt aacntdb r ange epo thretit oynpse o off t shqer tco isna tr afucnt atireo np rtyedpie.-
cates on integers because sqrt consumes and produces integers.4



More succinctly, the p redicates in this contract augment the sqrt’s
type, indicating that the domain and range must be p ositive.

Figures 5 and 6 define a conventional reduction semantics for the
base language without contracts [4].

4 Contract Monitoring
As explained earlier, the contract monitor must perform two tasks.
First, it must track higher-order functions to discover contract vio-
lations. Second, it must properly assign blame for contract viola-
tions. To this end, it must track h igher-order functions through the
program’s evaluation and the covariant and contravariant portions
of each contract.

To monitor contracts, we add a new form of expression, some new
values, evaluation contexts and r eduction rules. Figure 8 contains
the new expression form, representing an obligation:

ee,x,x

4Technically, sqrt should consume and produce any number, but since
λCON only contains integers and the precise details of sqrt are unimportant,
we consider a restricted form of sqrt that operates on integers.
The first superscript is a contract expression that the base expression
is obliged to meet. The last two are variables. The variables enable
the contract monitoring system to assign blame properly. The first
variable names the party r esponsible for values that are produced b y
the expression under the superscript and the second variable names
the party responsible for values that it consumes.



An implementation would add a fourth superscript, representing the
source location where the contract is established. This superscript
would be carried along during evaluation until a contract violation
is discovered, at which point it would be reported as p art of the error
message.

In this model, each definition is treated as if it were written by a
different programmer. Thus, each definition is considered to be a
separate entity for the purpose of assigning b lame. In an implemen-
tation, this is too fine-grained. Blame should instead b e assigned to
a coarser construct, e.g., Modula’s modules, ML’s structures and
functors, or Java’s p ackages. In D rScheme, we blame modules [9].

Programmers do not write obligation expressions. Instead, c on-
tracts are extracted from the definitions and turned into obligations.
To enforce this, we define the judgment p ok that holds when there
are no obligation expressions in p .

Obligations are placed on each r eference to a val rec-defined vari-
able. The first part of the obligation is the definition’s contract ex-
pression. The first variable is initially the name of the referenced
definition. The second variable is initially the name of the definition
where the r eference occurs (or main if the reference occurs in the
last expression). The function I(defined in the appendix) specifies
precisely how to insert the obligations expressions.

The introduction of obligation expressions induces the extension of
the set of evaluation contexts, as shown in figure 8. They spec-
ify that the value of the superscript in an obligation expression i s
determined before the base value. Additionally, the obligation ex-
pression induces a new type r ule. The type r ule guarantees that the



obligation is an appropriate contract for the base expression.

obligation e xpressions
e = · · ·| ee,x,x

obligation type rule

Γ ‘ e1 : t Γ ‘ e2 : t contract
Γ‘ e 1e2,x,x:t

obligation e valuation contexts

E = ···| eE,x,x | EV,x,x

obligation values

V = ···| VV −→ V,x,x

obligation r eductions

P[V1contract(V2),p,n] −fla→t P[if V2(V1) then V1 else blame("p")]

P[(V1(V3 −→ V4),p,n V2)] −ho→c P[(V1 V2V3,n,p)V4,p,n]

Figure 8. Monitoring Contracts in λCON

Finally, we add the class of labeled values. The labels are function
obligations (see figure 8). Although the grammar allows any value
to be labeled with a function contract, the type soundness theorem



coupled with the t ype rule for obligation expressions guarantees
that the delayed values are always functions, or functions wrapped
with additional obligations.

For the reductions in figure 6, superscripted evaluation proceeds
just like the original evaluation, except that the superscript is car-
ried from the instruction to its result. There are two additional re-
ductions. First, when a p redicate contract reaches a flat value, the
predicate on that flat value is checked. I f the p redicate holds, the
contract is discarded and evaluation continues. If the predicate f ails,
execution halts and the definition named b y the variable in the pos-
itive position of the superscript is blamed.

The final r eduction of figure 8 is the key to contract checking for
higher-order functions (the hoc above the arrow stands for “higher-
order contract”). At an application of a superscripted p rocedure,
the domain and range portion of the function p osition’s superscript
are moved to the argument expression and the entire application.
Thus, the obligation to maintain the contract is distributed to the
argument and the result of the application. As the obligation moves
to the argument position of the application, the value producer and
the value consumer exchange r oles. T hat is, values that are b eing
provided to the function are being provided f rom the argument and
vice versa. Accordingly, the last two superscripts of the obligation
expression must b e reversed, which ensures that blame is properly
assigned, according to the even-odd rule.

