A Generic Type-and-Effect System

Daniel Marino Todd Millstein

Computer Science Department
University of California, Los Angeles

{dImarino,todd }@cs.ucla.edu

Abstract

Type-and-effect systems are a natural approach for statically rea-
soning about a program’s execution. They have been used to track
a variety of computational effects, for example memory manipula-
tion, exceptions, and locking. However, each type-and-effect sys-
tem is typically implemented as its own monolithic type system
that hard-codes a particular syntax of effects along with particular
rules to track and control those effects.

We present a generic type-and-effect system, which is parame-
terized by the syntax of effects to track and by two functions that
together specify the effecr discipline to be statically enforced. We
describe how a standard form of type soundness is ensured by re-
quiring these two functions to obey a few natural monotonicity re-
quirements. We demonstrate that several effect systems from the lit-
erature can be viewed as instantiations of our generic type system.
Finally, we describe the implementation of our type-and-effect sys-
tem and mechanically checked type soundness proof in the Twelf
proof assistant.

Categories and Subject Descriptors D.3.1 [Formal Definitions

and Theory]: Semantics, Syntax; F.3.3 [Studies of Program Con-
structs]: Type structure

General Terins Languages, Theory

Keywords type-and-effect systems

1. Imtroduction

Type-and-effect systems (or simply effect systems) (Gifford and Lu-
cassen 1986) are an approach for augmenting static type systems to
reason about and control a program’s computational effects. Such
systems were originally developed to statically track the manipula-
tion of dynamically allocated memory. However, many other kinds
of computational effects can be controlled via an effect system. For
example, Java’s type system for checked exceptions (Gosling et al.
2005) can be formulated as an effect system. Other applications
abound in the research literature. Effect systems have recently been
used to enforce a locking discipline to prevent race conditions in
Java (Flanagan and Freund 2000; Abadi et al. 2006) and to ensure
strong atomicity for a transactional memory system (Abadi et al.
2008).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission andfor a fee.
TLDI'09, January 24, 2009, Savannah, Georgia, USA,
Copyright © 2009 ACM 978-1-60558-420-1/09/01. . $5.00

In each of the above examples, a particular notion of effects and

an associated discipline for controlling those effects is built into the
language’s type system. While it is intuitively clear that different
effect systems have much in common, it is not obvious how to
make these commonalities precise. Indeed, others have explicitly
posed the formulation of a “general theory of effects” as an open
problem, with the aim of “avoiding the need to create a new effect
system for each new effect” (Wadler and Thiemann 2003). Such a
theory would make it much easier to understand the relationships
among effect systems and to experiment with new effect systems.

In this paper we take the first steps toward such a theory. We
present a generic type-and-effect system with the following techni-
cal contributions:

* We describe a uniform and general approach to instrumenting a
language’s type system with “hooks” that can be used to track
and control a set of computational effects. A particular effect
system is instantiated from our generic effect system by provid-
ing a syntax of effects as well as definitions of the hooks. The
hooks employ a style of representing effects dually as privileges
(or capabilities (Walker et al. 2000)), which is commonly used
to formalize effect systems that enforce a programming disci-
pline (e.g., (Abadi et al. 2006, 2008; Neamtiu et al. 2008)).

¢ A basic notion of type soundness for any type-and-effect system
requires static effect checking to conservatively approximate
the checking done by a dynamic semantics that is instrumented
with effects (e.g., (Talpin and Jouvelot 1992; Wadler and Thie-
mann 2003; Neamtiu et al. 2008)). We show that it is sufficient
to impose a natural set of monotonicity requirements on the ex-
ternally provided privilege discipline in order to guarantee this
form of type soundness. The effect system designer must sep-
arately establish that this notion of type soundness guarantees
the program behavior that the system is intended to ensure.

¢ We have formalized our generic effect system in the context
of a polymorphic lambda calculus with mutable references. We
have implemented this language, the generic effect system, and
a mechanically verified type soundness theorem in the Twelf
proof assistant (Pfenning and Schiirmann 1999).

* We demonstrate that several effect systems from the literature
can be viewed as instantiations of our generic effect system.
These systems include the original effect system for memory
manipulation (Gifford and Lucassen 1986), an effect system
for tracking yields in a cooperative multitasking system (Fis-
cher et al. 2007; Isard and Birrell 2007), and an effect system
that ensures strong atomicity for software transactional mem-
ory (Abadi et al. 2008). Further, these effect systems all satisfy
our monotonicity requirements that ensure type soundness.

Aside from its theoretical interest, we believe our work could
serve as the foundation for a practical framework that allows pro-
grammers to easily and reliably augment their language’s static

®UcanThrow;I;ZFep i 1T ;I ey: ExnType — 1

O;IEF tryeg withea : T

(T-TRY)
;I EF e : ExnType canThrow €
®; X} throwe:T

Figure 1. Part of a type system that enforces checked exceptions.
@ is the set of held privileges. I" and E are the type environment
and store typing as usual.

o
(T-THROW)

type system to track new kinds of effects and to control these effects
with programmer-specified disciplines. Such a framework would

do for effects what systems like CQUAL (Foster et al. 1999, 2006)
and Clarity (Chin et al. 2005) do for type qualifiers. In addition to
the benefits for programmers, a programmer-definable effect sys-
temn would be very useful for type systems researchers.

The rest of the paper is structured as follows. Section 2 describes
our approach informally, and Section 3 presents our formal type
system. Section 4 illustrates several existing effect systems that fit
our model. Section 5 formalizes the dynamic semantics of our lan-
guage, and Section 6 discusses our type soundness result. Section 7
details the implementation of our language, type system, and type
soundness proof in Twelf. Section 8§ compares with related work,
and Section 9 concludes with a discussion of future work.

2. Overview

In this section, we give an informal overview of our generic effect
system. We first show how a few standard effect systems can be
described intuitively as granting and checking privileges. We then
illustrate how we can abstract the specific privilege discipline being
enforced and instrument the static semantics of any language with
privilege checking in a generic way. Finally, we discuss how to
achieve a standard notion of type soundness for the resulting type
system.

2.1 Effect Systems as Privilege Checking

Consider an effect system that statically ensures that exceptions are
eventually caught, as in Java (Gosling et al. 2005). Such a system
enforces the discipline that a program may only raise an exception
within the dynamic lifetime of a try expression. If we consider the
ability to throw an exception as a privilege (assume for simplicity
that there is a single kind of exception), then it is natural to describe
this effect system as granting the privilege to throw an exception

before typechecking the body of a try expression and checking
that this privilege is held when typechecking a throw expression.

Figure 1 formalizes the discipline for exceptions described
above. The typing judgment tracks a set of held privileges &, and
we use a privilege canThrow to designate the capability to throw an
exception. Rule T-TRY grants the canThrow privilege in the body of
the try by adding this privilege to @ before typechecking . Rule
T-THROW checks that the canThrow privilege is in @ in order for
a throw expression to typecheck. These two actions form the core
of the effect system; the other typing rules simply ensure that this
privilege discipline is enforced recursively on all subexpressions.

Table 1 describes how other standard effect systems can simi-
larly be viewed as granting and checking privileges. The formula-
tion of effects as privileges is natural when the intent is to enforce a
particular discipline on a program rather than to simply determine
the set of effects that may occur in the program. Each of these ef-
fect systems can be formalized as its own extension to a base type
system, as we have shown with checked exceptions.

As in these examples, we formalize our generic effect system as
granting and checking privileges, tracking a set & of held privileges
during typechecking. However, the system is parameterized both
by the syntax of privileges to track and the discipline for granting
and checking privileges. Particular choices for these parameters
yield a type system equivalent to our exception checker in Figure 1,
but many other effect systems can be derived by making different
choices.

