
A Generic Type-and-Effect System

Daniel M arino Todd M illstein

Computer Science Department
University of California, Los Angeles

{dlmarino,todd}@cs.ucla.edu

Abstract

Type-and-effect systems are a natural approach for statically rea-
soning about a program’s execution. They h ave been used to track
a variety of computational effects, for example memory manipula-
tion, exceptions, and locking. However, each type-and-effect sys-
tem is typically implemented as its own monolithic type system
that hard-codes a p articular syntax of effects along with p articular
rules to track and control those effects.

We present a generic type-and-effect system, which is parame-
terized by the syntax of effects to track and b y two functions that
together specify the effect discipline to b e statically enforced. W e
describe how a standard form of type soundness is ensured by re-
quiring these two functions to obey a few natural monotonicity re-
quirements. We demonstrate that several effect systems from the lit-
erature can be viewed as instantiations of our generic type system.
Finally, we describe the implementation of our type-and-effect sys-
tem and mechanically checked type soundness proof in the T welf
proof assistant.

Categories and Subject D escriptors D.3. 1 [Formal D efinitions

and Theory]: Semantics, Syntax; F.3.3 [Studies of Program Con-
structs]: Type structure

General Terms Languages, Theory

Keywords type-and-effect systems

1. Introduction
Type-and-effect systems (or simply effect systems) (Gifford and Lu-
cassen 1986) are an approach for augmenting static type systems to
reason about and control a program’s computational effects. Such
systems were originally developed to statically track the manipula-
tion of dynamically allocated memory. However, many other kinds
of computational effects can b e controlled via an effect system. For
example, J ava’s type system for checked exceptions (Gosling et al.
2005) can b e formulated as an effect system. Other applications
abound in the research literature. E ffect systems have recently been
used to enforce a locking discipline to prevent race conditions in
Java (Flanagan and Freund 2000; Abadi et al. 2006) and to ensure
strong atomicity for a transactional memory system (Abadi et al.
2008).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided t hat copies are not made or distributed
for profit or commercial advantage and that copies b ear this notice and the full citation
on the first p age. To copy otherwise, to republish, to post on servers or to r edistribute
to l ists, requires prior specific permission and/or a fee.
TLDI’09, January 24, 2009, Savannah, Georgia, USA.
Copyright ?c 2009 ACM 978-1-60558-420-1/09/01. . . $5.00

In each of the above examples, a p articular notion of effects and

an associated discipline for controlling t hose effects is b uilt into the
language’s type system. W hile it is intuitively clear that different
effect systems h ave much i n common, it is not obvious how to
make these commonalities precise. Indeed, others h ave explicitly
posed the formulation of a “general theory of effects” as an open
problem, with the aim of “avoiding the need to create a new effect
system for each new effect” (Wadler and Thiemann 2003). Such a
theory would make i t much easier to understand the r elationships
among effect systems and to experiment with new effect systems.

In this paper we take the first steps toward such a theory. We
present a generic type-and-effect system with the following techni-
cal contributions:

• We describe a uniform and general approach to instrumenting a
language’s type system with “hooks” that can b e used to t rack
and control a set of computational effects. A p articular effect
system is instantiated from our generic effect system by provid-
ing a syntax of effects as well as definitions of the hooks. The
hooks employ a style of representing effects dually as p rivileges
(or capabilities (Walker et al. 2000)), which is commonly used
to formalize effect systems that enforce a programming disci-
pline (e.g., (Abadi et al. 2006, 2008; Neamtiu et al. 2008)).

• A basic notion of type soundness for any type-and-effect system
requires static effect checking to conservatively approximate
the checking done by a dynamic semantics that is i nstrumented
with effects (e.g., (Talpin and Jouvelot 1992; Wadler and Thie-
mann 2003; Neamtiu et al. 2008)). W e show that it is sufficient
to impose a natural set of monotonicity r equirements on the ex-
ternally provided p rivilege discipline in order to guarantee this
form of t ype soundness. The effect system designer m ust sep-
arately establish that this notion of t ype soundness guarantees
the program behavior that the system is intended to ensure.

• We have formalized our generic effect system in the context
of a polymorphic lambda calculus with mutable references. W e
have implemented this language, the generic e ffect system, and
a mechanically verified type soundness theorem in the T welf
proof assistant (Pfenning and Schu ¨rmann 1999).

• We demonstrate that several effect systems from the literature
can b e viewed as instantiations of our generic effect system.
These systems include the original effect system for memory
manipulation (Gifford and Lucassen 1986), an effect system
for tracking yields in a cooperative multitasking system (Fis-
cher et al. 2007; Isard and Birrell 2007), and an effect system
that ensures strong atomicity for software transactional mem-
ory (Abadi et al. 2008). Further, these effect systems all satisfy
our monotonicity requirements that ensure type soundness.

Aside from its theoretical i nterest, we believe our work could
serve as the foundation for a p ractical framework that allows pro-
grammers to easily and reliably augment their language’s static

Φ ∪ canThrow; Γ; Σ ‘ e1 : τ Φ; Γ; Σ ‘ e2 : ExnType → τ
Φ;Γ;Σ‘ t rye 1withe 2:τ

(T-TRY)

Φ;Γ;Σ‘ eΦ: E;Γxn;ΣT ‘ypt ehrowce a: n τThrow∈ Φ (T-THROW)

Figure 1. Part of a type system that enforces checked exceptions.
Φ is the set of h eld p rivileges. Γ and Σ are the type environment
and store typing as usual.

type system to track new kinds ofeffects and to control these effects
with p rogrammer-specified disciplines. Such a framework would

do for effects what systems like CQUAL (Foster et al. 1999, 2006)
and Clarity (Chin et al. 2005) do for type qualifiers. In addition t o
the benefits for p rogrammers, a p rogrammer-definable effect sys-
tem would be very useful for type systems researchers.

The rest ofthe paper is structured as follows. Section 2 describes
our approach informally, and Section 3 presents our formal type
system. Section 4 illustrates several existing effect systems that fit
our model. Section 5 formalizes the dynamic semantics of our lan-
guage, and Section 6 discusses our type soundness result. Section 7
details the implementation of our language, type system, and type
soundness p roof in Twelf. Section 8 compares with related work,
and Section 9 concludes with a discussion of future work.

2. Overview

In this section, we give an informal overview of our generic effect
system. We first show how a few standard effect systems can be
described intuitively as granting and checking privileges. W e then
illustrate how we can abstract the specific privilege discipline being
enforced and instrument the static semantics of any language with
privilege checking in a generic way. Finally, we discuss how to
achieve a standard notion of type soundness for the resulting type
system.

2.1 Effect Systems as P rivilege Checking

Consider an effect system that statically ensures that exceptions are
eventually caught, as in J ava (Gosling et al. 2005). Such a system
enforces the discipline that a program may only raise an exception
within the dynamic lifetime of a try expression. If we consider the
ability to throw an exception as a privilege (assume for simplicity
that there is a single k ind of exception), then it i s natural to describe
this effect system as granting the privilege to throw an exception

before typechecking the body of a try expression and checking
that this p rivilege is h eld when typechecking a throw expression.

Figure 1 formalizes the discipline for exceptions described
above. The typing judgment tracks a set of held privileges Φ, and
we use a privilege canThrow to designate the capability to throw an
exception. Rule T-TRY grants the canThrow privilege in the body of
the try by adding this privilege to Φ before typechecking e1. Rule
T-THROW checks that the canThrow p rivilege is in Φ in order for
a throw expression to typecheck. These two actions form the core
of the effect system; the other typing rules simply ensure that this
privilege discipline is enforced r ecursively on all subexpressions.

Table 1describes how other standard effect systems can simi-
larly be viewed as granting and checking privileges. The formula-
tion of effects as p rivileges is natural when the intent is to enforce a
particular discipline on a program rather than to simply determine
the set of effects that may occur in the program. Each of these ef-
fect systems can be formalized as its own extension to a b ase type
system, as we have shown with checked exceptions.

As in these examples, we formalize our generic effect system as
granting and checking privileges, tracking a set Φ of held privileges
during typechecking. However, the system is p arameterized both
by the syntax of privileges to track and the discipline for granting
and checking p rivileges. Particular choices for these p arameters
yield a type system equivalent to our exception checker in Figure 1,
but many other effect systems can be derived by making different
choices.

The syntax of p rivileges is specified simply as a set of atomic
constants. For example, to define our exception checker one would
specify a single p rivilege canThrow, while a memory checker
might employ p rivileges read, write, and alloc. For greater ex-
pressiveness, p rivileges can optionally refer to tags, which provide
information about program values. W e augment the host language

to allow tagging of expressions that construct values, and the type
system tracks the set of possible tags (or tagset) of each expres-
sion’s value. We use ε to r ange over a set of globally defined tags
and π to r ange over tagsets. For example, read(ε) could be used to
denote the p rivilege to read any memory location tagged with ε.

The privilege discipline is specified b y p roviding the defini-
tions of two functions, which r espectively specify how Φ should be
adjusted (a generalization of granting that also supports privilege
revocation) and checked during typechecking. Rather than h ard-
coding the privilege discipline as we did for exceptions in Figure 1,
the typing r ules in our generic effect system are uniformly instru-
mented with i nvocations of these two functions, which are the only
parts of the type system that directly modify or inspect Φ. For ex-
ample, u sing our approach, the rule T-TRY would invoke the adjust
function to determine the p rivileges to use when typechecking e1,
while T-THROW would invoke the check function to determine what
privileges are required u pon a throw. These two functions are sim-
ilarly invoked from the other rules in the type system, allowing any
language feature to be controlled by the externally defined privilege
discipline.