For example, consider the definition of sqrt with a single use in
the main expression. The reduction sequence for the application
of sqrt is shown on the left in figure 10. For brevity, references
to variables defined by val rec are treated as values, even though
they would actually r educe to the variable’s current values. The



first reduction is an example of how obligations are distributed on
an application. The domain portion of the superscript contract is
moved to the argument of the procedure and the r ange portion is
moved to the application. The second reduction and the second

wrap : t contract →t →string →string →t
wwrraapp :=t f cixo wrap. λ→ ctt. →λ xst.r iλn p . λ→ sn.t

if flatp(ct) t hen
if (pred(ct)) x then x else error(p)

else
let d = dom(ct)

r = rng(ct)
in

λ y. wrap r
(x (wrap d y n p))
p
n

Figure 9. Contract Compiler Wrapping Function

to last reduction are examples of how flat contracts are checked.
In this case, each predicate h olds for each value. If, however, the
predicate had failed in the second r eduction step, main would b e
blamed, since main supplied the value to sqrt. If the p redicate had
failed in the second to last r eduction step, sqrt would b e blamed
since sqrt produced the result.

For a second example, r ecall the higher-order program from the
introduction (translated to the calculus):



val rec gt9 = λ x. x ≥ 9
vvaall rreecc gbte9t0=  99λ x=. λx x≥. if 99 ≥ x then x ≥ 0 else false
val rec g :((gt9 −→ bet0 99≥) x− → th ebnet 0x≥9  9) =

lλr ef.c fg g0:

g (λ x. 25)

The definitions of gt9 and bet09 9 are merely helper functions for
defining contracts and, as such, do not need contracts. Although the
calculus does not allow such definitions, it is a simple extension to
add them; the contract checker would simply ignore them.

Accordingly, the variable g in the b ody of the main expression i s
the only reference to a definition with a contract. Thus, it is the
only variable that is compiled into an obligation. The contract for
the obligation is g’s contract. If an even position of the contract is
not met, g is blamed and if an odd position of the contract is not
met, main is blamed. Here i s the r eduction sequence:

g((gt9 −→ bet09 9) −→ bet09 9),g,main (λ x. 25)

−→ (g (λ x. 25)(gt9 −→ bet09 9),main,g)bet09 9,g,main

−→ ((λ x. x2.5)(gt9 −→ bet09 9),main,g 0)bet0 99,g,main

−→ (((λx . 25) 0gt9,g,main)bet09 9,main,g)bet09 9,g,main

−−→→ ((((((λλ xx.. 25)
((λif xg .t9(0) then 0

else blame("g ")))bet09 9,main,g)bet09 9,g,main

−→∗ blame("g ")

In the first reduction step, the obligation on g is distributed to g’s
argument and to the result of the application. Additionally, the vari-
ables indicating b lame are swapped in (λ x. 25)’s obligation. The
second step substitutes λ x. 25 in the body of g, r esulting in an ap-



plication of λ x. 25 to 0. The t hird step distributes the contract on λ
x. 25 to 0 and to the result of the application. In addition, the vari-
ables for even and odd b lame switch positions again in 0’s contract.
The fourth step reduces the flat contract on 0 to an if test that deter-
mines if the contract holds. The final r eduction steps assign blame
to g for supplying 0 to its argument, since it promised to supply a
number greater than 9.

vOsaqrRltλI rGe4n Ic.NA  s··q·rLbtPo: Rdc OyoGi nntRtrAeanMctito(λnax ll.yxe ≥ lid0e)d−7  →···c ontract(λx .x≥ 0)=
REDUCTIONS IN λCON

sqrt(contract(λx .x ≥ 0) −→ contract(λx .x ≥ 0)),sqrt,main
4

−→ (sqrt 4contract(λ x.x ≥ 0),main,sqrt)contract(λ x.x ≥ 0),sqrt,main

−→ (sqrt (if (λ x.x ≥ 0) 4

tehlseenb 4lame(main)))contract(λx .x ≥ 0),sqrt,main



−→∗ (sqrt 4)contract(λ x.x ≥ 0),sqrt,main

−→∗ 2contract(λ x.x ≥ 0),sqrt,main

−−→→ if (λ x.x ≥ 0) 2 then 2
e(lλs ex xbl≥ ame(sqrt)

−→∗ 2



Figure 10. Reducing sqrt in λCON and with wrapFigure 10.R educings qrti nλ CONandw ithw rap

This example shows that higher-order functions and first-order
functions are treated uniformly in the calculus. Higher-order func-
tions merely require more distribution r eductions than first-order
functions. In f act, each nested arrow contract expression induces a
distribution r eduction for a corresponding application. For simplic-
ity, we focus on our sqrt example for the remainder of the p aper.

5 Contract Implementation

To implement λCON, we must compile away obligation expressions.
The key to the compilation is the wrapper function in figure 9. The
wrapper function is defined in the calculus (the let expression is
short-hand for inline applications of λ-expressions, and is u sed for
clarity). It accepts a contract, a value to test, and two strings. These
strings correspond to the variables in the superscripts. We write
wrap as a meta-variable to stand for the program text in figure 9,
not a program variable.