The syntax of privileges is specified simply as a set of atomic
constants. For example, to define our exception checker one would
specify a single privilege canThrow, while a memory checker
might employ privileges read, write, and alloc. For greater ex-
pressiveness, privileges can optionally refer to tags, which provide
information about program values. We augment the host language

to allow tagging of expressions that construct values, and the type
system tracks the set of possible tags (or fagsef) of each expres-
sion’s value. We use € to range over a set of globally defined tags
and T to range over tagsets. For example, read(g) could be used to
denote the privilege to read any memory location tagged with €.

The privilege discipline is specified by providing the defini-
tions of two functions, which respectively specify how ® should be
adjusted (a generalization of granting that also supports privilege
revocation) and checked during typechecking. Rather than hard-
coding the privilege discipline as we did for exceptions in Figure 1,
the typing rules in our generic effect system are uniformly instru-
mented with invocations of these two functions, which are the only
parts of the type system that directly modify or inspect &. For ex-
ample, using our approach, the rule T-TRY would invoke the adjust
function to determine the privileges to use when typechecking e,
while T-THROW would invoke the check function to determine what
privileges are required upon a throw. These two functions are sim-
ilarly invoked from the other rules in the type system, allowing any
language feature to be controlled by the externally defined privilege
discipline.

2.2 Checking and Adjusting Privileges, Generically

Our key contributions are a general interface for the check and
adjust functions and a uniform approach to instrumenting a lan-
guage’s type system with invocations of the two functions. First,
consider the function to check privileges. Intuitively, a particular
effect system may want to disallow an arbitrary computation step
(e.g., an exception being thrown, a write to memory) based on the
set of held privileges. Therefore, a generic effect system should
consult the check function as a premise in the typing rule for each
syntactic form that represents a step of computation. Next consider

the function to adjust privileges. Intuitively, a particular effect sys-
tem may want to adjust privileges in any syntactic context that
might arise dynamically (e.g., a try block, a letregion expres-
sion). Therefore, a generic effect system should consult the adjust
function to modify @ in typing rules before typechecking subex-
pressions of the current expression.

We make these ideas precise and applicable to any language
by adapting two standard notions for formalizing a language’s
dynamic semantics: redexes and evaluation contexts (Wright and
Felleisen 1994). The type system will have one call to the check
function for each redex form in the language. The type system will
have one call to the adjust function for each evaluation context form
in the language.

The check function is invoked in the typing rule for each ex-
pression form that can evaluate to a redex, passing the current set of
privileges and a check context that describes the information known
statically about that redex. The function returns a boolean indicat-
ing whether the reduction step represented by that expression is
allowed. To make things concrete, Figure 2 shows how the redexes
of a lambda calculus with mutable references and let determine
the check contexts for that language. Each value form in a redex
is replaced by a tagset, T, which represents the information known

Table 1. Standard effect system as privilege checking.

[Dirciphine [Privilege [Giramt [Check
Redex = Check Context (C)
(J\.x.e)v T Mo
ref v ref
) n
l:=v =T

letx=vine letx=%in T

Figure 2. From redexes to check contexts. Metavariable v ranges
over values, e over expressions, and I over memory locations.

Evaluation Context = Adjust Context (A)
Ee)

vE |

ref E ref |

'E 1]

E:=e l:=

vi=F ni=
letx=FEine let x=] in 1

Figure 3. From evaluation contexts to adjust contexts. Metavari-
able E ranges over evaluation contexts.

statically about an expression’s value, as determined by static type-
checking. Expressions that are not necessarily values appearing in
aredex are replaced by the T symbol in the check context, indicat-
ing that information about this subexpression is not relevant to the
reduction step being checked.

Consider our example of checked exceptions. Following the
approach for formalizing a generic effect system described above,
a language containing an expression throw e would include a
check context of the form throw T due to the redex form throw
v. Therefore, the typing rule for throw will invoke check(<d, throw
7), where @ is the current set of privileges and T is the set of
possible tags of e (determined by typechecking e). The following
check function implements the hard-coded privilege checking
behavior of T-THROW in Figure 1 and specifics that privilege

'checking for all other kinds of reduction steps should tn'vially'
succeed:

canThrow e ® if C=throwT
check(®,C) =

true otherwise

The adjust function is invoked once per evaluation context re-
lated to the current expression form in a typing rule, passing the
current set of privileges and an adjust context that describes the in-
formation known statically about that evaluation context. The func-
tion returns a new set of privileges to be used when typechecking a
designated subexpression indicated by the adjust context. Figure 3
shows how the evaluation contexts of our extended lambda calcu-
lus determine the associated adjust contexts. As before, values are
replaced by tagsets and arbitrary expressions are replaced by the T
symbol. Finally, wherever the evaluation context contains a recur-
sive evaluation context, the corresponding adjust context contains a
| symbol indicating the subexpression for which privileges should
be adjusted.

Consider again our exceptions example. A language containing
an expression try e; with e, would include an adjust context of
the form try | with T due to the evaluation contexttry E with
e. Therefore the typing rule for try will invoke adjust(®, try |
with 1), where & is the current set of privileges, to determine
the new set of privileges to use when typechecking e;. Then the
following adjust function implements the hard-coded privilege
granting behavior of T-TRY in Figure 1 and specifies that privileges
should be passed along unchanged in all other syntactic contexts:

@®U {canThrow} if A=try | with T

adjust(®,4) = { @ otherwise

To summarize, defining the exception checker in a generic effect
system using our approach requires simply specifying the set of
privileges, {canThrow}, and providing the above definitions for the
check and adjust functions. As we show in Section 4, many other
effect systems from the literature can be specified as instantiations
of our generic effect system.

2.3 Proving Type Soundness

A basic notion of type soundness for effect systems requires static
effect checking to conservatively approximate an instrumented dy-
namic semantics that tracks effects as the program executes. In our
setting, this form of soundness requires that a well-typed program
will never fail a dynamic privilege check. We could provide a sep-
arate mechanism for instrumenting the dynamic semantics with ef-
fects, but it turns out that the check and adjust functions provided
for static type-and-effect checking naturally support dynamic priv-
ilege checking as well. Whereas statically these functions employ
the conservative information gleaned from the types of expressions,
dynamically the functions are given precise information about the
tags of the resulting values and the set of held privileges.

Because the check and adjust functions are completely arbi-
trary, there is no guarantee that a particular instantiation of these
functions will lead to a sound effect system. For example, since a
sound static checker underapproximates the set of privileges that
will be held dynamically, it would be unsound for a check function
to rely on the absence of a privilege in ®. Such a check function
could cause the static checker to accept a program that fails privi-

lege checking dynamically.

However, we can define a natural set of sufficient conditions on
the check and adjust functions that ensure soundness. Intuitively
these conditions ensure that the check and adjust functions are
monotonic with respect to their treatment of both privileges and
tags. We have proven that our generic effect system for the language
described in Section 3 does indeed lead to a sound effect system for
any check and adjust functions that satisfy our four monotonicity
conditions, which are described in detail in Section 6. All of the
check and adjust functions for the example effect systems in this
paper satisfy the four conditions.

Our soundness guarantee does not capture extensional no-
tions of soundness, which directly relate static effect checking to

Values v u= (hx.e)e| (rec x.Ax'.e)e | unite | I

Exprs e u= v|x|ee|(refe)e

| le|(e=e)|letx=eine
Types T &= Tp
PreTypes p u= 1 % | Unit | Ref ©
PrivSets ® == {p(e)}

Figure 4. The syntax of our host language. Metavariable x ranges
over variables, I over memory locations, € over tags, T over
nonempty sets of tags, p over privilege classes, and & over sets
of privileges.

the uninstrumented dynamic semantics. For example, suppose the
check function for our exceptions example above were defined to
always return true. In that case, the discipline would still satisfy
our notion of soundness (and monotonicity requirements) since dy-
namic privilege checking cannot fail, even though a well-typed pro-

gram can now have an uncaught exception. Defining and proving
extensional semantics for specific type-and-effect systems, such as
those that track memory access and exceptions, is challenging and
the subject of current research (Benton et al. 2006, Benton and
Buchlovsky 2007).