2.2 Checking and A djusting Privileges, Generically

Our key contributions are a general interface for the check and
adjust functions and a uniform approach to instrumenting a lan-
guage’s type system with invocations of the two functions. F irst,
consider the function to check privileges. Intuitively, a particular
effect system may want to disallow an arbitrary computation step
(e.g., an exception being thrown, a write to memory) b ased on the
set of held p rivileges. Therefore, a generic effect system should
consult the check function as a premise in the typing rule for each
syntactic form that r epresents a step of computation. N ext consider

the function to adjust p rivileges. Intuitively, a p articular effect sys-
tem may want to adjust p rivileges in any syntactic context that
might arise dynamically (e.g., a try b lock, a letregion expres-
sion). Therefore, a generic effect system should consult the adjust
function to modify Φ in typing r ules before typechecking subex-
pressions of the current expression.

We make these ideas precise and applicable to any language
by adapting two standard notions for formalizing a language’s
dynamic semantics: redexes and evaluation contexts (Wright and
Felleisen 1994). The type system will have one call to the check
function for each r edex form in the language. The type system will
have one call to the adjust function for each evaluation context form
in the language.

The check function is invoked in the typing r ule for each ex-
pression form that can evaluate to a r edex, passing the current set of
privileges and a check context that describes the information known
statically about that redex. The function returns a boolean indicat-
ing whether the r eduction step r epresented b y that expression is
allowed. T o make things concrete, F igure 2 shows how the redexes
of a lambda calculus with mutable r eferences and let determine
the check contexts for that language. Each value form in a redex
is replaced by a tagset, π, which r epresents the information known
DisciplineTabPler i1v.il eSgtaendarde ffects ysteme nforcemeGntraa snp trivilegec hecking.Check

DisciplineTabPler i1v.il eSgtaendarde ffects ysteme nforcemeGntraa snp trivilegec hecking.Check

Redex =⇒ Check Context (C)
(λx.e)vZ=⇒π1π2

ref v ref π

!l !π
l:= v π1 := π 2

let x = v in e let x = π in ↑
letx = π i n↑

Figure 2. From redexes to check contexts. Metavariable v ranges
over values, e over expressions, and lover memory locations.

Evaluation Context =⇒ Adjust Context (A)
EeZ=⇒↓↑

vE ↓π↑ ↑↓
ref E rπe↓ f ↓
!E !r ↓e
E := e ↓! :↓ ↓=↑
v := E ↓π: =:=↑↓
let x = E in e πle: t= x↓ =↓ in ↑
letx = ↓i n↑

Figure 3. From evaluation contexts to adjust contexts. Metavari-
able E ranges over evaluation contexts.

statically about an expression’s value, as determined by static type-
checking. Expressions that are not necessarily values appearing in
a redex are replaced by the ↑ symbol in the check context, indicat-
ainr ge tdheaxt ainrefor ermpalaticeodn babyo thuet th ↑i ssy smubboexlpi nrest hsieoc nh eisc knoc to rnetleevxat,n int dtoi cthate-
reduction step b eing checked.

Consider our example of checked exceptions. Following the
approach for formalizing a generic effect system described above,
a language containing an expression throw e would include a
check context of the form throw π due to the redex form throw
v. Therefore, the typing r ule for throw will invoke check(Φ, throw
π), where Φ is the current set of p rivileges and π is the set of
possible tags of e (determined by typechecking e). The f ollowing
check function implements the hard-coded privilege checking
behavior of T-THROW in Figure 1 and specifies that p rivilege

checking for all other kinds of reduction steps should trivially
succeed:

check(Φ,C)= (tcarunTehr oothwe∈r wΦ isei fC = t hrowπ
The adjust function is invoked once per e valuation context re-

lated to the current expression form in a typing rule, passing the
current set of p rivileges and an adjust context that describes the in-
formation k nown statically about that evaluation context. The func-
tion returns a new set of privileges to b e used when typechecking a
designated subexpression indicated by the adjust context. Figure 3
shows how the evaluation contexts of our extended lambda calcu-
lus determine the associated adjust contexts. As before, values are
replaced by tagsets and arbitrary expressions are replaced by the ↑
sreypmlabcoel.d F byinat allgys, ewtsha erndevae rrb tihtrea eryvae lxupartieosnsi conosnta erxet rceopnltacaiends bay yr ethcuer↑ -

sive evaluation context, the corresponding adjust context contains a
↓ symbol indicating the subexpression for which p rivileges should
b↓es yadmjbusotlei dn.

Consider again our exceptions example. A language containing
an expression try e1 with e2 would include an adjust context of
the form try ↓ with ↑ due to the evaluation context try E with
teh. eT f hoerrmef otrrey t h↓e wtiytpihng↑ rd uulee tfoo rth tere yv awluilalt iionnvoc kone taedxjtut srt(yΦE, Etw ryi ↓h
ewi. tThh ↑re),f wreh tehree tΦy iisn gthr eu lceur froren tt syetw oilfl pi nrvivoikleegea sd,j utsot Φdet,e trmryin e↓
twhiet hne↑ w) ,swe t hoefr ep r Φivii lseg ethse tco ursreen tws heetn otfyp percivheilcekgiensg, e1. Tetheermn tinhee
following adjust function implements the hard-coded p rivilege
granting behavior of T-TRY in Figure 1and specifies that p rivileges
should b e p assed along u nchanged in all other syntactic contexts:

adjust(Φ,A)= (ΦΦ∪ ot{hcearwnTisherow}i fA = t ry↓ w ith ↑
To summarize, defining the exception checker in a generic effect

system using our approach requires simply specifying the set of
privileges, {canThrow}, and p roviding the above definitions for the
cphrievcikle agnesd, {adcajunstT hfruonwct}i,o nasn.d A prso wvied sinhgot wh eina bSoevcetiod nef in 4,i many oort thheer
effect systems from the literature can be specified as instantiations
of our generic effect system.

2.3 Proving Type Soundness

A basic notion of type soundness for effect systems requires static
effect checking to conservatively approximate an instrumented dy-
namic semantics that tracks effects as the program executes. In our
setting, this form of soundness requires that a well-typed program
will never fail a dynamic privilege check. W e could provide a sep-
arate mechanism for i nstrumenting the dynamic semantics with ef-
fects, but it turns out that the check and adjust functions provided
for static type-and-effect checking naturally support dynamic p riv-
ilege checking as well. Whereas statically these functions employ
the conservative i nformation gleaned from the types of expressions,
dynamically the functions are given precise i nformation about the
tags of the r esulting values and the set of h eld privileges.

Because the check and adjust functions are completely arbi-
trary, there is no guarantee that a particular instantiation of these
functions will lead to a sound effect system. For example, since a
sound static checker underapproximates the set of p rivileges that
will b e h eld dynamically, it would be unsound for a check function
to rely on the absence of a privilege in Φ. Such a check function
could cause the static checker to accept a program that fails p rivi-

lege checking dynamically.
However, we can define a natural set of sufficient conditions on

the check and adjust functions that ensure soundness. Intuitively
these conditions ensure that the check and adjust functions are
monotonic with respect to their treatment of b oth p rivileges and
tags. We have proven that our generic effect system for the language
described in Section 3 does indeed lead to a sound effect system for
any check and adjust functions that satisfy our four m onotonicity
conditions, which are described in detail in Section 6. All of the
check and adjust functions for the example effect systems in this
paper satisfy the four conditions.

Our soundness guarantee does not capture extensional no-
tions of soundness, which directly relate static effect checking to

Values v ::= (λx.e)ε | (rec x .λx0.e)ε | unitε | lε
Exprs e ::= v | x | ee| || r(reecfx xe.λ)εx

| !ve| ||x x(|e :=e| e (r)εe f| ele)t x = e in e
Types τ ::=| !πeρ |

PreTypes ρ ::= τ →Φ τ | Unit | Refτ
PrivSets Φ ::= {p→(ετ) τ}|

Figure 4. The syntax of our host language. Metavariable x ranges
over variables, l over memory locations, ε over tags, π over
nonempty sets of tags, p over p rivilege classes, and Φ over sets
of privileges.

the uninstrumented dynamic semantics. For example, suppose the
check function for our exceptions example above were defined to
always r eturn true. In that case, the discipline would still satisfy
our notion of soundness (and monotonicity requirements) since dy-
namic privilege checking cannot fail, even though a well-typed pro-

gram can now have an uncaught exception. Defining and proving
extensional semantics for specific type-and-effect systems, such as
those that track memory access and exceptions, is challenging and
the subject of current research (Benton et al. 2006; Benton and
Buchlovsky 2007).

3. A Generic Type-and-Effect System

Section 2 gave an intuitive overview of how we can instrument
the static semantics of a language to create a generic system for
enforcing disciplines on computational effects. This section makes
the ideas more concrete b y showing the complete, instrumented
static semantics for a core language whose syntax i s shown in
Figure 4 . Our language is the call-by-value lambda calculus with
recursive functions, a unit value, ML-style references, and a let
expression. As mentioned in the previous section, the syntax also
includes a notion of tags.