Compiling the obligations is merely a matter of replacing an obli-
gation expression with an application of w rap. The first argument
is the contract of the r eferenced variable. The second argument is
the expression under the obligation and the final two arguments are
string versions of the variables in the obligation. Accordingly, we
define a compiler (C) that maps from programs to p rograms. It
replaces each obligation expression with the corresponding appli-
cation of w rap. The formal definition is given in the appendix.



The function w rap is defined case-wise, with one case for each k ind
of contract. The first case handles flat contracts; it merely tests if
the value matches the contract and b lames the positive position if
the test fails. The second case of w rap deals with function c on-
tracts. It b uilds a wrapper function that tests the original function’s
argument and its result by r ecursive calls to w rap. Textually, the
first r ecursive call to w rap corresponds to the p ost-condition check-
ing. It applies the range portion of the contract to the r esult of the
original application. The second r ecursive call to w rap corresponds
to the p re-condition checking. It applies the domain portion of the
contract to the argument of the wrapper function. This call to w rap
has the positive and negative blame p ositions reversed as b efits the
domain checking for a function.

The r ight-hand side of figure 10 shows how the compiled version
of the sqrt program reduces. It begins with one call to w rap from
the one obligation expression in the original program. The first
reduction applies w rap. Since the contract in this case is a function
contract, w rap takes the second case in its definition and returns a
λ expression. Next, the λ expression is applied to 4. At this point,
the function contract has b een distributed to sqrt’s argument and to
the r esult of sqrt’s application, j ust like the distribution reduction in
λCON (as shown on the left side of figure 10). The n ext r eduction
step is another call to w rap, in the argument to sqrt. This contract is
flat, so the first case in the definition ofwrap applies and the result is
an if test. If that test had failed, the else b ranch would have assigned
blame to main for supplying a bad value to sqrt. The test passes,
however, and the if expression returns 4 in the next reduction step.
After that, sqrt returns 2. Now we arrive at the final call to w rap.



E(p) =  e<rrVofnrp(>x) iiifffCCC(((III(((ppp)))))) −  −−→→→∗∗∗eλVr pxro.are n(dx)V p=6λ x .e

Efh(p)=e<<rroVffnnrp>>(x)iiiiffffIIII((((ppppVV))))pp−−−−6=6ff→→=ffhhh→→h∗V λ ∗∗∗V1Vλex Vr.Vpx r2e o.wr2−7p a (hx−7n→ed)→reV V 33,p,p,,nn
Efw(p) = e<rrofVnr(>x)iiifffIII(((ppp)))−−−fff→→w→ww∗∗∗λVerpx ro.earn(dx)V p=6λ x .e

Figure 11. Evaluator Functions

As before, the contract is a flat p redicate, so w rap reduces to an if
expression. This time, however, if the if test had failed, sqrt would
have b een b lamed for returning a bad result. In the final reduction,
the if test succeeds and the result of the entire program is 2.

6 Correctness
DEFINITION 6.1DIVERGENCE. A program p diverges under −→

if for any p 1 such that p −→∗ p1, At he prreo egxraismts ap p 2 seurgche stu handt p 1 −−→→

p2.



Although the definition of divergence refers only to −→, we use it
fAorlt heaouchg hot fh hthee d reefdinuitciotionno frel daivtieorngse.

The f ollowing type soundness theorem for λCON is standard [34].

THEOREM 6.2 (TYPE SOUNDNESS FOR λCON). For anyp rogram,
p, such that

0/ ‘ p : h t · · ·i

according to the type j udgments in figure 7, exactly one of thef ol-
lowing holds:

• p −→∗ Vp : h t · · ·i

• p −→∗ error(x), where x is a val rec defined variable in p , / ,
hpd− , →tl, p red dom, or r ng, or

• p diverges under −→.

λPCROONO.F. Combine the preservation and progress lemmas for

L−E→Mp M0Athe6.n30/  ( P‘ R p0ES:E hRt V ·A··TiI.ONF ORλCON).I f0 / ‘ p : h t · ··ia ndp

pLE= MV MpA, o6r.4p  ( −P→ROp G0R, fEoSrSs oF mOeRλp 0C.ON).I f0 / ‘ p : h t · ··it hene ither

The r emainder of this section formulates and proves a theorem that
relates the evaluation of programs in the instrumented semantics
from section 4 and the contract compiled programs from section 5.
To relate these two semantics, we introduce a new semantics and
show how it bridges the gap between them. The new semantics



is an extension of the semantics given in figures 5 and 6. In
addition to those expressions i t contains obligation expressions,

evaluation contexts, and −f→lat reduction from figure 8 (but not the

new values ort he −ho→c reduction in figure 8), andt he w−→rap reduction:
D[(λ x. e)(V1 −→ V2),p,n ] −w→rap

D[λy . ((λx . e)y V1,n,p)V2,−p→,n]
where y is not free in e.