3. A Generic Type-and-Effect System

Section 2 gave an intuitive overview of how we can instrument
the static semantics of a language to create a generic system for
enforcing disciplines on computational effects. This section makes
the ideas more concrete by showing the complete, instrumented
static semantics for a core language whose syntax is shown in
Figure 4. Our language is the call-by-value lambda calculus with
recursive functions, a unit value, ML-style references, and a let
expression. As mentioned in the previous section, the syntax also
includes a notion of tags.

The language has a fixed collection of typing rules defining
the type system. The rules are parameterized by a set of privilege
classes and the check and adjust functions that specify the behavior
of a particular effect system for the language.

3.1 Preliminaries

Tagged Values and Tagged Types Our language includes tags,
denoted by metavariable €, which are static names for a set of
run-time values. Each value is annotated with its associated tag,
as is each expression that constructs a new value dynamically.
For example, the evaluation of an expression of the form (ref e)¢
evaluates e to a (tagged) value v, creates a new memory location /
in the store that maps to v, and tags I with the tag €.

The type of an expression includes a nonempty set of tags that
we call a tagset and denote %, which represents the set of possible

tags of the expression’s run-time value. As shown in the definition
of 1, each level of a type includes a corresponding tagset.

Our notion of tags is standard and closely related to work on
type qualifiers (Prbxk and Palsberg 1997; Foster et al. 2006). More
sophisticated forms of tagging exist in the literature, for example
tags that refer directly to program variables (Abadi et al. 2006)
and lexically scoped tags (Tofte and Talpin 1994). These extensions
would increase the expressiveness of our system but are orthogonal
to our main contributions.

Privilege Classes and Privileges We assume a set of privilege
classes ranged over by metavariable p. For example, to formalize
a memory checker we could define three privilege classes read,
write, and alloc, respectively representing the capability to read,
write, and allocate memory. A privilege 1s a pair of a privilege class
and a tag, denoted p(g). In examples, we use the privilege class
itself as the privilege when the tag is irrelevant.

The static type-and-effect system typechecks an expression un-
der a set of privileges @, representing the computational effects that
are allowed to occur during the expression’s evaluation. In Fig-
ure 4, function types are annotated with a privilege set, denoting
the privileges needed to properly execute the function. As usual for
type-and-effect systems, this annotation allows for modular effect
checking of a function’s body separate from its callers.

Checking and Adjusting Privileges As described previously, the
privilege discipline is specified through two functions, check and
adjust. The check function takes the current set of held privileges
along with a check context and returns a boolean indicating whether
the expression associated with the check context satisfies privi-
lege checking. The adjust function takes the current set of held
privileges along with an adjust confext and returns a new set of

privileges to use when typechecking a distinguished subexpres-
sion within the adjust context. The syntax of the check and ad-
Jjust contexts for our language are shown on the right sides of Fig-
ures 2 and 3.

Our formalism does not model the implementation of the check
and adjust functions. They are treated as black boxes that our
rules use to enforce a particular effect system’s discipline. As one
example, the following check function corresponds to a standard
checker for memory effects:

Veem read(e)ed if C=!m
Veem. write(e)e® if C=m:=7
alloced® if C=ref 7

true otherwise

check(®,C) =

3.2 Type-and-Effect Checking

We now define our generic type-and-effect system. The typecheck-
ing judgment has the form ®;I; X+ e : T, which says that expression
e can be given type T in the context of privilege set &, type environ-
ment I' (which maps each variable in scope to its type), and store
type L (which maps each location in the store to the type of val-
ues that it holds). The typing rules are shown in Figure 5. Note that
there is no restriction on the initial set of privileges used to type-
check the top-level program. For some effect disciplines an empty
initial privilege set is appropriate, while for other disciplines it is
natural to begin with a set of default privileges that are revoked in
certain program contexts.

Because the rules are parametric in the effect discipline, the
rules in Figure 5 really define a family of type systems indexed
by the discipline. The discipline is defined as a triple of the set
of privilege classes, the adjust function, and the check function:

D = {Pp,adjusty,checkp). An instantiation of the type system
for a particular discipline D, then, is defined by the judgment
D;I'; X e : T whose inference rules invoke the functions adjusty,
and checkg. In order to avoid cluttering the presentation, we have
omitted the discipline subscripts in our figures. However we will
return to this notation to more precisely state our soundness result
in Section 6.

The rules perform standard typechecking for the simply typed
lambda calculus with references. The rules also perform static tag
checking, which approximates the tag of each expression by a
tagset. Tag checking is straightforward and is a variant of type
qualifier checking (@rbzk and Palsberg 1997; Foster et al. 2006).

Finally, the rules employ the adjust and check functions to per-
form static privilege checking. The adjust function is consulted in
order to produce the appropriate privilege set to use when type-
checking each subexpression of the given expression. The check
function is consulted in order to decide whether an expression that

O Ebe:T

O Nx:1;Eke: T

5 (T-FN)
O EF (Axe)e : {eHT1 — T2)
Ty @ .)
cI)1,I“,x. {8}(171 ’Cg),.f.’ﬁ],f.l;é.’tz (T-REC)
&,k (rec x.Ax.e)e : {€} (1 — T2)
(T-UNIT)

®; T, | unite : {€}Unit

El)=1

T-LOC
O;GE I : {e}Ref 1 ()
I) =7 (T-VAR)
O;LKEFx:T i
adjust(®, |1) =@ @[Zhep:m(T 2 T)
adjust(tb,'rc] l) =@ ‘I’”;F;E Fep:mops
check(®,m; ® Topy<:T o C P
(®,71) 2P2<: Ty LEP app)
O INEFerer:t
adjust(P,ref |) =9 &;IZke:t
T="7p check(®,ref &) (T-REF)
O;I L (refe)e : {e}Ref T
adjust(®,! |) = &' ' Tl e:mReft
check(®, In) (T-DEREF)
@;EFle:t)
adjust(®, |:=1) = ;I X ey :mRef 14
adjust(®,m; :=]) =P” P";IEF eg i Wap2
heck(®,mt; := <
check(®, T, :=m) T2P2<: T (T-ASGN)

B F (e == e3)g - {€}Unit

adjust(®,letx=| in 1)=& @& T;ZF eg : 1Py
check(®,letx=m; in T) O;Tx:mp;Zhey:t
O LEFletx=einey: T

adjust(®@,letx=] in 1)=&’ @ EF vy i mpy

(T-LET)

check(®,letx=myin 1) ®;Zkepfx—vi]:1
O IEHletx=viiner: T

Figure 5. Generic type-and-effect checking.

(T-VLET)

will dynamically evaluate to a redex has the appropriate privileges
to be reduced.

For example, consider the rule T-ASGN for typechecking ex-
pressions of the form e] := ey. The rule invokes the adjust function
to produce the privilege set ®' to use when typechecking e;. The
adjust function is invoked again, this time passing as context the
statically determined tagset w1 for ey, to produce the privilege set
®" for typechecking e;. The adjust function for a particular disci-
pline could simply make ® = @" = &, thereby requiring e; and e3
to be well typed under the current set of privileges. However, our
rule soundly allows many other effect disciplines to be enforced.
For instance, the following adjust function, used in conjunction
with the check function at the end of Section 3.1, serves to
enforce a particular canonical form on programs, whereby the
subexpressions in an assignment expression are required to be pure:

0 if A=|:'=T or A=m:=|

adjust(<1>,A) :{ & otherwise

Finally, the T-ASGN rule passes 7; along with e2’s statically de-
termined tagset 7ty to the check function in order to ensure that
the effect discipline for assignments is being obeyed. The premise
check(®,m; ;=) is shorthand for the requirement that this call to
the check function returns true.