The language has a fixed collection of typing r ules defining
the type system. The r ules are p arameterized by a set of p rivilege
classes and the check and adjust functions that specify the behavior
of a particular effect system for the language.

3.1 Preliminaries

Tagged Values and Tagged Types Our language includes tags,
denoted b y metavariable ε, which are static names for a set of
run-time values. E ach value is annotated with its associated tag,
as is each expression that constructs a new value dynamically.
For example, the evaluation of an expression of the form (ref e)ε
evaluates e to a (tagged) value v, creates a new memory location l
in the store that maps to v, and tags lwith the tag ε.

The type of an expression includes a nonempty set of tags that
we call a tagset and denote π, which r epresents the set of possible

tags of the expression’s run-time value. As shown in the definition
of τ, each level of a type includes a corresponding tagset.

Our notion of tags is standard and closely related to work on
type qualifiers (Ørbækand Palsberg 1997; F oster et al. 2006). More
sophisticated forms of tagging exist in the literature, for example
tags that refer directly to program variables (Abadi et al. 2006)
and lexically scoped tags (Tofte and Talpin 1994). T hese extensions
would increase the expressiveness of our system but are orthogonal
to our main contributions.

Privilege Classes and P rivileges We assume a set of p rivilege
classes r anged over by metavariable p . For example, to formalize
a memory checker we could define three privilege classes read,
write, and alloc, respectively representing the capability to r ead,
write, and allocate memory. Ap rivilege is a pair of a privilege class
and a tag, denoted p (ε). In examples, we use the privilege class
itself as the privilege when the tag is irrelevant.

The static type-and-effect system t ypechecks an expression un-
der a set of privileges Φ, representing the computational effects that
are allowed to occur during the expression’s evaluation. In F ig-
ure 4, function types are annotated with a p rivilege set, denoting
the privileges needed to properly execute the function. As u sual for
type-and-effect systems, t his annotation allows for modular effect
checking of a function’s body separate from its callers.

Checking and A djusting P rivileges As described p reviously, the
privilege discipline is specified through two functions, check and
adjust. The check function takes the current set of held p rivileges
along with a check context and returns a boolean indicating whether
the expression associated with the check context satisfies privi-
lege checking. The adjust function takes the current set of held
privileges along with an a djust context and returns a new set of

privileges to use when typechecking a distinguished subexpres-
sion within the adjust context. The syntax of the check and ad-
just contexts for our language are shown on the right sides of Fig-
ures 2 and 3.

Our formalism does not model the implementation of the check
and adjust functions. They are treated as b lack boxes that our
rules use to enforce a p articular effect system’s discipline. A s one
example, the following check function corresponds t o a standard
checker for memory effects:

check(Φ,C) =a∀t∀lεεrul ∈ ∈oeπ πc ..∈ or wt Φherieardtw(eiεif(s)εe)∈ C∈ Φ =Φ r eiffifπ CC= = !ππ : =π 0
3.2 Type-and-Effect Checking

We now define our generic type-and-effect system. The typecheck-
ingjudgment has the form Φ; Γ; Σ ‘ e : τ, which says that expression
ien cganju dbeg mgievnetnh tayspteh τe fino tmheΦ Φco;Γnt;eΣxt‘ oef: :pτr,iwvilheicgeh ssaety Φsth, taytpeex pe nrevsirsoionn-
ment Γ (which maps each variable in scope to its type), and store
type Σ (which maps each location in the store to the type of val-
ues that it holds). The typing r ules are shown in F igure 5. Note that
there is no r estriction on the initial set of p rivileges used to type-
check the top-level program. For some effect disciplines an empty
initial p rivilege set is appropriate, while for other disciplines it is
natural to begin with a set of default privileges that are revoked in
certain program contexts.

Because the rules are p arametric in the effect discipline, the
rules in Figure 5 really define a family of type systems indexed
by the discipline. The discipline is defined as a triple of the set
of p rivilege classes, the adjust function, and the check function:

D = hPD, adjustD, checkDi . An instantiation of the type system
for =a particular discipline D.A, nthi enns, aisn diaetfiionned o f bt yh etht ey p jeud sgymsteemnt
Φ; Γ; Σ ‘D e : τ whose inference rules invoke the functions adjustD
aΦn;dΓ c;hΣe ‘ckD. In order to avoid cluttering the p resentation, we h ave
omitted the discipline subscripts i n our figures. However we will
return to this notation to more precisely state our soundness r esult
in Section 6.

The rules perform standard typechecking for the simply typed
lambda calculus with r eferences. The r ules also perform static tag
checking, which approximates the tag of each expression by a
tagset. Tag checking is straightforward and is a variant of type
qualifier checking (Ørbækand Palsberg 1997; Foster et al. 2006).

Finally, the r ules employ the adjust and check functions to per-
form static privilege checking. The adjust function is consulted in
order to produce the appropriate p rivilege set to use when type-
checking each subexpression of the given expression. The check
function is consulted in order to decide whether an expression that

Φ;Γ;Σ‘ e : τ
Φ;Γ;ΣΦ1‘ ;Γ (,λxx. :eτ)1ε;:Σ{ ‘ ε}e (τ: 1τ →Φ21τ 2) (T-FN)

ΦΦ1;;ΓΓ;,xΣ ‘ :{ (εr}e(cτx 1.→Φλx10.τ 2e))ε,x:0{ :ετ }1(;τΣ1→Φ‘ 1e τ: 2τ)2 (T-REC)

Φ;Γ;Σ‘ u nitε: {ε}Unit (T-UNIT)

Φ;Γ;ΣΣ ‘(ll ε)= :{ ετ}Refτ (T-LOC)

Φ;ΓΓ(;xΣ) = ‘x τ: τ (T-VAR)

adajudjsut(stΦ(Φ,↓,↑π)1 =↓)Φ = 0 Φ00Φ0;ΓΦ;0Σ0;‘ Γ;e Σ1: ‘π e 12(:τπ 22→Φρ12τ)
check(Φ,π1πΦ2);Γ;Σπ‘ 2e ρ12e<2:τ:2τ Φ1⊆Φ (T-APP)

adjust(Φ,ref ↓) = Φ0 Φ0;Γ;Σ ‘ e : τ

τΦ ;=Γ; πΣρ ‘ (recfhe e)cεk:(Φ{ ε,}rRefefπ τ) (T-REF)

adjust(Φ, ! ↓) = Φ 0 Φ0;Γ; Σ ‘ e :π Ref τ

Φch;eΓc;kΣ(Φ‘ !,e!π:)τ (T-DEREF)

adjust(Φ, ↓:=↑) = Φ0 Φ0;Γ;Σ ‘ e1 : π1Ref τ1
aaddjjuusst(t(ΦΦ,,↓π:=1 :↑=)↓ =) Φ= Φ00 ;ΦΓ0;0Σ;Γ‘ ;Σ e ‘ e2 :π2ρ2

chΦe;ckΓ(;ΦΣ, ‘π1(e:=1:π =2 e)2)ε: {πε2}ρU2<ni:tτ1(T-ASGN)

adjust(Φ,let x =↓ in ↑) = Φ0 Φ0;Γ;Σ ‘ e1 : π 1 ρ1

check(Φ,let xΦ =;Γ π;1Σi n‘l e↑ t) x = eΦ1;iΓn,e x2: : πτ 1ρ1;Σ‘ e 2:τ (T-LET)

adjust(Φ, let x =↓ i n ↑) = Φ0 Φ0;Γ;Σ ‘ v1 : π1 ρ1

check(Φ,letx Φ =;Γπ ;Σ1i‘ n l↑e t) x = vΦ1;iΓn;e Σ2‘ :τ e2[x→7 v 1]: τ (T-VLET)
Φ;Γ;Σ ‘e Φ;Γ;Σ ‘l etx = v

Figure 5. Generic type-and-effect checking.

will dynamically evaluate to a redex has the appropriate privileges
to b e reduced.

For example, consider the rule T-ASGN for typechecking ex-
pressions of the form e1 := e2. The rule invokes the adjust function
to produce the p rivilege set Φ0 to use when typechecking e1. The
adjust function is invoked again, this time passing as context the
statically determined tagset π1 for e1, to produce the privilege set
Φ00 for typechecking e2. The adjust function for a p articular disci-
pline could simply make Φ0 = Φ00 = Φ, thereby requiring e1 and e2

to be well typed under the current set of p rivileges. However, our
rule soundly allows many other effect disciplines to b e enforced.
For instance, the following adjust function, used in conjunction
with the check function at the end of Section 3. 1, serves to
enforce a particular canonical form on programs, whereby the
subexpressions in an assignment expression are required to b e pure:

adjust(Φ,A)= ? 0Φ/ ioftheArw= i↓s:e=↑ or A= π : =↓
Finally, the T-ASGN rule p asses π1 along with e2’s statically de-
termined tagset π2 to the check function in order to ensure that
the effect discipline for assignments is being obeyed. The premise
check(Φ, π1 := π2) is shorthand for the requirement that this call to
the check function returns true.

The rule T-FN for typechecking lambdas “guesses” an argument
type τ1 and privilege set Φ1 for use in typechecking the function
body, and similarly for the rule T-REC. Our tag system is a variant

of existing approaches to user-defined type qualifiers, so we expect
tag inference to follow from the work on qualifier inference (Ørbæk
and Palsberg 1997; Foster et al. 2006). Privilege inference poses
more of a challenge, particularly in the presence of arbitrary black-
box check and adjust functions. In this paper we h ave chosen
to keep the check and adjust functions fully general, in order to
explore the expressiveness and soundness limits of our approach. It
may be possible to adapt existing algorithms for effect inference
(e.g., (Talpin and Jouvelot 1992)) by restricting the form of the
check and adjust functions.