DEFINITION 6.5 (EVALUATORS). D efine −f→h∗ to bet het ransitive

closure of (−→ ∪ −f→lat ∪ −ho→c) and define −−f→w→∗ to be the transitive
closure of (−→ ∪ −−f→la→t ∪ −w→rap).

The evaluator f unctions (shown in f igure 11) are defined on p ro-
grams p such that p ok and Γ ‘ p : h t · · ·i. A s a short-hand
gnroatamtisonp , wsuec hwrt ihtea tthp ato oak program ‘vap lue: ihs teq ·u·a·il. .toA as v aal usheo Vrt-p =a Vd
when the main expression of the program Vp is equal to V.

LEMMA 6.6. The evaluators are p artialf unctions.

PROOF. F rom an inspection of the evaluation contexts, we can
prove that there is a unique decomposition of each program into
an evaluation context and an instruction, unless it is a value. From
this, it follows that the evaluators are (partial) functions.

THEOREM 6.7 (COMPILER CORRECTNESS).

E = Efh



PROOF. Combine lemma 6.8 with lemma 6.9.

LEMMA 6.8 . E = Efw

PROOF SKETCH. This proof is a straightforward examination of
the evaluation sequences of E and Efw. Each r eduction of an appli-

cation of wrapc orresponds directly to either a −f→lat or a −w→rap reduc-
tion and otherwise the evaluators proceed in lo−ck→-ste orp.a

The full proof is given in the appendix.

LEMMA 6.9 . Efw = Efh

PROOF SKETCH. This proof establishes a simulation between Efh
and Efw. The simulation is preserved by each reduction step and it
relates values to themselves and errors to themselves.

The full p roof is given in the appendix.

7 Dependent Contracts
Adding dependent contracts to the calculus is straightforward. The
reduction relation for dependent function contracts naturally ex-
tends the reduction relation for normal function contracts. The
reduction for distributing contracts at applications is the only dif-
ference. Instead of placing the range portion of the contract into
the obligation, an application of the range portion to the function’s
original argument is placed in the obligation, as in figure 12.



dependent contract expressions

e = ···| e −→d e

dependent contract type rule

Γ ‘ e1 : t1 contract Γ ‘ e2 : t1 −→ (t2 contract)

Γ ‘ e17−d→e 2: (t1−→t 2)c ontract

dependent contract evaluation contexts

E = ···| E −→d e | V −→d E

dependent contract reductions

P[V3(V1 −→d V2),p,n V4] −→ P[(V3 V4V1,n,p)(V2 V4),p,n]

Figure 12. D ependent Function Contracts for λCON

The evaluation contexts given in figure 8 dictate that an obligation’s
superscript is reduced to a value before its base expression. In par-
ticular, this order of evaluation means that the superscripted appli-
cation resulting from the dependent contract r eduction in figure 12
is reduced b efore the base expression. Therefore, the procedure in
the dependent contract can examine the state (of the world) before
the function proper is applied. This order of evaluation is critical
for the callback examples from section 2.5.

8 Tail Recursion



Since the contract compiler described in section 5 checks p ost-
conditions, it does not preserve tail recursion [2, 30] for proce-
dures with post-conditions. Typically, determining if a procedure
call is tail recursive is a simple syntactic test. In the presence of
higher-order contracts, however, understanding exactly which calls
are tail-calls is a complex task. For example, consider this program:

val rec gt0 = contract(λ x.x ≥ 0)
vvaall rreecc gft :0 0(g= t0c −o→ntr agct0t)(λ λ−x →.x g ≥t0

= re λc g . g g3t
f (λ x. x+ 1)

The b ody of f is in tail position with respect to a conventional inter-
preter. Hence, a tail-call optimizing compiler should optimize the
call to g and not allocate any additional stack space. But, due to the
contract that g’s result must be larger than 0, the call to g cannot be
optimized, according to the semantics of contract checking.5

Even worse, since functions with contracts and functions without
contracts can co-mingle during evaluation, sometimes a call to a
function is a tail-call but at other times a call to the same function
call is not a tail-call. For instance, imagine that the argument to f
was a locally defined recursive function. The recursive calls would
be tail-calls, since they would not be associated with any top-level
variable, and thus no contract would b e enforced.

Contracts are most effective at module boundaries, where they serve
the p rogrammer by improving the opportunities for modular rea-
soning. That is, with well-written contracts, a programmer can
study a single module in isolation when adding functionality or
fixing defects. In addition, if the p rogrammer changes a contract,
the changed contract immediately indicates which other source files



must change.