The rule T-FN for typechecking lambdas “guesses™ an argument
type 11 and privilege set ®; for use in typechecking the function
body, and similarly for the rule T-REC. Our tag system is a variant

of existing approaches to user-defined type qualifiers, so we expect
tag inference to follow from the work on qualifier inference (@rbak
and Palsberg 1997; Foster et al. 2006). Privilege inference poses
more of a challenge, particularly in the presence of arbitrary black-
box check and adjust functions. In this paper we have chosen
to keep the check and adjust functions fully general, in order to
explore the expressiveness and soundness limits of our approach. It
may be possible to adapt existing algorithms for effect inference
(e.g., (Talpin and Jouvelot 1992)) by restricting the form of the
check and adjust functions.

The rule T-APP performs privilege checking in a manner anal-
ogous to the other rules, and it additionally ensures that the privi-

T Cm

—_— ST-UNIT
701 Unit<: ma Unit ()
T S
T1<:T2 T2<:Ty
(ST-REF)
71 {Ref T1) <:73 (Ref T2}
T ST D C D
Tp<:T T <:1h
21 1" 2 (ST-FN)

) D
(T = 7)) < Ma (T2 =)

Figure 6. The subtyping judgment.

leges @ required by the function being invoked are a subset of the
current set of privileges .

For increased expressiveness, our type system includes a form
of subtyping for tagged types. For example, the rule T-APP only
requires the type of the actual argument expression to be a sub-
type of the formal argument type. The subtyping rules are shown
in Figure 6. A type’s tagset is required to be a subset of any super-
type’s tagset. This makes sense since a tagset represents the set of
all possible tags of the associated expression’s run-time value, so a
smaller tagset denotes a stronger property than a larger tagset. As
usual for soundness, nontrivial subtyping is not allowed underneath
a Ref type and function argument types are contravariant. Finally,
a function type’s privilege set must be a subset of any supertype’s
privilege set, since a function that requires fewer privileges can be
safely used where one requiring more privileges is expected.

Our type system also includes a form of let-polymorphism
for tagged types. As others have done (e.g., (Talpin and Jouvelot
1992)), we express polymorphism formally through substitution
rather than through explicit quantification over types. The rule T-
VLET in Figure 5 expresses this form of polymorphism. As usual,

adjust(P, letscope Ty in |) =P’ o Xke:t
T=mM check(®, letscope Tt; in 7y)
®; ;L letscope Ty ine: T

Figure 7. The typing rule for letscope.

for soundness in the presence of references we only treat values
polymorphically, so the rule is specialized to that situation. As an
example of polymorphism, consider our memory effects checker

and a function that takes a reference cell as an argument and possi-
bly dereferences it. With polymorphism, this function can be called
multiple times with differently tagged reference cells, as long as the
appropriate read privileges are held at each call site.

4. Examples

This section illustrates the expressiveness of our approach. We
first extend our core language with a generic scoping mechanism
in order to facilitate the presentation of examples and then show
how several effect systems from the literature can be expressed as
instantiations of our generic system.

4.1 A Generic Scoping Expression

For some effect systems there is a construct in the language where it
is natural to adjust privileges, such as try for an exception checker.
But others, like our memory checker, do not have such an expres-
sion. In these cases, we can use function annotations to control
privileges. For instance, by annotating a function with the empty
privilege set in our memory checker, we prevent the body of the
function from accessing memory. However, we may want to have
more fine-grained control. To achieve this we introduce a new ex-
pression form called letscope. The expression (letscope T in ¢) dy-
namically behaves like e and, like all expressions in our language,
has associated check and adjust contexts. Thus we can define cases
for the adjust function that grant or revoke privileges while type-
checking the body of the letscope. The typing rule for letscope is
shown in Figure 7.

Consider again our memory checker with read, write and
alloc privileges. Assuming that we begin with an initial set
containing all privileges, we can use letscope to require purity in

certain code segments:

0 if A=Iletscopemin |

adjust(®,4) = { P otherwise

Using the tagset m provided to the letscope we can allow more
fine-grained control and require that a code segment be pure only
with respect to locations with particular tags:

® — {write(g) | € € T} — {read(g) | € € ©} — {alloc}
adjust(®,A) = if A=Iletscopein |
@ otherwise

It may be useful to have different “kinds” of letscopes for dif-
ferent purposes. Our formalism has only one letscope expression,
but different kinds can be encoded through the tagset © provided
in the expression. For example, we could modify the above rule to
only revoke privileges when T contains a distinguished pure tag:

@ — {write(e) | € € n} — {read(e) | € € 7} — {alloc}
adjust(®,A) = { if A=letscopein | and pure € T
P otherwise

We could then augment the above function to revoke only
write and alloc privileges when a distinguished readonly tag
is present in %. In this way, we can use the letscope expression
to perform many different privilege operations within a program.
Throughout this section, we use a syntactic sugar for this idiom
and allow letscope expressions to be subscripted with a tag that
we call a letscope kind. These kinds can be used within check and

'adjust functions. For example, we can rewrite the above effect
discipline using our syntactic sugar as follows:

& — {write(e) | e en} - {read(a) |e € n} — {alloc}
adjust(®,4) = { if A =letscopepyye Win |
¢ otherwise

4.2 Type Qualifiers

Our notion of tags is sufficient to express typical idioms involving
type qualifiers. For example, a program could use tags untainted
and tainted to respectively tag data that can and cannot be
trusted (@rbek and Palsberg 1997; Shankar et al. 2001). Our type
system ensures that if a function’s formal parameter is declared to
have type {untainted} p, then tainted data will never flow there.

The CQUAL system for type qualifiers in C (Foster et al. 2006)
allows users to specify a partial order on qualifiers, which induces a
subtyping relation on qualified types. For example, a CQUAL user
would declare untainted < taintedin order to allow untainted
data to flow wherever tainted data is expected. While our type
system does not support such a relationship between tags, our use
of tagsets and the associated subtyping relation on tagged types ac-
complishes the same thing. In our type system both untainted
and tainted data can flow to a place where a value of type
{untainted,tainted} p is expected.

Finally, our check function can interact with tags to provide
more expressiveness for type qualifiers, even in the absence of
privileges. For example, consider a tag readonly that is meant to
annotate memory locations that cannot be updated after initializa-
tion. The following check function enforces this behavior:

readonly ¢ if C=mn:=7
check(®,C) =

true otherwise

4.3 Memory Effects

Consider the check function at the end of Section 3.1 which imple-
ments standard tracking of memory effects. Given this definition
for check, our type system will require each function’s type to be
annotated with a set of privileges representing the memory effects
that may occur during its execution. These privileges are expres-
sive enough to represent the four “effect classes” in the original
effect system of Gifford and Lucassen (1986): a function requiring
the empty set of privileges corresponds to their PURE effect class;
a function requiring neither read nor write (but possibly alloc)
privileges corresponds to their FUNCTION effect class; a function
requiring no write privileges corresponds to their OBSERVER ef-
fect class; and a function requiring arbitrary privileges corresponds
to their PROCEDURE effect class.