The rule T-APP performs p rivilege checking in a manner anal-
ogous to the other r ules, and it additionally ensures that the p rivi-

τ1<:τ2

π1Uπn1it<⊆:ππ 22Unit (ST-UNIT)

π1 ⊆ π 2

π1(Rτ1e<f:ττ 12)<:πτ2(2<R:eτf1 τ2) (ST-REF)

π1 ⊆ π2 Φ1 ⊆ Φ2

π1(ττ12<→Φ1:τ τ101)<:π2τ10(<τ:2τ→Φ202τ 20) (ST-FN)

Figure 6. The subtyping j udgment.

leges Φ1 required b y the function being invoked are a subset of the
current set of privileges Φ.

For increased expressiveness, our type system includes a form
of subtyping for tagged types. For example, the r ule T-APP only
requires the type of the actual argument expression to b e a sub-
type of the formal argument type. The subtyping rules are shown
in Figure 6. A type’s tagset is required to b e a subset of any super-
type’s tagset. This makes sense since a tagset r epresents the set of
all possible tags of the associated expression’s run-time value, so a
smaller tagset denotes a stronger property than a larger tagset. As
usual for soundness, nontrivial subtyping is not allowed underneath
a Ref type and function argument types are contravariant. Finally,
a function type’s p rivilege set must be a subset of any supertype’s
privilege set, since a function that requires fewer privileges can be
safely used where one requiring more privileges is expected.

Our type system also includes a form of let-polymorphism
for tagged types. As others have done (e.g., (Talpin and Jouvelot
1992)), we express p olymorphism formally through substitution
rather than through explicit quantification over types. The rule T-
VLET in Figure 5 expresses this form of polymorphism. As usual,

adjust(Φ, letscope π1 in ↓) = Φ0 Φ0; Γ; Σ ‘ e : τ
τ = π2ρ2 chienck ↓(Φ),= =leΦ tscope π1 ;inΓ ;π Σ2)‘

Φ;Γ;Σ‘ l etscopeπ 1ine : τ

Figure 7. The typing rule for letscope.

for soundness in the presence of references we only treat values
polymorphically, so the r ule is specialized to that situation. As an
example of polymorphism, consider our memory effects checker

and a function that takes a r eference cell as an argument and possi-
bly dereferences it. With polymorphism, this function can be called
multiple times with differently tagged reference cells, as long as the
appropriate read privileges are held at each call site.

4. Examples

This section illustrates the expressiveness of our approach. We
first extend our core language with a generic scoping mechanism
in order to facilitate the p resentation of examples and then show
how several effect systems from the literature can be expressed as
instantiations of our generic system.

4.1 A Generic Scoping Expression

For some effect systems there is a construct in the language where it
is natural to adjust privileges, such as try for an exception checker.
But others, like our memory checker, do not have such an expres-
sion. In these cases, we can use function annotations to control
privileges. For instance, b y annotating a function with the empty
privilege set in our memory checker, we prevent the body of the
function from accessing memory. However, we may want to have
more fine-grained control. To achieve this we introduce a new ex-
pression form called letscope. The expression (letscope π in e) dy-
namically behaves like e and, like all expressions in our language,
has associated check and adjust contexts. Thus we can define cases
for the adjust function that grant or r evoke p rivileges while type-
checking the body of the letscope. The typing rule for letscope is
shown in Figure 7.

Consider again our memory checker with read, write and
alloc privileges. Assuming that we b egin with an initial set
containing all privileges, we can use letscope to require purity in

certain code segments:

adjust(Φ,A)= (0Φ/i fo t hAer =wl iestescopeπ i n↓
Using the tagset π provided to the letscope we can allow more
fine-grained control and require that a code segment be pure only
with respect to locations with p articular tags:

adjust(Φ,A) =ΦΦ− ot{ifhwerA rwit =ie(sεel e)t| scε o p∈eπ π }i −n{↓ read(ε)| ε ∈ π }−{alloc}

It may be useful to have different “kinds” of letscopes for dif-
ferent purposes. Our formalism has only one letscope expression,
but different kinds can b e encoded through the tagset π provided
in the expression. For example, we could modify the above r ule to
only revoke privileges when π contains a distinguished pure tag:

adjust(Φ,A)= ΦΦ− ot{ifhwerrA wit =ie(seεl e)t| scε o p∈eπ π }i −n{↓ rea andd(εp) u| rε e∈ ∈ π }π −{alloc}

We could then augment the above function to r evoke only
write and alloc p rivileges when a distinguished readonly tag
is present in π. In this way, we can use the letscope expression
to perform many different privilege operations within a program.
Throughout this section, we use a syntactic sugar for this idiom
and allow letscope expressions to b e subscripted with a tag that
we call a letscope kind. These kinds can be used within check and

adjust functions. For example, we can rewrite the above effect
discipline using our syntactic sugar as follows:

adjust(Φ,A)= ΦΦ−o t{ifhweA rrwit= ie(seεl e)t| scε o p∈epπ u}r−eπ{ri enad↓ (ε)| ε ∈ π }−{alloc}

4.2 Type Qualifiers

Our notion of tags is sufficient to express typical idioms involving
type qualifiers. For example, a program could use tags untainted
and tainted to respectively tag data that can and cannot be
trusted (Ørbækand Palsberg 1997; Shankar et al. 2001). Our type
system ensures that if a function’s formal p arameter is declared to
have type {untainted} ρ, then tainted data will never flow there.

Tet hyep Ce Q{uUnAtLa isnytsteemd} fρo,rt htyenpet qauianlitfeiedrds aitna Cw (iFllon setevre ref tl oalw. t 2h0e0r6e.)
allows users to specify a partial order on qualifiers, which induces a
subtyping relation on qualified types. For example, a CQUAL user
would declare untainted ≤ tainted in order to allow untainted
dwaotau tdod felcolwar ewu hnetreavienrt teadi≤ntt eadi ndtaetad iisn oe xrdpeerc tteoda . Wlowhil uen toauir ntyteped
system does not support such a relationship between tags, our use
of tagsets and the associated subtyping relation on tagged types ac-
complishes the same thing. In our t ype system both untainted
and tainted data can flow to a place where a value of type
{untainted,tainted} ρ is expected.

nFtianialnlyt,e do,tura ichntecekd }fuρ ni cst ieoxnp eccatne i.nteract with tags to provide
more expressiveness for type qualifiers, even in the absence of
privileges. For example, consider a tag readonly that is meant to
annotate memory locations that cannot b e updated after initializa-
tion. The following check function enforces this b ehavior:

check(Φ,C)= (treraudeoon lthyer6∈ wπ isei fC = π : =π 0
4.3 Memory Effects

Consider the check function at the end of Section 3.1which imple-
ments standard tracking of memory effects. Given this definition
for check, our type system will require each function’s type to be
annotated with a set of p rivileges r epresenting the memory effects
that may occur during its execution. These privileges are expres-
sive enough to represent the four “effect classes” in the original
effect system of Gifford and Lucassen (1986): a function r equiring
the empty set of privileges corresponds to their PURE effect class;
a function requiring neither read nor write (but possibly alloc)
privileges corresponds to their FUNCTION effect class; a function
requiring no write privileges corresponds to their OBSERVER ef-
fect class; and a function r equiring arbitrary privileges corresponds
to their PROCEDURE effect class.

The letscope construct can also be used to enforce these dis-
ciplines at a finer granularity than a f unction. One approach is to
allow all memory operations b y default, b y including the alloc
privilege and the read and write privileges for all tags in the ini-
tial p rivilege set. Memory effects can then b e restricted through-
out the program b y using different kinds of letscopes. The adjust
function shown in F igure 8 implements this discipline. It includes
three letscope kinds to mark code that falls into the different ef-
fect classes. T here is no letscope kind corresponding to the PRO-
CEDURE effect class since our initial privilege set makes this the
default.

adjust(Φ,A) = ΦΦ/0Φ−− i of{i{tfA hwwe rrAr= iwit= tli eese((l etεεes)c)tso| | cpww oeprrpiieuttfreeue((nεεπ))π∈ ∈ i ni ΦΦ n↓ }}↓ −i f{rA ea= d(l εe)ts| cr oepaedo(bεs)∈ πi Φ n}↓


Figure 8. An adjust function for a memory checker whose initial
privilege set allows everything.

check(Φ,C) =(t(ppr ∈u∈ eπ π o ⇒ ⇒thP eP r∈ w∈ iΦ sΦ e))∧∧((uu∈ ∈ π π ⇒⇒ U U ∈ ∈ Φ Φ))i i ffC C = = !ππ : =π 0

adjust(Φ,A)= {{ΦPU} o}ti hfi ferA A w= i= sea u snypnrcote↓ cted↓


Figure 9. Implementing the AME calculus effect system.

As a concrete example, suppose ap rogrammer decides to mem-
oize the results of a certain function in order to improve perfor-
mance. For the memoization to be safe, the function must be pure.
Therefore, the p rogrammer could create a wrapper function to p er-
form the memoization whose call to the original function is en-
closed in a letscopepure. Our type system would then ensure that
this call can b e typechecked without any memory privileges.