5At a minimum, compiling it as a tail-call becomes much more difficult.
Since experience has shown that module b oundaries are typically
not involved in tight loops, we conjecture that losing tail recursion
for contract checking is not a problem in practice. In p articular,
adding these contracts to key interfaces in DrScheme has had no
noticeable effect on its performance. Removing the tail-call opti-
mization entirely, however, would r ender DrScheme useless.

Serrano presents further evidence for this conjecture about tail re-
cursion. His compiler does not preserve tail recursion for any cross-
module p rocedure call — notj ust those with contracts. Still, he has
not found this to be a problem in practice [29, section 3.4. 1].

9 Conclusion
Higher-order, typed p rogramming language implementations [1,
12, 15, 19, 33] have a static type discipline that prevents certain
abuses of the language’s primitive operations. For example, pro-
grams that might apply non-functions, add non-numbers, or invoke
methods of non-objects are all statically r ejected. Yet these lan-
guages go further. Their run-time systems dynamically prevent ad-
ditional abuses of the language p rimitives. For example, the p rim-
itive array indexing operation aborts i f it receives an out of b ounds
index, and the division operation aborts if it receives zero as a divi-
sor. Together these two techniques dramatically improve the quality
of software built in these languages.

With the advent of module languages that support type abstrac-
tion [13, 18, 24], programmers are empowered to enforce their own



abstractions at the type level. These abstractions have the same
expressive power that the language designer used when specifying
the language’s p rimitives. The dynamic part of the invariant en-
forcement, however, has b ecome a second-class citizen. The pro-
grammer must manually insert dynamic checks and blame is not
assigned automatically when these checks fail. E ven worse, as dis-
cussed in section 2, it is not always possible for the programmer
to insert these checks manually because the call sites may be in
unavailable modules.

This paper presents the first assertion-based contract checker for
languages with higher-order functions. Our contract checker en-
ables programmers to refine the type-specifications of their abstrac-
tions with additional, dynamically enforced invariants. W e illus-
trate the complexities of higher-order contract checking with a se-
ries of examples chosen from DrScheme’s code-base. T hese exam-
ples serve two purposes. First, they illustrate the subtleties of con-
tract checking for languages with higher-order functions. Second,
they demonstrate that current static checking techniques are not ex-
pressive enough to support the contracts u nderlying DrScheme.

We believe that experience with assertions will r eveal which con-
tracts have the biggest impact on software quality. We h ope that this
information, in turn, helps focus type-system research in practical
directions.
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aop arithmetic binary operators
d definitions
e expressions
E expression evaluation contexts



n numbers or negative b lame variables
p programs or positive blame variables
P program evaluation contexts

rop relational binary operators
str strings
t types
V expression values
Vp program values
x program variables
Γ type environment

The context makes clear when n and p are being used as numbers, programs,
or blame-assignment variables.

Figure 13. Key to Variables

Appendix
This appendix contains the full definitions of I, C, the simulation
relation, and the full proofs for lemmas 6.8 and 6.9.

The definition for I(figure 14) uses a h elper function, Ie. The
helper function accepts an expression, a program, a variable, and
a set of variables. It traverses the first argument, replacing occur-
rences of top-level defined variables with obligation expressions.
The second argument is the e ntire program being traversed and is
used to find the contract for each variable. The third argument is
the name of the definition being traversed and the final argument is
a set of names that shadow top-level names. With the exception of
variables, each case of the function merely recurs, and constructs
an identical term. The variable case wraps the variable if it is not
shadowed, using Hrelation. The Hrelation relates variables to the



top-level definitions that bind them.

The definition of C is shown i n figure 15. As described in section 5,
it traverses expressions, replacing obligation expressions with calls
to w rap.

LEMMA 6.8. E = Efw

PROOF. T his p roof establishes that the reduction sequences for E
and for Efw proceed in lockstep. F irst it shows that the evaluation
contexts for any term and its compiled counterpart match and then
it shows that each possible r eduction in E is mirrored in Efw.

Except for obligations, the compiler does not change programs.
Therefore, except for obligation expressions, a program and the
compiled version of the program decompose into an instruction and
a context identically. For obligation expressions, the compiler pro-
duces an application expression. From the definition of evaluation
contexts for applications and for obligation expressions, we know
that the obligation expressions and the compiled versions of obli-
gation expressions also decompose inp arallel. Accordingly, for the
purposes of the proof we extend Ce as follows:

Ce(2) = 2

so that C(P[e]) = C(P)[C(e)].