The letscope construct can also be used to enforce these dis-
ciplines at a finer granularity than a function. One approach is to
allow all memory operations by default, by including the alloc
privilege and the read and write privileges for all tags in the ini-
tial privilege set. Memory effects can then be restricted through-
out the program by using different kinds of letscopes. The adjust
function shown in Figure 8 implements this discipline. It includes
three letscope kinds to mark code that falls into the different ef-
fect classes. There is no letscope kind corresponding to the PRO-
CEDURE effect class since our initial privilege set makes this the
default.

0 if A =letscopeyy,, Tin |

& — {write(e) | write(g) € @} — {read(e) | read(c) € P}
adjust(®,A) = if A =letscopegy, Win |

@ — {write(e) | write(e) € @} if A =letscope,,; win |

® otherwise

Figure 8. An adjust function for a memory checker whose initial
privilege set allows everything.

(per=Ped)rAfucn=Ucd) if C=in
check(®,C)=¢ (pen=PceP)A(ucn=Uc®) ifC=7n:=7

true otherwise

P} if A=async |
¥y
adjust{®,A) = ¢ {U} if A =unprotected |

® otherwise

Figure 9. Implementing the AME calculus effect system.

As a concrete example, suppose a programmer decides to mem-
oize the results of a certain function in order to improve perfor-
mance. For the memoization to be safe, the function must be pure.
Therefore, the programmer could create a wrapper function to per-
form the memoization whose call to the original function is en-
closed in a letscopepure. Our type system would then ensure that
this call can be typechecked without any memory privileges.

4.4 Strong Atomicity for Transactional Memory

Our approach naturally extends to richer languages than our simple
formalism. To illustrate this, we show that an effect system defined
by others for their AME calculus (Abadi et al. 2008), a lambda cal-
culus augmented with mutable references and constructs for auto-
matic mutual exclusion (Isard and Birrell 2007), is supported by our
model. The relevant language extensions are (async e), which exe-
cutes e asynchronously as a transaction, and (unprotected e), which
executes ¢ asynchronously outside of a transaction. The latter form
is necessary to support side effects like I/O as well as interaction
with legacy code.

The authors discuss the problem of “weak atomicity” (Martin
et al. 2006), whereby implementations of software transactional
memory (STM) do not prevent conflicts between transactional and
non-transactional code. The resulting semantics can cause unex-
pected and counterintuitive behavior, but implementing STM to di-
rectly support “strong atomicity” is difficult. To address the prob-
lem, the authors show how an effect system can be used to ensure
that transactional and non-transactional code never read or write the
same memory locations, thereby recovering strong atomicity even
when the STM is implemented in the weakly atomic style.

The effect system for the AME calculus uses effects P and U
to respectively distinguish between protected and unprotected con-
texts. The type for references is similarly augmented with a tag (p
or u) indicating whether the reference can be manipulated in pro-
tected or unprotected contexts. The effect discipline then ensures
that a protected (unprotected) reference is only manipulated in a
protected (unprotected) context. This effect system can be easily
expressed in a generic effect system for the AME calculus created
by following the approach we outlined in Section 2. Figure 9 shows
check and adjust functions that enforce the discipline.

4.5 Application-Specific Effects

Our type system is also expressive enough to capture useful kinds
of application-specific effects. As an example, we consider some is-
sues in a user-level threads library. Such a library typically provides
wrapped versions of all system calls that potentially cause a process
to block, such as the read and write file operations. Clients of the
thread library should always invoke the wrapped versions of these
system calls, so that the library may schedule another thread while
the caller awaits a response. Our type-and-effect system can be used
to check that blocking system calls are never directly invoked.

To do so, we assume that each blocking system call is annotated
with the tag blocks. We then define a privilege mayblcck, along
with the following check and adjust functions:

blocks € T = mayblock € @ if C=nw
check(®,C) = .
true otherwise

@ U{mayblock} if A =Iletscope,y, win |

adjust(dP,A) = { .
& otherwise
The check function above requires the mayblock privilege to
be held whenever a function potentially tagged with blocks
is invoked, while the adjust function uses letscopepix to grant
the mayblock privilege. Now letscopepix can be employed in
the implementation of the library’s wrapper functions, allowing
them to directly invoke the blocking system calls. The intent is
that client functions should never use 1ctscopeblk.l Therefore, if
start_thread is the library function that takes a client function
and invokes it in a new thread, then giving start_thread’s formal

parameter the type Unit LA Unit will ensure that client functions
do not directly invoke blocking system calls.

To continue the example, suppose that this user-level threads
library is cooperatively scheduled: client code is not preempted
but instead explicitly yields control to the scheduler, either by
calling one of the wrapper functions described above or by calling
a special yield function provided by the library. Others have used
an effect system to track which functions might yield control to the
scheduler, since yields represent points at which the code must be
properly synchronized with other threads (Fischer et al. 2007; Isard
and Birrell 2007).

To define this effect system in our theory, we assume that the
wrapper functions and the yield function are annotated with the
tag vields, and as above we define a privilege mayyield. Assum-
ing that we check programs under an initial privilege set containing
mayyield, the following check and adjust function cases imple-
ment the desired effect discipline:

yields € T =>mayyield€ ® if C=nn
check(®,C) = .
true otherwise

@ — {mayyield} if A =Iletscope,;omic Tin |

adjust(®,4) ={ & otherwise

The check function above requires the caller of a function that po-
tentially yields to hold the mayyield privilege. The letscopeatonic
can then be placed around code blocks that must be executed atom-
ically, in order to ensure that the execution of these code blocks
does not yield to the scheduler.

It is also possible to express finer-grained versions of the above
effect discipline in our type system. For example, rather than tag-
ging all wrapper functions and yield with the same tag, each func-
tion could have its own tag. The mayyield privilege could then be
augmented to be parameterized by a tag. In that way, the effect sys-

tern would track not only which functions potentially yield but also '
how they yield.

I our language had a module system, it would be natural to allow users to
limit the visibility of a letscope kind to a particular module.

There are many other application-specific properties that could
be tracked and controlled using our type-and-effect system in a
manner similar to the examples shown above. For instance, the
Linux kernel deallocates some data and functions after the initial-
ization phase, and this code is tagged with the qualifier __init (Fos-
ter et al. 2006). It would be straightforward to introduce a privi-
lege mayinit along with a check function definition to track func-
tions that may manipulate __init data or call __init functions. A
letscope could then be used to revoke the mayinit privilege af-
ter the initialization phase, ensuring that the kernel will not type-
check if later phases attempt to touch __init data or functions.
As a final example, the Enterprise JavaBeans component platform
for Java imposes several requirements on “bean” classes written by
clients (DeMichiel 2004). One of these requirements is that beans
do not spawn threads. Similar to the system calls example above,
an effect system could be used to track functions that potentially
spawn threads.

5. Dynamic Semantics

As mentioned earlier, our dynamic semantics is instrumented to
perform privilege checking via the same check and adjust functions
provided for static type-and-effect checking. As usual, dynamic
checking is more precise than its static counterpart. For example,
the standard check function for memory effects (shown at the
end of Section 3.1) will be used dynamically to check that the
appropriate read privilege is held for the actual memory location

being dereferenced.

The operational semantics of our language is defined in Fig-
ure 10. As usual, a store u is a finite mapping from memory loca-
tions to values. The small-step operational semantics is specified
by a judgment of the form ® &5 (e, 1) — {¢’, 4}, which says that,
for a particular discipline D, the pair of expression ¢ and store u
takes one step of evaluation to a new pair ¢’ and pf in the context
of privileges $. The rules make use of a small abuse of notation:
ve Tepresents an arbitrary value whose associated tag is €. As in
our rules for the type system, we omit the discipline subscripts in
Figure 10 for readability.