4.4 Strong Atomicity for Transactional Memory

Our approach naturally extends to richer languages than our simple
formalism. To illustrate this, we show that an effect system defined
by others for their AME calculus (Abadi et al. 2008), a lambda cal-
culus augmented with mutable references and constructs for auto-
matic mutual exclusion (Isard and Birrell 2007), is supported by our
model. The relevant language extensions are (async e), which exe-
cutes e asynchronously as a transaction, and (unprotected e), which
executes e asynchronously outside of a transaction. The latter form
is necessary to support side effects like I/O as well as interaction
with legacy code.

The authors discuss the problem of “weak atomicity” (Martin
et al. 2006), whereby implementations of software transactional
memory (STM) do not prevent conflicts between transactional and
non-transactional code. The resulting semantics can cause unex-
pected and counterintuitive behavior, but implementing STM to di-
rectly support “strong atomicity” is difficult. To address the prob-
lem, the authors show how an effect system can be used to ensure
that transactional and non-transactional code never read or write the
same memory locations, thereby recovering strong atomicity even
when the STM is implemented in the weakly atomic style.

The effect system for the AME calculus uses effects P and U
to respectively distinguish between protected and unprotected con-
texts. The type for references is similarly augmented with a tag (p
or u) indicating whether the reference can be manipulated in pro-
tected or unprotected contexts. The effect discipline then ensures
that a p rotected (unprotected) reference is only manipulated in a
protected (unprotected) context. This effect system can b e easily
expressed i n a generic effect system for the AME calculus created
by following the approach we outlined in Section 2. Figure 9 shows
check and adjust functions that enforce the discipline.

4.5 Application-Specific Effects

Our type system is also expressive enough to capture u seful kinds
of application-specific effects. As an example, we consider some is-
sues in a user-level threads library. Such a library typically provides
wrapped versions of all system calls that potentially cause a process
to block, such as the read and write file operations. Clients of the
thread library should always invoke the wrapped versions of these
system calls, so that the library may schedule another thread while
the caller awaits a response. Our type-and-effect system can be used
to check that blocking system calls are never directly invoked.

To do so, we assume that each blocking system call is annotated
with the tag blocks. We then define a p rivilege m ayblock, along
with the following check and adjust functions:

check(Φ,C)= (btrluoceko st ∈he πrw ⇒isem ayblock∈ Φ i fC =π π 0
adjust(Φ,A)= (ΦΦ∪ ot{hmearywbilseock}i fA = l etscopeblkπi n↓
The check function above requires the mayblock p rivilege to
be held whenever a function potentially tagged with blocks
is invoked, while the adjust function u ses letscopeblk to grant
the mayblock privilege. Now letscopeblk can be employed in
the implementation of the library’s wrapper functions, allowing
them to directly invoke the blocking system calls. The intent is
that client functions should never use letscopeblk.1 Therefore, if
startt hread is the library function that takes a client function
and invokes it in a new thread, then giving startt hread’s formal

parameter the type U nit →0 / U nit will ensure that client functions
do not directly invoke b loc→kinU gn istys wteimll ecansllus.r

To continue the example, suppose that this user-level threads
library is cooperatively scheduled: client code is not preempted
but instead explicitly yields control t o the scheduler, either b y
calling one of the wrapper functions described above or by calling
a special yield function provided b y the library. Others have used
an effect system to track which functions might yield control to the
scheduler, since yields represent p oints at which the code must be
properly synchronized with other threads (Fischer et al. 2007; Isard
and Birrell 2007).

To define this effect system in our theory, we assume that the
wrapper functions and the yield function are annotated with the
tag yields, and as above we define a privilege mayyield. Assum-
ing that we check programs under an initial p rivilege set containing
mayyield, the following check and adjust function cases imple-
ment the desired effect discipline:

check(Φ,C)= (ytriueeldos t ∈he πrw⇒ isem ayyield∈ Φ ifC = ππ 0
adjust(Φ,A)= (ΦΦ−o t{hmearywyisieeld}i fA = l etscopeatomicπi n↓

The check function above requires the caller of a function that po-
tentially yields to hold the mayyield privilege. The letscopeatomic
can then be p laced around code b locks that must be executed atom-
ically, in order to ensure that the execution of these code blocks
does not yield to the scheduler.

It is also possible to express finer-grained versions of the above
effect discipline in our type system. For example, rather than tag-
ging all wrapper functions and yield with the same tag, each func-
tion could have its own tag. The mayyield privilege could then be
augmented to be parameterized b y a tag. In that way, the effect sys-

tem would t rack not only which functions p otentially yield but also
how they yield.

1 If our language had a module system, it would be natural to allow users to
limit the visibility of a letscope kind to a particular module.

There are many other application-specific p roperties that could
be tracked and controlled using our type-and-effect system i n a
manner similar to the examples shown above. For instance, the
Linux kernel deallocates some data and functions after the initial-
ization phase, and this code is tagged with the qualifier init (Fos-
ter et al. 2006). It would be straightforward to introduce a p rivi-
lege mayinit along with a check function definition to track func-
tions that may manipulate init data or call init functions. A
letscope could then b e used to revoke the mayinit privilege af-
ter the initialization p hase, ensuring that the kernel will not type-
check if l ater phases attempt to touch init data or functions.
As a final example, the Enterprise JavaBeans component platform
for Java imposes several requirements on “bean” classes written b y
clients (DeMichiel 2004). One of these requirements is that beans
do not spawn threads. Similar to the system calls example above,
an effect system could be used to track functions that potentially
spawn threads.

5. Dynamic Semantics

As mentioned earlier, our dynamic semantics is instrumented to
perform privilege checking via the same check and adjust functions
provided for static type-and-effect checking. As usual, dynamic
checking is more precise than its static counterpart. For example,
the standard check function for memory effects (shown at the
end of Section 3. 1) will b e used dynamically to check that the
appropriate read p rivilege is held for the actual memory location

being dereferenced.
The operational semantics of our language is defined in Fig-

ure 10. As usual, a store µis a finite mapping from memory loca-
tions to values. The small-step operational semantics is specified
by aj udgment of the form Φ ‘D he,µi −→ he0,µ0i, which says that,
bfoyr aaj pudagrtmiceunltaro fdt ishceif ploirnme ΦD,‘ theh ep ,µaiir −of→ exhperesisi,ow n ei ahns da ystso trhea µ
takes one step of evaluation to a new pair e0 and µ 0 in the context
of privileges Φ. The r ules make use of a small abuse of notation:
vε represents an arbitrary value whose associated tag is ε. As in
our rules for the t ype system, we omit the discipline subscripts in
Figure 10 for readability.

As usual in a small-step semantics, there are two kinds of rules:
congruence r ules (whose names b egin with S-), which simply take
a step of evaluation in some subexpression; and computation rules
(whose names begin with E-), which perform a reduction. The
adjust and check functions exactly parallel this distinction. The
adjust function is consulted in each congruence r ule, to determine
the set of privileges t o use when evaluating the subexpression. The
check function is consulted in each computation rule, to determine
whether the reduction is allowed u nder the current set of privileges.
Because each value has exactly one tag, the tagset arguments to the
check and adjust contexts are always singleton sets, unlike in the
static semantics.

Our instrumented dynamic semantics allows us to define the
standard notion of type soundness, which is the subject of the
next section. It would b e unnecessary for an implementation to
actually perform dynamic tagging or privilege checking on well-
typed p rograms.

6. Type Soundness

In our setting, the standard type soundness theorem for effects re-

quires that well-typed programs do not fail any dynamic privilege
checks. T his is a basic well-formedness condition that should be
true of any sound effect discipline. However, since the user-defined
check and adjust functions are unrestricted, it is not possible to
prove type soundness once and for all. In particular, there exist dis-
ciplines Ddefined by functions checkD and adjustD that would al-
low a program to typecheck but fail a p rivilege check dynamically.
Therefore, type soundness must b e proven separately for each ef-
fect discipline.

We have architected a modular approach t o t ype soundness. J ust
as our language’s static and dynamic semantics are p arameterized
by a small amount of discipline-specific information, so is our lan-
guage’s type soundness proof. The bulk of the p roof is independent
ofthe adjust and check functions and is provable once. Proving type
soundness for a p articular effect discipline m erely requires proving
four r elatively simple lemmas which ensure natural forms of mono-
tonicity for the adjust and check functions.

This section describes our approach to proving type soundness.
First, we illustrate how an effect discipline c ould violate our infor-
mal notion type soundness. Next, we describe our modular proof ar-
chitecture, focusing on the four lemmas that must b e proven about
a particular effect discipline. Finally, we formally present the type
soundness r esult for our generic framework.

6.1 An Unsound Privilege Discipline

Type soundness does not hold in general for our language, because
of the presence of arbitrary check and adjust functions. For exam-
ple, consider the following cases of the check and adjust functions
for a discipline U related to memory writes:

checkU(Φ,C)= (t∀rεu∈ e π o.tw hreriwteis(eε)∈ Φ i fC = π : =π 0
adjustU(Φ,A)= (Φ{wro ittheer(wεi)s |eε ∈ π }i fA = π : =↓
The check function above is standard for tracking memory writes.
The adjust function above only allows the right-hand side of an as-
signment to update memory tagged with one of the possible tags of
the left-hand location.