Since the compiler does not change any expressions except obliga-
tions, we merely need to show that if an obligation expression is
the instruction it reduces to the same expression that its compiled



I:p →p

I(:pp =→ vpal rec x : e1 = e2 · · ·e3) =
val rec x : Ie(e1 ,p,x,/0 )· =··e Ie(e2,p,x,0 /) · · ·

Ie(e3, p ,main,0 /)

Ie: e ×p ×x ×{x} →e

Ie(:λe y. ep ,p× ,n,x s )× ×={ xλ} y . →Iee(n,p,e,s ∪ {y})
Ie(e1(e2),p,n,s?) = Ie(e1 ,n(n,p,,ps,)e(,Ise(∪ e2{ ,ny},)p,s))

Ie(x,p,n,s)= ? xxe,x,n ioftHhe(rwp,is xe,e )a ndx ∈6 s
Ie(num,p,n,s) ?= num
Ie(e1 aop e2,p,n,s) = Ie(p,n,s,e1 ) aop Ie(e2,p,n,s)
Ie(e1 aop e2,p,n,s) = Ie(e1 ,p,n,s) rop Ie(e2,p,n,s)
Ie(p,n,s,e1 :: e2) = Ie(e1 ,p,n,s) :: Ie(e2,p,n,s)
Ie(p,n,s,[]) = []
Ie(hd(e),p,n,s) = hd(Ie(e,p,n,s))
Ie(tl(e),p,n,s) = tl(Ie(e,p,n,s))
Ie(mt(e),p,n,s) = mt(Ie(e,p,n,s))
Ie(if e1 then e2 else e3,p,n,s) =

if (Ie(e1 ,p,n,s)) then (Ie(e2,p,n,s)) else (Ie(e3,p,n,s))
Ie(true,p,n,s) = true
Ie(false,p,n,s) = false
Ie(str,p,n,s) = str
Ie(e1 −→ e2,p,n,s) = Ie(e1 ,p,n,s) −→ Ie(e2,p,n,s)
Ie(con−7t→race t(e),p,n,s) = con,tpr,anc,st)(I−7 e(→e,p,n,s))
Ie(flatp(e),p,n,s) = flatp(Ie(e,p,n,s))
Ie(pred(e),p,n,s) = pred(Ie(e,p,n,s))
Ie(dom(e),p,n,s) = dom(Ie(e,p,n,s))
Ie(rng(e),p,n,s) = rng(Ie(e,p,n,s))
Ie(blame(e),p,n,s) = blame(Ie(e,p,n,s))

H(p,x,e1) holds if val rec x :e1 = e2 is in p

Figure 14. Obligation E xpression Insertion



C: p →p

C(:dp p· →· ·ep) = Cd(d) · · ·Ce(e)

CCdd:(vd al→  redcx : e = e )= v alr ecx : Ce(e)= Ce(e)
Ce: e →e

Ce(:λe x →. ee) = λ x. Ce(e)
Ce(e1e2,p,n) = w rap Ce(e2) Ce(e1) "p" "n"
Ce(e1 e2) = Ce(e1) Ce(e2)
Ce(x) = x
Ce(n) = n
Ce(e1 aop e2) = Ce(e1 ) aop Ce(e2)
Ce(e1 rop e2) = Ce(e1) rop Ce(e2)
Ce(e1 :: e2) = Ce(e1) :: Ce(e2)
Ce([]) = []
Ce(hd(e)) = h d(Ce(e))
Ce(tl(e)) = tl(Ce(e))
Ce(mt(e)) = mt(Ce(e))
Ce(if e1 then e2 else e3) = if Ce(e1) then Ce(e2) else Ce(e3)
Ce(true) = true
Ce(false) = false
Ce(str) = str
Ce(e1 −→ e2) = Ce(e1 ) −→ Ce(e2)

Ce(flat7−p→(e)e) = flatp(Ce)(e7− )→)
Ce(pred(e)) = p red(Ce(e))
Ce(dom(e)) = dom(Ce(e))
Ce(rng(e)) = rng(Ce(e))
Ce(blame(e)) = blame(Ce(e))

Figure 15. Contract Compiler

counterpart does. There are two cases. First, consider obligation
expressions whose exponent is a flat contract:



( ( (λ x .

λ p.

λ n .

if flatp (contract Ce(V2))



then if (pred (contract Ce(V2)))

x

then x

else error p

else let d = dom (contract Ce(V2))

r = rng (contract Ce(V2))

λ y.

( ( (wrap r) (x ( ( ( (wrap d) y)

n)

p) ) )

p)

n)

Ce(V1))
"p")

"n"

( "( n(" p"wCer"a)(Vp1 ))(contract Ce(V2))) i      f  t hf  e  la  nt    ip   f  t( ch( oeCpnnret e(VrCd1e a)((cVct1o )nCter(Va2c))t Ce(V2)))

(  λ      n i . f  t  fh le a n t i p f   (( cpCorneet(Vdr1 a)(ccto Cnet(rVa2c))t Ce(V2))) e  l  s        e        l   e   λet  l   y(dsr.(e   ( ==ew  rdrraonrpmgo   r( (rc"c)opo "n(nttCrreaa(Vcc1tt)   (CCee((((VV(22w))))rap d) y)
e      l      s  e          l   e  λtt el  h ysder. en   = =eC  edrr(onrVmgo1  r)(( cc"oopnn"ttrraacctt  CCee((VV22)))) "  "n " p "  )                               " p""n)")))