As usual in a small-step semantics, there are two kinds of rules:
congruence rules (whose names begin with S-), which simply take
a step of evaluation in some subexpression; and computation rules
(whose names begin with E-), which perform a reduction. The
adjust and check functions exactly parallel this distinction. The
adjust function is consulted in each congruence rule, to determine
the set of privileges to use when evaluating the subexpression. The
check function is consulted in each computation rule, to determine
whether the reduction is allowed under the current set of privileges.
Because each value has exactly one tag, the tagset arguments to the
check and adjust contexts are always singleton sets, unlike in the
static semantics.

Qur instrumented dynamic semantics allows us to define the
standard notion of type soundness, which is the subject of the
next section. It would be unnecessary for an implementation to
actually perform dynamic tagging or privilege checking on well-
typed programs.

6. Type Soundness

In our setting, the standard type soundness theorem for effects re-

quires that well-typed programs do not fail any dynamic privilege
checks. This is a basic well-formedness condition that should be
true of any sound effect discipline. However, since the user-defined
check and adjust functions are unrestricted, it is not possible to
prove type soundness once and for all. In particular, there exist dis-
ciplines 7 defined by functions checky and adjusty that would al-
low a program to typecheck but fail a privilege check dynamically.
Therefore, type soundness must be proven separately for each ef-
fect discipline.

We have architected a modular approach to type soundness. Just
as our language’s static and dynamic semantics are parameterized
by a small amount of discipline-specific information, so is our lan-
guage’s type soundness proof. The bulk of the proof is independent
of the adjust and check functions and is provable once. Proving type
soundness for a particular effect discipline merely requires proving
four relatively simple lemmas which ensure natural forms of mono-
tonicity for the adjust and check functions.

This section describes our approach to proving type soundness.
First, we illustrate how an effect discipline could violate our infor-
mal notion type soundness. Next, we describe our modular proof ar-
chitecture, focusing on the four lemmas that must be proven about
a particular effect discipline. Finally, we formally present the type
soundness result for our generic framework.

6.1 An Unsound Privilege Discipline

Type soundness does not hold in general for our language, because
of the presence of arbitrary check and adjust functions. For exam-
ple, consider the following cases of the check and adjust functions
for a discipline U related to memory writes:

Ve e m. write(e) €@ if C=n:=7

checkg; (®,C) =
ﬂ() { true otherwise

{urite(g) |een} if A=mn:=|

adjusty(®,4) :{ @ otherwise

The check function above is standard for tracking memory writes.
The adjust function above only allows the right-hand side of an as-
signment to update memory tagged with one of the possible tags of
the left-hand location.

Consider an assignment of the form e := ep. With the above ad-
just function e; will be statically typechecked under the privileges
{write(€) | € € m}, where = is the top-level tagset in the type of e;.
However, this adjust function will cause e, to be dynamically eval-
uated under just the privilege write(g), where € is the single tag of
the resulting value of e;. If T contains some other tag €', then the
check function above will statically allow ep to write to memory
tagged with €, even though dynamically this check will fail.

The fact that not all effect disciplines lead to sound type sys-
tems motivates our approach to proving type soundness, which is
discussed next.

6.2 Modular Proof Architecture

We have devised a novel proof architecture for ensuring type
soundness of instantiations of our generic system. The architecture
has a small discipline-dependent portion, which consists of only
four monotonicity lemmas about the check and adjust functions.
The rest of the type soundness proof is completely independent
of the check and adjust functions and can be proven once and for
all. As we discuss in the next section, we have validated this proof
architecture by formalizing our language, its type system, and its

| type soundness proof in the Twelf proof assistant (Pfenning and '
Schiirmann 1999). Twelf verifies our type soundness proof as com-
plete modulo the proofs of the four lemmas discussed below.

6.2.1 Privilege Monotonicity

The first two lemmas require a form of monotonicity of the check
and adjust functions with respect to privilege sets. The lemmas en-
sure that the more privileges that are held, the more an expression
is allowed to do. Intuitively, this property is necessary for sound-
ness since a sound static typechecker underapproximates the set
of privileges that will be held dynamically for the evaluation of

‘ O (e,u) — (¢.) ‘
divst(@,11) =@ 'k feru) — ()
Q- (e1 e2,u) — (€] e2,1/)
adjust(®, {e} |) =@’ D'+ ez,) — (e, 1t}
Lol ("'E elap} — (VE eaaﬂ’}

(s-APP1)

(S-APP2)
check(®, {e} {¢'})
D+ {(Ax.e)e v, 1) — {efx— ve],u)
check(®, {e} {¢'})

D |- {(rec x.Ax') ver, iy — (e[— (rec x.2x'.e)e,x’ > v, 1)
(E-APP2)

adjust(®,ref |) =& D' I {e,u) — (1)
D {(ref e)e,) — ((ref €')e,)

(E-APP)

(S-REF)

check(®,ref {€}) ! & domain(u)
B ((ref veler, 1) — (Lo all — vel)
adjust(®,! |) =@ D'+ (e,u) — (¢ 1)
D (le,u) — (1, 1)
check(®,!{e}) u(l)=
@ (lg, u) — (mp)

(E-REF)

(S-DEREF)

(E-DEREF)

adjust(@,i::‘r) =@ @'+ (elap) — (8;,[!’)
O ((e1 :=e2)e, i) — {(€] := ex)e, ')
(S-ASGN1)
adjust(®, {e} =) =& ¥ F {e,u) — (¢4

D ((ve == e)er, 1) — ((VE = ef)sfaf-”
(S-ASGN2)

check(®,{e} :={e'})
@+ ((le :=ve)er,) — (uniter, ull := ver])
adjust(®,letx=] in 1) =P’ D'+ (e, u) — (€], 1)

PF (letx=e; in ex,u) — (letx =€) in ez, 1)
(S-LET)

(E-ASGN)

check(®,letx = {e}in 1)
D+ (let x =ve in ez, u) — (ea]x — ve), 1)

adjust(®,letscope min |) =@’ D'+ {e,u) — (€, 1/}

(E-LET)

® |- (letscope T in e,u) — {letscope Tin &', 1)
(S-LETSCOPE)

check(®, letscope T in {€})
@ - (letscope T in ve, i) — (ve, 1)

(E-LETSCOPE)

Figure 10, Generic operalional semantics.

LEMMA 6.1. If &; C P, and check(®y,C), then check(®;,C).
LEMMA 6.2. If®| C @y, then adjust(dP,A) C adjust(d;,4).

Figure 11. Lemmas for privilege monotonicity.

some subexpression. The two lemmas are described formally in
Figure 11.

The lemmas naturally support many desirable programming dis-
ciplines for type-and-effect systems, including all of the exam-
ple check and adjust functions shown in this paper. Consider the
mayyield example shown at the end of Section 4. The first lemma
in Figure 11 holds for the given check function because an ele-
ment of a set is also an element of any superset. It is easy to check
that the second lemma holds for the letscopeatomic adjust function
case, which revokes the mayyield privilege. Finally, the lemma
also safely allows the adjust function that grants mayblock within
letscopep k-

Intuitively the two lemmas in Figure 11 disallow check and
adjust functions that depend on “negative” information about .
For example, a check function cannot require the absence of a
particular privilege from $. However, in some cases it is possible
to obtain the desired behavior by replacing a “negative” privilege

p with a dual privilege p, which is granted (revoked) wherever p
would have been revoked (granted) and whose presence is required
wherever p’s absence would have been required. Further, some uses
of negative information do satisfy the two lemmas. For example,
it is perfectly sound for an adjust function to revoke a particular
privilege only in the absence of another privilege.

6.2.2 Tag Monotonicity

The other two lemmas require a form of monotonicity of the adjust
and check functions with respect to tagsets. The lemmas ensure
that the smaller the tagsets are in the adjust and check contexts, the

LEMMA 6.3. IfC; C Cj and check(®,C)), then check(P, 7).
LEMMA 6.4. If Ay C Ay, then adjust(®,A;) C adjust(P,A;).