Consider an assignment of the form e1 := e2. W ith the above ad-
just function e2 will b e statically typechecked under the privileges
{write(ε) | ε ∈ π}, where π is the top-level tagset in the type of e1.
H{worwietvee(rε,)th|iεs ∈adπj}us,tw wfuhencretiπ oni sw tihlel ctoaups-lee e2 t toa gbsee td iynnt ahmeitc yaplely oefv ael-
uated underj ust the privilege write(ε), where ε is the single tag of
the r esulting value of e1. I f π contains some other tag ε0, then the
check function above will statically allow e2 to write to memory
tagged with ε0, even though dynamically this check will fail.

The fact that not all effect disciplines lead to sound type sys-
tems motivates our approach t o proving t ype soundness, which is
discussed next.

6.2 Modular Proof A rchitecture

We h ave devised a novel p roof architecture for ensuring type
soundness of instantiations of our generic system. The architecture
has a small discipline-dependent portion, which consists of only
four monotonicity lemmas about the check and adjust functions.
The r est of the type soundness p roof is completely independent
of the check and adjust functions and can b e p roven once and for
all. As we discuss in the next section, we h ave validated this p roof
architecture by formalizing our language, its type system, and its

type soundness proof in the Twelf proof assistant (Pfenning and
Schu ¨rmann 1999). Twelf verifies our t ype soundness p roof as com-
plete modulo the p roofs of the four lemmas discussed b elow.

6.2.1 Privilege Monotonicity

The first two lemmas require a form of monotonicity of the check
and adjust f unctions with respect to p rivilege sets. The lemmas en-
sure that the m ore p rivileges that are h eld, the more an expression
is allowed to do. Intuitively, this property is necessary for sound-
ness since a sound static typechecker underapproximates the set
of privileges that will be held dynamically for the e valuation of

Φ‘ h e,µi− →h e0,µ0i
adjust(Φ,Φ↓↑‘)= h e1Φ e02,µi− Φ→0‘ heh e011,e2µ,iµ− 0i→ he10,µ0i(S-APP1)

adjust(Φ, {ε} ↓) = Φ0 Φ0 ‘ he2,µi −→ he02,µ0i

Φ‘ h vεe2,µi− →h vεe20,µ0i
(S-APP2)

Φ ‘h (λx.ech)εecvkε(0,Φµi,{− ε→}{ h εe0[}x)→7 v ε0],µi (E-APP)

check(Φ, {ε} {ε0})
Φ‘ h(recx .λx0.e)εvε0,µi− →h e[x→7 (recx .λx0.e)ε,x0→7v ε0],µi

(E-A7→PP 2v)

adjust(ΦΦ,‘ rehf (↓re)f = e)Φ ε,0µi− →Φ0 h(‘rh eef,e µ0i)ε− ,µ→0ih e0,µ0i(S-REF)

Φch e‘chk ((rΦef,vr eεf){ε 0,ε}µi)− →h ll∈ ε/ 0,d µo[lm7 →ainv (εµ])i (E-REF)

adjust(Φ,! ↓Φ)=‘ h Φ!e0,µi− →Φ0h ‘!eh e0,,µµ0ii− → he0,µ0i(S-DEREF)

checΦk ‘(Φ h!,!lε{,εµ}i)− →h µv(,lµ)i= v (E-DEREF)

adjust(Φ, ↓:=↑) = Φ0 Φ0 ‘ he1 ,µi −→ he01 ,µ0i
Φ‘ h(e1:=e 2)ε,µi− →h (e10:=e 2)ε,µ0i

(iS-ASGN1)

adjust(Φ, {ε} :=↓) = Φ0 Φ0 ‘ he,µi −→ he0,µ0i
Φ‘ h(vε:=e)ε0,µi− →h (vε:=e 0)ε0,µ0i

(iS-ASGN2)

Φ ‘ h(lε:=cv hεe0)ckε0(0,Φµi,{− ε→}: =h u n{iεtε0}00,)µ[l: =v ε0]i(E-ASGN)

adjust(Φ, let x =↓ in ↑) = Φ0 Φ0 ‘ he1 ,µi−→ he01 ,µ0i
Φ‘ h letx = e 1ine 2,µi− →h letx = e 10ine 2,µ0i

(Si-LET)

Φ‘ hletc xh =ec vkε(Φin, lee2t,xµ i= − →{ ε}h ei n2[x↑)→7 v ε],µi(E-LET)

adjust(Φ, letscope π in ↓) = Φ0 Φ0 ‘ he,µi −→ he0,µ0i

Φ‘ h letscopeπ i ne ,µi− →h letscopeπ i ne 0,µ0i

(i Sn-L eETSiCOPE)

Φ‘ ch hleectskc(oΦpe,l eπtsi cnov pεe,µπ i− i n→{ εh }v)ε,µi(E-LETSCOPE)
Φ‘ h !l,µi− →h v,µi

Figure 10. Generic operational semantics.

LEMMA 6. 1. If Φ1 ⊆ Φ2 and check(Φ1 ,C), then check(Φ2, C).

LEMMA 6.2. If Φ1 ⊆ Φ2, then adjust(Φ1 ,A) ⊆ adjust(Φ2,A).

Figure 11. Lemmas for p rivilege monotonicity.

some subexpression. The two lemmas are described formally in
Figure 11.

The lemmas naturally support many desirable programming dis-
ciplines for type-and-effect systems, including all of the exam-
ple check and adjust functions shown in this paper. Consider the
mayyield example shown at the end of Section 4 . The first lemma
in Figure 11 holds for the given check function because an ele-
ment of a set is also an element of any superset. It is easy to check
that the second lemma holds for the letscopeatomic adjust function
case, which revokes the mayyield privilege. Finally, the lemma
also safely allows the adjust function that grants mayblock within
letscopeblk.

Intuitively the two lemmas in Figure 11 disallow check and
adjust functions that depend on “negative” information about Φ.
For example, a check function cannot require the absence of a
particular p rivilege from Φ. However, in some cases it is possible
to obtain the desired behavior by replacing a “negative” privilege

p with a dual p rivilege p , which is granted (revoked) wherever p
would have been revoked (granted) and whose presence is required
wherever p’s absence would have been required. Further, some uses
of negative information do satisfy the two lemmas. For example,
it is perfectly sound for an adjust function to revoke a particular
privilege only in the absence of another p rivilege.

6.2.2 Tag Monotonicity

The other two lemmas require a form of monotonicity of the adjust
and check functions with respect to tagsets. The lemmas ensure
that the smaller the tagsets are in the adjust and check contexts, the

LEMMA 6.3. If C2 v C1 and check(Φ, C1), t hen check(Φ, C2).

LEMMA 6.4. If A2 v A 1 , then adjust(Φ,A1) ⊆ adjust(Φ,A2).

Figure 12. Lemmas for tag monotonicity.

more an expression is allowed to do. Intuitively, this is necessary
for soundness since the static typechecker overapproximates the
possible tags of an expression’s run-time values.

The lemmas for tag monotonicity are defined in F igure 12. The
lemmas rely on partial orders on the check and adjust contexts, de-
noted v. T hese r elations are simply the ⊆ partial order on tagsets
nlioftteedd ivn .thT eh oesbevior eulsa way t aor echs eicmkp alnyd th haed ⊆justp caortniatelx otrsd; ethr eoyn a tareg fsoetr-s
mally defined in Figure 13. The tag monotonicity lemmas naturally
support many desirable programming disciplines, including all of
our examples (except the unsound discipline from Section 6.1). For
example, the check function for mayyield in Section 4 satisfies the
first lemma because as π gets smaller the check gets weaker. The
check function for readonly from that section similarly satisfies
that lemma.

Consider the adjustU function for our unsound effect discipline
in Section 6.1. This function does not satisfy Lemma 6.4: as π
gets smaller, the function grants f ewer privileges r ather than m ore
privileges.

6.3 Type Soundness

We can now express type soundness for our framework in the
traditional “progress and preservation” style (Wright and Felleisen
1994). W e first define the notion of a monotonic discipline:

DEFINITION 6.1. (Monotonic Discipline) We say that D is
monotonic if checkD satisfies Lemmas 6.1 and 6.3 and adjustD
satisfies L emmas 6.2 and 6.4.

We will also require a notion of a well-typed store:

C1vC 2 A1vA 2
π1⊆π 3π2⊆π 4 π1⊆π 3π2⊆π 4 ↓↑ v ↓↑ ↓:=↑ v ↓:=↑

π1 π2 v π3 π4 π1 := π2 v π3 :=π4

π1 ⊆ π2 π1 ⊆ π 2

π1⊆π 2 π1⊆π 2 π1↓v π 2↓ π1:=↓v π 2:=↓
ref π1 v ref π2 let x = π1 in ↑ v let x = π2 in ↑

ref ↓ v ref ↓ letx =↓ in ↑ v let x =↓ in ↑

π1 ⊆ π2 π1 ⊆ π2

!π1v! π2 letscopeπ i nπ 1vl etscopeπ i nπ 2 ! ↓ v !↓ letscope π in ↓ v letscope π in ↓

Figure 13. Partial order on check and adjust contexts.

DEFINITION 6.2. (Well-Typed Store) We say that Γ, Σ ‘D µif
domain(µ) = 6d.o2m.a(Win(eΣll)- Taynpde d∀lS ∈todreo)mW aine(µs)a ywt eh haatv Γe, Σ/0 ; Γ‘; Σ ‘D
µdo(lm) :a iΣn((lµ)).