"n          "                                                      ( n(    ")(p  w r"  a)  p     r  )    (   C  e  ( V  1  )   (  (  (  (" wpnr")a)p) )d) y)    i    f   t    ht   er   nu   e    i   fet  h (leCpsnere (e VCed1e r)((rVco1or)n t"rpa"ct Ce(V2)))



else let d = dom (contract Ce(V2))

(       (  λ             p   λ  .      n  i   . f        t  fh le   a  n t    ip     f  te (  (lchCpsoerenne( te VrCed1rae )rc((Vtco1r o)Cn ept(rVa2c))t Ce(V2)))                                                                 λ           y (r   . ("    (n="  w" p  rr"   an) pg      r(  )c   o  (n  Ct  er  (a  Vc  1t  )    (C  (e  ((  V(" 2wp")r)"na)"p)) )d) y)
e       l s    e            le    t  λ      y (rd. (   == (  w drr ona gpm     (r (c)c o o n(n tCt rer a(a Vcc 1tt )    (CC ee( (( (VV( 22wn))r)))ap d) y) i    f t elh (peCsrene e (VCde1re )((rVoc1ro) nt"rp"act Ce(V2)))

p) ) )

"    "n p"  "   )                        n )p) i  fet lhCees(neV  2Ce)e r(CrVeo1(Vr)1 ")p"
Figure 16. Flat Reductions

P[V1contract(V2),p,n]
−f→h P[if V2(V1) then V1 else blame("p")]

The compiled versions of those two programs are

C(P[Vc1ontract(V2),p,n])
= C(P)[wrap contract(Ce(V2)) Ce(V1) "p" "n"]

and

C(P[if V2(V1) then V1 else blame("p")])
= C(P)[if Ce(V2)(Ce(V1)) then Ce(V1) else blame("p")]

and the first compiled expressions above reduces to the second, as
shown in figure 16.



Second, consider the result of reducing an obligation expressions
whose exponent is a higher-order contract:

P[(λx . e)V1 −→ V2,p,n]

−f→h P[λy . ((λx . e) yV1,"p","n")V2,"n","p"]
The compiled versions of these two programs are

C(P[(λ x. e)V1 −→ V2,p,n])

= C(P)[wrap (Ce(V1) −→ Ce(V2)) (λ x. Ce(e)) "p" "n"]

and

C(P[λy . ((λx . e) yV1,"p","n")V2,"n","p"])
= C(P)[λ y . wrap (Ce(V2))

((λ x. Ce(e)) (wrap (Ce(V1)) y "n" "p"))
"p"
"n"]

and the first compiled expression above reduces to the second, as
shown in figure 17. Therefore E = Efw.

LEMMA 6.9. Efw = Efh

PROOF. Intuitively, the differenceb etween −f→w and −f→h is thatt he

−ho→c r eductionsi n −f→h are spliti ntot wo steps for −f→w, a −w→rap and an

application, where the −warr→eaps reduction may come muche arlieri n the
reduction sequence than− →ther eadpupcltiicoatniom na.

This p roof formalizes that intuition via a simulation relation (∼ )



between Efh and Efw, defined in figure 18. It relates −rfew→lat reduced

programst hath avet akent hef irsth alfo fa −h→ocr eductionw itht heir

Figure 17. Higher-Order Reductions



−f→h counterparts. The first clause establishes the connection be- In addition, we define a notion of strict simulation, written p ∼ ˆp 0
tween sub-terms where the −w clr→aapu r eduction has occurred and their iIfno  anded oitifot nh,es weec d oenfdinitieona sn h ootilodns:
counterpartsi nt he−f→hw orld−. • pa nd p0areb othv alueso re rrorsa ndp ∼ p 0,o r

V1(V2−7→V 3),p,n∼λx .( V1xV2,n,p)V3,p,n

evalr ecx : e 1e=1ee 22,x·,·y· ∼ vee010ale20 r,xec,yx : e 10=e 20
λ x. e ∼ λ x. e0

(e1 e2) ∼∼ (e01 e20)
n ∼∼ n

((ee(11era1oo:pp: e e e222))) ∼∼ (((eee100110:ar:oo pep20e e) 2020))
[] ∼∼ []

hd(e) ∼∼ hd(e0)
tl(e) ∼∼ tl(e0)

if teel1hseene e 32 ∼∼ ife et10lhseene e3 020
true ∼ true

false ∼∼ false
str ∼∼ str

e1 −→ e2 ∼∼ e10 −→ e20
d−7o→m(e e) ∼∼ dom7−→(e0)e
rng(e) ∼∼ rng(e0)



pred(e) ∼∼ pred(e0)
flatp(e) ∼∼ flatp(e0)

blame(e) ∼∼ blame(e0)
error(x) ∼∼ error(x)