Figure 12. Lemmas for tag monotonicity.

more an expression is allowed to do. Intuitively, this is necessary
for soundness since the static typechecker overapproximates the
possible tags of an expression’s run-time values.

The lemmas for tag monotonicity are defined in Figure 12. The
lernmas rely on partial orders on the check and adjust contexts, de-
noted C. These relations are simply the C partial order on tagsets
lifted in the obvious way to check and adjust contexts; they are for-
mally defined in Figure 13. The tag monotonicity lemmas naturally
support many desirable programming disciplines, including all of
our examples (except the unsound discipline from Section 6.1). For
example, the check function for mayyield in Section 4 satisfies the
first lemma because as 7 gets smaller the check gets weaker. The
check function for readonly from that section similarly satisfies
that lemma.

Consider the adjuste; function for our unsound effect discipline
in Section 6.1. This function does not satisfy Lemma 6.4: as ©
gets smaller, the function grants fewer privileges rather than more
privileges.

6.3 Type Soundness

‘We can now express type soundness for our framework in the
traditional “progress and preservation” style (Wright and Felleisen
1994). We first define the notion of a monotonic discipline:

DEFINITION 6.1. (Monotonic Discipline) We say that 7 is
monotonic if checky satisfies Lemmas 6.1 and 6.3 and adjustg
satisfies Lemmas 6.2 and 6.4.

We will also require a notion of a well-typed store:

mMEMm mEWM meEm _mim el I=1E L=l
Tm Cm Wmi=mEm=n
LR mEm
L] L mICml W=l E mi=]
rhm C nfm r=mm [C lela=mam [
wef | & oned | Fetr=]im [Clelr=] in |
mim moom
Ty Cing Tetscope Fin M T letseope Tin Ky fcey leissopewin | letseopemin |

Figure 13. Partial order on check and adjust contexts.,

DEFINITION 6.2. (Well-Typed Store) We say that I\ X 4 p if
domain(y) = domain(¥Y) and VI €domain(y) we have 0;TE 5

u(l) - Z(D).

This definition is standard (Pierce 2002), except for the privilege
set used in the typechecking judgment. The typechecking of values
never depends on privileges, so it is sufficient to use an empty set
of privileges in the definition.

Now we can state the progress and preservation theorems,

which are also standard (we use e to denote the empty type en-
vironment):

THEOREM 6.1. (Progress) For any monotonic discipline D, if
®;e;X by e : 1, then either e is a value or for all g such that
o, X o p, there exist ¢ and y such that ® oy (e,u) — {&/,1).

THEOREM 6.2. (Preservation) For any monotonic discipline D, if
OZFpe:Tand @y (e,uy — (&,u') and T,E o g, then
there exist £’ and v’ such that &, Fp € : v/, where T'<:7 and
I Fpy.

7. Implementation in Twelf

To validate our work, we have implemented an interpreter and
typechecker for our language in the Twelf proof assistant (Pfen-
ning and Schiirmann 1999). We have also implemented a me-
chanically checked type soundness proof for this implementation
following the architecture described in the previous section. Fi-
nally, we have implemented all of the example effect disciplines
described in Section 4 except the one that relies on special lan-
guage features for transactions. We have used these example dis-
ciplines to typecheck and execute some small programs and have
provided mechanically checked implementations of the four mono-
tonicity lemmas required to prove soundness for each discipline.
Our Twelf implementation and examples are available at http:
//www.cs.ucla.edu/~todd/research/effects.tar.gz.

7.1 Base Semantics

First we implemented the traditional static and dynamic seman-
tics and type soundness proof for our lambda calculus. We did so
by modifying an existing Twelf implementation and type sound-
ness proof for a simple language with mutable references called

Fun (Simmons 2005). We replaced Fun’s top-level function def-
initions with first-class (possibly recursive) lambdas, and we in-
troduced let polymorphism as described earlier. We also inherited
from Fun a slightly richer language than we presented in our for-
malism. For example, the language of our Twelf implementation
additionally supports 32-bit integers and if-then-else expressions.

7.2 Tag and Privilege Checking

Next we aungmented the static and dynamic semantics with tags
and tag checking. While our formalism ensures that each value
will have exactly one tag, our Twelf implementation allows a value
to be tagged multiple times. We then instrumented our static and
dynamic semantics with privilege checking, parameterized on the
black-box adjust and check functions. For ease of maintenance we
implemented static tag and privilege checking as its own pass that
follows the existing typechecking pass. Similarly, we implemented
dynamic privilege checking as an additional check that occurs after
the program takes each ordinary small step.

In order for multiple effect disciplines to easily coexist, each
declared privilege class is associated with a privilege kind. For
example, read, write, and alloc privilege classes might belong to
the privilege kind memcheck, while the mayblock privilege might
belong to the privilege kind userThreads. Each privilege kind has
its own associated check and adjust functions, and the static and
dynamic privilege checking judgments are parameterized by the
privilege kind.

The check and adjust functions are represented in Twelf as judg-
ment forms (using the judgments as types principle (Harper et al.
1993)). A particular effect discipline is specified as a collection
of inference rules for these judgments, which are implemented in
Twelf in a logic programming style. Each rule pattern matches on a
particular check or adjust context, similar to our informal examples

in this paper.

We have also implemented a form of the letscope expression as
described in Section 4.1. The version in our Twelf implementation
has two extra parameters: a privilege kind and an integer. The first
parameter allows check and adjust functions to provide different
behaviors for letscope based on the privilege kind. The second
parameter plays the role of the informal letscope kinds we have
used in examples, allowing an effect discipline to easily support
multiple behaviors for letscope within a privilege kind.

7.3 Modular Type Soundness Proof

Finally, we implemented our proof architecture for type soundness
in Twelf. In particular, we have a mechanically checked implemen-
tation of the discipline-independent portion of the type soundness
proof. This portion is parameterized by the four monotonicity lem-
mas described earlier. Twelf’s typechecker and totality checker ver-
ify the correctness and completeness of our Progress and Preserva-
tion theorems, subject to the proofs of those four lemmas. There-
fore, our proof architecture is correct: the four lemmas are sufficient
to ensure type soundness for any effect discipline expressible in our
theory.

The lemmas are defined as judgment forms in the typical Twelf
style, as described above for the check and adjust functions. The
lemmas are proven for a particular privilege kind by defining a set
of proof cases, typically one (or more) per inference rule defining
the check and adjust functions for that privilege kind.

8. Related Work

Many program analyses and programming disciplines have been
formulated as type-and-effect systems, some of which have been
incorporated into languages (e.g., FX (Gifford et al. 1992)). The in-

troduction discusses several examples, including tracking of mem-
ory effects, checked exceptions, and locking disciplines for con-
current programs. While these systems hard-code a particular kind
of effects and an associated discipline for controlling those effects,
our effect system is parameterized by both the set of effects and the
associated discipline.

The CQUAL system has a generic typechecker and type infer-
encer for user-defined type qualifiers in C that is parameterized by
a programmer-defined set of qualifiers and associated partial or-
der (Foster et al. 2006). The Clarity system additionally allows pro-
grammers to provide explicit type rules for qualifiers (Chin et al.
2005, 2006). The tags in our generic effect system are essentially
equivalent to CQUAL-style qualifiers. By themselves, type quali-
fiers are not expressive enough to encode computational effects:
they refer to the valite of an expression rather than its evaluation.