This definition is standard (Pierce 2002), except for the privilege
set used in the typechecking j udgment. The typechecking of values
never depends on privileges, so it is sufficient to use an empty set
of privileges in the definition.

Now we can state the progress and p reservation theorems,

which are also standard (we use • to denote the empty type en-
vwirhiocnhma enret):a

THEOREM 6.1. (Progress) For any monotonic discipline D, if

Φ•,;Σ•; ‘ΣD‘ µD, teher :eτ ,e x tihsetne 0e aitnhderµ 0e sui scha thv aatl Φue ‘o Drhf eo,rµia − ll→µ hs eu0c,hµ0it .hat
THEOREM 6.2. (Preservation) For any monotonic discipline D, if
Φ; Γ; Σ ‘D e : τ and Φ ‘D he,µi −→ he0,µ0i and Γ, Σ ‘D µ, then
Φthe;Γre; Σex‘ ist Σe0 :a τnda n τd0 sΦ uc ‘h thhaet, µΦi; −Γ→; →Σ0 h‘eD e0i i: aτn0,d wΓ h,Σere‘ τ0< :τ and
Γ,Σ0 ‘D µ0.

7. Implementation i n Twelf

To validate our work, we have implemented an interpreter and
typechecker for our language in the Twelf proof assistant (Pfen-
ning and Schu ¨rmann 1999). We have also implemented a me-
chanically checked type soundness proof for this implementation
following the architecture described in the previous section. Fi-
nally, we have implemented all of the example effect disciplines
described in Section 4 except the one that relies on special lan-
guage features for transactions. W e have used these example dis-
ciplines to typecheck and execute some small programs and have
provided mechanically checked implementations of the four mono-
tonicity lemmas required to p rove soundness for each discipline.
Our Twelf implementation and examples are available at http :
/ /www .cs .ucla .edu/∼todd/research/effects . tar .gz.

7.1 Base Semantics

First we implemented the traditional static and dynamic seman-
tics and type soundness p roof for our lambda calculus. W e did so
by modifying an existing T welf implementation and type sound-
ness proof for a simple language with mutable references called

Fun (Simmons 2005). We replaced Fun’s top-level function def-
initions with first-class (possibly recursive) lambdas, and we in-
troduced let p olymorphism as described earlier. W e also inherited
from Fun a slightly richer language than we p resented in our for-
malism. For example, the language of our Twelf implementation
additionally supports 32-bit integers and if-then-else expressions.

7.2 Tag and Privilege Checking

Next we augmented the static and dynamic semantics with tags
and tag checking. While our formalism ensures that each value
will have exactly one tag, our Twelf implementation allows a value
to b e tagged multiple times. W e then i nstrumented our static and
dynamic semantics with privilege checking, p arameterized on the
black-box adjust and check functions. For ease of maintenance we
implemented static tag and privilege checking as its own p ass t hat
follows the existing typechecking pass. Similarly, we i mplemented
dynamic p rivilege checking as an additional check that occurs after
the program takes each ordinary small step.

In order for multiple e ffect disciplines to easily coexist, each
declared privilege class is associated with a p rivilege kind. For
example, read, write, and alloc privilege classes might b elong to
the p rivilege kind m emcheck, while the mayblock privilege might
belong to the p rivilege kind userThreads. Each p rivilege kind has
its own associated check and adjust functions, and the static and
dynamic privilege checking j udgments are p arameterized b y the
privilege kind.

The check and adjust functions are represented inTwelf as j udg-
ment forms (using the j udgments as types p rinciple (Harper et al.
1993)). A particular effect discipline is specified as a collection
of inference rules for these j udgments, which are implemented in
Twelf in a logic p rogramming style. Each r ule pattern matches on a
particular check or adjust context, similar to our informal examples

in this paper.
We h ave also implemented a form of the letscope expression as

described in Section 4 . 1. The version in our T welf implementation
has two extra p arameters: a p rivilege k ind and an integer. The first
parameter allows check and adjust functions to provide different
behaviors for letscope b ased on the privilege kind. The second
parameter p lays the role of the informal letscope kinds we have
used in examples, allowing an effect discipline to easily support
multiple behaviors for letscope within a privilege kind.

7.3 Modular Type Soundness Proof

Finally, we implemented our proof architecture for type soundness
in Twelf. In p articular, we have a mechanically checked implemen-
tation of the discipline-independent portion of the type soundness
proof. This portion is parameterized by the four monotonicity lem-
mas described earlier. Twelf’s typechecker and totality checker ver-
ify the correctness and completeness of our Progress and P reserva-
tion theorems, subject to the p roofs of those four lemmas. There-
fore, our proofarchitecture is correct: the four lemmas are sufficient
to ensure type soundness for any effect discipline expressible in our
theory.

The lemmas are defined as judgment forms in the typical T welf
style, as described above for the check and adjust functions. The
lemmas are proven for a particular p rivilege kind b y defining a set
of proof cases, typically one (or more) per inference r ule defining
the check and adjust functions for that p rivilege k ind.

8. Related Work

Many program analyses and programming disciplines have been
formulated as type-and-effect systems, some of which have been
incorporated into languages (e.g., FX (Gifford et al. 1992)). The in-

troduction discusses several examples, including tracking of mem-
ory effects, checked exceptions, and locking disciplines for con-
current programs. W hile these systems hard-code a p articular kind
of effects and an associated discipline for controlling those effects,
our effect system is parameterized by both the set of effects and the
associated discipline.

The CQUAL system has a generic typechecker and type infer-
encer for user-defined type qualifiers in C that is parameterized b y
a p rogrammer-defined set of qualifiers and associated partial or-
der (Foster et al. 2006). The Clarity system additionally allows p ro-
grammers to provide explicit type r ules for qualifiers (Chin et al.
2005, 2006). The tags in our generic effect system are essentially
equivalent to CQUAL-style qualifiers. By themselves, type quali-
fiers are not expressive enough to encode computational effects:
they r efer t o the value of an expression rather than its evaluation.

CQUAL allows programmers to declare some qualifiers as effect
qualifiers. The t ype system then tracks the effect of each expres-
sion, which is a single effect qualifier that is the least upper bound
of the effect qualifiers of all subexpressions. The authors used ef-
fect qualifiers to track p roper initialization in the Linux kernel (Fos-
ter et al. 2006). Our theory is more expressive than CQUAL’s ef-
fect qualifiers in several ways. F irst, our notion of effects is more
general, with privileges dependent on tags. For example, it is not
obvious how to encode the standard discipline for read(ε) and
write(ε) effects in CQUAL. Second, our effect discipline is param-
eterized b y the check and adjust functions that instrument the static
semantics in a uniform manner, while CQUAL employs a fixed ap-
proach for tracking effects except for a few special cases exposed
to programmers for configuration. Finally, we provide a formal-
ized and mechanically checked proof architecture for ensuring type
soundness in the presence of arbitrary check and adjust functions.

The capability calculus (Walker et al. 2000) supports a region-

based memory management discipline whereby region lifetimes
need not be lexically scoped. The associated type system t racks a
set of static region capabilities, which indicate both which regions
are live and which regions are unique and can therefore be safely
freed. Our use of privileges as a dual to effects is directly inspired
by the capability calculus. W e plan to explore ways to incorporate
a form of uniqueness in privileges in order to remove our lexical
scoping restriction.

The Vault language (DeLine and Fahndrich 2001) generalizes
the ideas in the capability calculus to support tracking of user-
defined computational effects, and similar functionality can be
achieved in the flow-sensitive extension of CQUAL (Foster et al.
2002). Mandelbaum et al. (2003) provide a formal account of a
Vault-like type system. These systems support flow-sensitive track-
ing of effects, which is not possible in our type system. On the other
hand, we provide a general approach for specifying arbitrary type-
and-effect disciplines on any syntactic context in a language, while
effect disciplines in these systems are expressible only through p re-
and postconditions on functions.

Others h ave investigated the type-theoretic foundations of effect
systems. Wadler and Thiemann (2003) show how memory effects
are naturally captured by a state monad (Moggi 1989) whose type
additionally maintains a set of effects, and Filinski (1999) shows
how new effects can be introduced in a language as monads that are
defined in terms of lower-level effects. Nanevski has pursued the
use of modal operators as a logical foundation for effect systems.
For example, he shows how the operator 2 of modal necessity and
3 of modal possibility can b e u sed to respectively track r ead and
write effects (Nanevski 2003). He also illustrates how 2 provides
a logical interpretation of effect consumption and uses this idea to
define a type system for exception handling (Nanevski 2005).

These works are more foundational than our work, showing

how t o encode effects in terms of existing notions like monads and
modal-logic type constructors. In these formalisms, each particular
effect discipline is encoded separately through specialized typing
rules. Our work, on the other hand, uses a standard style of adding
effects to a type system, but identifies a general template for cre-
ating an effect system in this style that achieves a generic form of
soundness. It would be interesting in future work to understand how
our results translate to the monadic and modal settings.