···iaiffnde e 11e ∼∼ ∼  eee 10100a·n··d,e e 22∼∼e e 2020···,
aifn ed e∼ ∼e0
iiff e1 ∼∼e e10 and e2 ∼ e20

iiifff ee e 111∼∼∼ee   e001101aaannnddde  e e222∼∼∼e e e 202200
if e ∼ e0
iiff ee ∼∼ ee0
iiff ee∼1 ∼∼e e10 , e2 ∼ e20 , and e3 ∼ e30



if e1∼ 0e10ande 2∼e 20
iiff ee ∼∼ ee0
iiff ee ∼∼ ee0
iiff ee ∼∼ ee0
iiff ee ∼∼ ee0

Figure 18. Simulation between Efw and EfwFigure 18.S imulationb etweenEfwandEfw

• for valid decompositions p = P[e], p 0 = P0[e0], when we ex-
ftoerndv ∼ali dsd ucech ot hmapt o2s ∼tio n2s, Pp =∼ PP0[ ea]n,dp e ∼ e0.

The proof first establishes that all reductions steps match this dia-
gram:

e1 −f→h e3

∼ˆ ∼ˆ

e10 −f→w∗ e30

First we consider the reductions in figure 6. Each of them preserves



the simulation r elation, so we know that e3 ∼ e20, where e20 is the

termresultingbytakingasinglestepin−f→wfrome10.B ylemmaA.1
we k now that there exists e30 to satisfy t−he→ →abfroovme ediagram.

The only other r eduction to consider is e1 −ho→c e3. In this case, we
have:

e1 = P1[(VV12 −→ V3,p,n V4)]

and

e3 =P 1[(V1 VV42,n,p)V3,p,n]
By the definition of ∼ˆ , e10 must either be:

P10[(V01V20 −→ V30,p,n V40)]

or

P10 [((λ (y) (V01 yV20,n,p)V30,p,n) V40)].

The expression in the hole of the context of the first expression
above reduces to the expression in the h ole of the second expression

above by −w→rap. The expression in the hole of the second expression
reduces to−

((V1 VV42,n,p)V3,p,n)

Accordingly, b y lemma A.1 we know that the complete expressions
reduce to each other in the same manner, and to some expression
that simulates e3.

Finally, to prove the lemma, we must examine the overall r eduction
sequences by piecing together the above diagram. There are three



situations to consider:

• The program runs forever under −f→h. Clearly, by the piecing
tTohgeetp hreorg trahem ar buonvsef odrieavgerar mun many →ti.m Cesl,e trhlye, bsaymt he program

runs foreveru nder −f→w.

• Thep rogramr educest o an erroru nder −f→h. Fromt hed efini-
tTiohne oprfo othgrea ∼m rreedlauctieosn,t owa en nce anrr osere u tnhdaetr t−he→ program hmeu sdet fainlsoi-

reduce to the same erroru nder −f→w.

• The program reduces to a value under −f→h. If the value i s
nThote eap pprroogcreadmurer e, dwuce ek sn otow at hv aat uthee program →m.us Itf f rte hdeucv ea ltou ethi es

same value under −f→w, b y the definition of ∼ . Ift he value i s
a p rocedure, it mi−gh→t r,ed buyct he etod eaf idnifitfieorneno tf p∼ ro. cI efdtu hree, vb aultu ethi es
definitions of Efw and Efh identify any p rocedure values, and
thus produce the same result.

LEMMA A.1. Ife 1 ∼ e2, then there exists e3 such that e1 ∼ˆ e3 and
e2 −w→rap∗ e3.

PROOF. If e1 is a value, then e1 ∼ˆ e2, so taking e3 = e2 completes
the proof.

If e1 is not a value then it must decompose into an evaluation con-
text and an instruction, e1 = P1[i]. Along the spine of P1 are some
number of higher-order contract obligation values. W e proceed b y



an inductive argument on the number of these expressions to p rove
the lemma.

If there are zero such values, then e2 must decompose i nto an eval-
uation context and an instruction, i dentically to e1. This follows be-
cause the definition of ∼ and the definition of evaluation contexts

and values for t−ifwo→n and −→ fahn.d Together t hese definitions mandate
that the terms a−re→ →stra uncdtu−ra→lly. t  Theo gsaetmheer. tShoe,s ewde ecfainni j tuiosnt st am kea e3 t=e

e2.

If therea ren suchv alues,t hene 2reducesv ia−w→rapr eplacingt heo ut-
ermost h igher-order contract obligation with −a→ →λ reexpplarceissnigotn h. T ouhit-s
new term still simulates e1 and has one fewer higher-order contract
value. T herefore, we can conclude b y induction that there exists

and e3 sucht hat e2 −w→rap∗ e3 and e1 ∼ˆ e3.