9. Conclusion and Future Work

We have presented a generic type-and-effect system. To our k nowl-
edge, ours is the first type-and-effect system that is p arameterized
by both the set of effects to b e tracked and the discipline to be stat-
ically enforced on these effects. Our notions of check and adjust
contexts, derived from the existing notions of redexes and eval-
uation contexts, provide a generic way of instrumenting any lan-
guage’s type system to support static checking of e ffect disciplines.
Further, we have architected a p arameterized type soundness proof
for our type-and-effect system which requires only four monotonic-
ity lemmas to be proven about a discipline’s check and adjust func-
tions. We have instantiated the approach for a lambda calculus with
references and implemented the language, type-and-effect system,
and type soundness proof in the Twelf p roof assistant.

The generic effect system p resented in this paper could b e ex-
tended in a number of ways to increase expressiveness. As men-
tioned earlier, we could employ more sophisticated forms of tag-
ging. It might also be u seful to consider employing a data structure
other than a set to maintain privileges. For example, a sequence
of p rivileges could b e useful for disciplines that care about the or-
der in which p rivileges are acquired. T ranslating our ideas to the
context of the capability calculus (Walker et al. 2000) would pro-

vide a form of flow sensitivity for our effect disciplines. Finally,
we p lan to explore ways to incorporate proofs of extensional no-
tions of soundness. One possible approach is to first prove standard
type soundness using our strategy and then to prove a r elationship
between the instrumented and uninstrumented dynamic semantics.

Our ultimate goal is to use our approach for f ormalizing a
generic effect system as the foundation for a p ractical framework
for enforcing programmer-definable effect disciplines in a full-
fledged language like ML or J ava. While we h ave focused on
making the check and adjust functions as expressive as possible
while retaining t ype soundness, it may be useful in practice to
impose additional structure. For example, restricting the form of
the check and adjust functions could simplify p rivilege inference
or ensure p rivilege and tag monotonicity without requiring p roof.

10. Acknowledgments

This material is based upon work supported by the National Science
Foundation u nder Grant N os. CCF-0427202 and CCF-0545850.
Special thanks to J eff Foster for shepherding the paper, pointers to
example effect systems, and helpful comments on an earlier draft.
Thanks also to J ens Palsberg for feedback on this paper and to
David W alker for discussions that motivated this research direction.

References

Martin Abadi, Cormac Flanagan, and Stephen N. Freund. Types
for safe locking: Static r ace detection for j ava. ACM Trans.
Program. L ang. Syst., 28(2):207–255, 2006.

Mart ı´n A badi, A ndrew Birrell, Tim Harris, and Michael Isard. Se-
mantics of transactional memory and automatic mutual exclu-

sion. In POPL ’08: P roceedings of the 35th A nnual ACM
SIGPLAN-SIGACT Symposium on Principles of P rogramming
Languages, pages 63–74. ACM, 2008.

Nick Benton and Peter Buchlovsky. Semantics of an effect analysis
for exceptions. In TLDI ’07: P roceedings of the 2 007 ACM
SIGPLANI nternational Workshop on Types in Language D esign
and I mplementation, pages 15–26. ACM Press, 2007.

Nick Benton, Andrew Kennedy, Martin Hofmann, and Lennart
Beringer. Reading, writing and relations: Towards extensional
semantics for effect analyses. In P rogramming L anguages and
Systems, 4th A sian Symposium (APLAS 2 006), p ages 114–130.
Springer, 2006.

Brian Chin, Shane Markstrum, and Todd Millstein. Semantic
type qualifiers. In P LDI ’05: P roceedings of the 2005 ACM
SIGPLAN Conference on P rogramming Language D esign and
Implementation, 2005.

Brian Chin, Shane M arkstrum, Todd M illstein, and Jens Palsberg.
Inference of user-defined type qualifiers and qualifier r ules. In
European Symposium on P rogramming, 2006.

Robert DeLine and Manuel Fahndrich. Enforcing h igh-level p roto-
cols in low-level software. In P roceedings of the ACM SIGPLAN
2001 Conference on P rogramming Language D esign and Imple-
mentation, p ages 59–69. ACM Press, 2001.

Linda DeMichiel. E nterprise J avaBeans S pecification, Version 3 .0.
SUN Microsystems, 2004.

Andrzej Filinski. Representing layered monads. In POPL ’99:
Proceedings of the 26thA CM SIGPLAN-SIGACT Symposium on
Principles of Programming L anguages, pages 175–188. ACM,
1999.

Jeffrey Fischer, Rupak Majumdar, and T odd M illstein. Tasks:
Language support for event-driven programming. In P EPM ’07:
Proceedings of the 2007A CM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program M anipulation, pages
134–143, 2007.

Cormac Flanagan and Stephen N. Freund. T ype-based r ace detec-
tion for J ava. In Proceedings of the ACM SIGPLAN 2000 Con-
ference on P rogramming Language D esign and I mplementation,
pages 219–232, 2000.

Jeffrey S. Foster, Manuel F ¨ahndrich, and Alexander Aiken. A
Theory of T ype Qualifiers. In P roceedings of the 1999 ACM
SIGPLAN Conference on P rogramming Language D esign and
Implementation, p ages 192–203, Atlanta, Georgia, May 1999.

Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive
type qualifiers. In P roceedings of the ACM SIGPLAN2 002 Con-
ference on Programming Language D esign and I mplementation,
pages 1–12. ACM Press, 2002.

Jeffrey S. Foster, Robert Johnson, J ohn Kodumal, and Alex Aiken.
Flow-insensitive type qualifiers. ACM Trans. Program. L ang.
Syst., 28(6):1035–1087, 2006.

David K. Gifford and John M. Lucassen. Integrating functional and
imperative programming. In LFP ’86: P roceedings of the 1986
ACM Conference on L ISP and Functional P rogramming, pages
28–38. ACM P ress, 1986.

David K. Gifford, Pierre J ouvelot, M ark A. Sheldon, and James W.
O’Toole. Report on the FX-91 p rogramming language. T ech-
nical Report MIT/LCS/TR-53 1, MIT L aboratory for Computer
Science, 1992.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The J ava

Language Specification, Third Edition. Addison-Wesley, 2005.
Robert Harper, Furio Honsell, and Gordon Plotkin. A framework

for defining logics. J . A CM, 4 0(1): 143–184, 1993.

Michael Isard and A ndrew Birrell. Automatic mutual exclusion. In
11th Workshop on Hot Topics in Operating Systems, 2007.

Yitzhak Mandelbaum, David Walker, and Robert Harper. A n effec-
tive theory of type r efinements. In P roceedings of the Eighth
ACM SIGPLAN I nternational Conference on F unctional Pro-
gramming, p ages 213–225, 2003.

Milo Martin, Colin B lundell, and E . L ewis. Subtleties of transac-
tional memory atomicity semantics. I EEE Comput. Archit. L ett.,
5(2), 2006.

Eugenio Moggi. Computational lambda-calculus and monads. In
LICS ’89: P roceedings of the F ourth A nnual Symposium on
Logic in Computer Science, p ages 14–23, 1989.

Aleksandar Nanevski. From dynamic binding t o state via modal
possibility. In P PDP ’03: P roceedings of the 5th ACM SIG-
PLAN I nternational Conference on P rinciples and Practice of
Declaritive Programming, p ages 207–218, 2003.

Aleksandar Nanevski. A modal calculus for exception handling. In
Intuitionistic M odal L ogics andA pplications Workshop, 2005.

Iulian Neamtiu, Michael Hicks, Jeffrey Foster, and Polyvios
Pratikakis. Contextual effects for version-consistent dynamic
software updating and safe concurrent p rogramming. In P ro-
ceedings of the 35th ACM S IGPLAN-SIGACT Symposium on
Principles of Programming L anguages, 2008.

Peter Ørbækand Jens Palsberg. T rust in the λ-calculus. Journal of
Functional P rogramming, 7(6):557–591, November 1997.

Frank Pfenning and Carsten Schu ¨rmann. System description: Twelf
—A meta-logical framework for deductive systems. In Proceed-
ings of the 16th International Conference on A utomated D educ-
tion (CADE-16), p ages 202–206, Trento, Italy, 1999.

Benjamin C. Pierce. Types and Programming L anguages. The MIT
Press, Cambridge, Massachusetts, 2002.

Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David W ag-
ner. Detecting Format String Vulnerabilities with Type Quali-
fiers. In P roceedings of the 10th Usenix Security Symposium,
Washington, D.C., August 2001.

Rob Simmons. Twelf as a unified framework for language for-
malization and implementation, 2005. URL http : / /www .
cs .princeton .edu/∼rsimmons/thesis .pdf. Undergraduate
honors thesis, P rinceton U niversity.

Jean-Pierre T alpin and Pierre Jouvelot. Polymorphic type, region
and effect inference. Journal of Functional P rogramming, 2(3):
245–271, 1992.

Mads Tofte and J ean-Pierre Talpin. Implementation of the typed
call-by-value λ-calculus using a stack of regions. In P roceedings
of the 21stA CMS IGPLAN-SIGACTS ymposium on Principles of
Programming L anguages, p ages 188–201 . ACM Press, 1994.

Philip Wadler and Peter Thiemann. The marriage of effects and
monads. ACM Trans. Comput. L ogic, 4 (1): 1–32, 2003.

David Walker, Karl Crary, and Greg Morrisett. Typed memory
management via static capabilities. ACM Trans. Program. L ang.
Syst., 22(4):701–771, 2000.

Andrew K. W right and Matthias Felleisen. A syntactic approach to
type soundness. I nformation and Computation, 115(1):38–94,
November 1994.