CQuaL allows programmers to declare some qualifiers as effect
qualifiers. The type system then tracks the effect of each expres-
sion, which is a single effect qualifier that is the least upper bound
of the effect qualifiers of all subexpressions. The authors used ef-
fect qualifiers to track proper initialization in the Linux kernel (Fos-
ter et al. 2006). Our theory is more expressive than CQUAL’s ef-
fect qualifiers in several ways. First, our notion of effects is more
general, with privileges dependent on tags. For example, it is not
obvious how to encode the standard discipline for read(g) and
write(g) effects in CQUAL. Second, our effect discipline is param-
eterized by the check and adjust functions that instrument the static
semantics in a uniform manner, while CQUAL employs a fixed ap-
proach for tracking effects except for a few special cases exposed
to programmers for configuration. Finally, we provide a formal-
ized and mechanically checked proof architecture for ensuring type
soundness in the presence of arbitrary check and adjust functions.

The capability calculus (Walker et al. 2000) supports a region-

based memory management discipline whereby region lifetimes
need not be lexically scoped. The associated type system tracks a
set of static region capabilities, which indicate both which regions
are live and which regions are unigue and can therefore be safely
freed. Our use of privileges as a dual to effects is directly inspired
by the capability calculus. We plan to explore ways to incorporate
a form of uniqueness in privileges in order to remove our lexical
scoping restriction.

The Vault language (Deline and Fahndrich 2001) generalizes
the ideas in the capability calculus to support tracking of user-
defined computational effects, and similar functionality can be
achieved in the flow-sensitive extension of CQUAL (Foster et al.
2002). Mandelbaum et al. (2003) provide a formal account of a
Vault-like type system. These systems support flow-sensitive track-
ing of effects, which is not possible in our type system. On the other
hand, we provide a general approach for specifying arbitrary type-
and-effect disciplines on any syntactic context in a langunage, while
effect disciplines in these systems are expressible only through pre-
and postconditions on functions.

Others have investigated the type-theoretic foundations of effect
systems. Wadler and Thiemann (2003) show how memory effects
are naturally captured by a state monad (Moggi 1989) whose type
additionally maintains a set of effects, and Filinski (1999) shows
how new effects can be introduced in a language as monads that are
defined in terms of lower-level effects. Nanevski has pursued the
use of modal operators as a logical foundation for effect systems.
For example, he shows how the operator O of modal necessity and
< of modal possibility can be used to respectively track read and
write effects (Nanevski 2003). He also illustrates how O provides
a logical interpretation of effect consumption and uses this idea to
define a type system for exception handling (Nanevski 2005).

These works are more foundational than our work, showing

how to encode effects in terms of existing notions like monads and
modal-logic type constructors. In these formalisms, each particular
effect discipline is encoded separately through specialized typing
rules. OQur work, on the other hand, uses a standard style of adding
effects to a type system, but identifies a general template for cre-
ating an effect system in this style that achieves a generic form of
soundness. It would be interesting in future work to understand how
our results translate to the monadic and modal settings.

9. Conclusion and Future Work

‘We have presented a generic type-and-effect system. To our knowl-
edge, ours is the first type-and-effect system that is parameterized
by both the set of effects to be tracked and the discipline to be stat-
ically enforced on these effects. Our notions of check and adjust
contexts, derived from the existing notions of redexes and eval-
uation contexts, provide a generic way of instrumenting any lan-
guage’s type system to support static checking of effect disciplines.
Further, we have architected a parameterized type soundness proof
for our type-and-effect system which requires only four monotonic-
ity lemmas to be proven about a discipline’s check and adjust func-
tions. We have instantiated the approach for a lambda calculus with
references and implemented the language, type-and-effect system,
and type soundness proof in the Twelf proof assistant.

The generic effect system presented in this paper could be ex-
tended in a number of ways to increase expressiveness. As men-
tioned earlier, we could employ more sophisticated forms of tag-
ging. It might also be useful to consider employing a data structure
other than a set to maintain privileges. For example, a sequence
of privileges could be useful for disciplines that care about the or-
der in which privileges are acquired. Translating our ideas to the
context of the capability calculus (Walker et al. 2000) would pro-

vide a form of flow sensitivity for our effect disciplines. Finally,
we plan to explore ways to incorporate proofs of extensional no-
tions of soundness. One possible approach is to first prove standard
type soundness using our strategy and then to prove a relationship
between the instrumented and uninstrumented dynamic semantics.
Qur ultimate goal is to use our approach for formalizing a
generic effect system as the foundation for a practical framework
for enforcing programmer-definable effect disciplines in a full-
fledged language like ML or Java. While we have focused on
making the check and adjust functions as expressive as possible
while retaining type soundness, it may be useful in practice to
impose additional structure. For example, restricting the form of
the check and adjust functions could simplify privilege inference
or ensure privilege and tag monotonicity without requiring proof.

10. Acknowledgments

This material is based upon work supported by the National Science
Foundation under Grant Nos. CCF-0427202 and CCF-0545850.
Special thanks to Jeff Foster for shepherding the paper, pointers to
example effect systems, and helpful comments on an earlier draft.
Thanks also to Jens Palsberg for feedback on this paper and to
David Walker for discussions that motivated this research direction.

References

Martin Abadi, Cormac Flanagan, and Stephen N. Freund. Types
for safe locking: Static race detection for java. ACM Trans.
Program. Lang. Syst., 28(2):207-255, 2006.

Martin Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Se-
mantics of transactional memory and automatic mutual exclu-

sion. In POPL '08: Proceedings of the 35th Annual ACM '
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 63-74. ACM, 2008.

Nick Benton and Peter Buchlovsky. Semantics of an effect analysis
for exceptions. In TLDI '07: Proceedings of the 2007 ACM
SIGPLAN International Workshop on Types in Language Design
and Implementation, pages 15-26. ACM Press, 2007.

Nick Benton, Andrew Kennedy, Martin Hofmann, and Lennart
Beringer. Reading, writing and relations: Towards extensional
semantics for effect analyses. In Programming Languages and
Systems, 4th Asian Symposium (APLAS 2006), pages 114-130.
Springer, 2006.

Brian Chin, Shane Markstrum, and Todd Millstein. Semantic
type qualifiers. In PLDI '05: Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2003.

Brian Chin, Shane Markstrum, Todd Millstein, and Jens Palsberg.
Inference of user-defined type qualifiers and qualifier rules. In
European Symposium on Programming, 2006.

Robert DeLine and Manuel Fahndrich. Enforcing high-level proto-
cols in low-level software. In Proceedings of the ACM SIGPLAN
2001 Conference on Programming Language Design and Imple-
mentation, pages 59-69. ACM Press, 2001.

Linda DeMichiel. Enterprise JavaBeans Specification, Version 3.0.
SUN Microsystems, 2004.

Andrzej Filinski. Representing layered monads. In POPL '99:
Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 175-188. ACM,
1999.

Jeffrey Fischer, Rupak Majumdar, and Todd Millstein. Tasks:
Language support for event-driven programming. In PEPM '07:
Proceedings of the 2007 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages

134-143, 2007.

Cormac Flanagan and Stephen N. Freund. Type-based race detec-
tion for Java. In Proceedings of the ACM SIGPLAN 2000 Con-
ference on Programming Language Design and Implementation,

pages 219-232, 2000.

Jeffrey S. Foster, Manuel Fahndrich, and Alexander Aiken. A
Theory of Type Qualifiers. In Proceedings of the 1999 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 192-203, Atlanta, Georgia, May 1999,

Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive
type qualifiers. In Proceedings of the ACM SIGPLAN 2002 Con-
Jerence on Programming Language Design and Implementation,

pages 1-12. ACM Press, 2002.

Jeffrey S. Foster, Robert Johnson, John Kodumal, and Alex Aiken.
Flow-insensitive type qualifiers. ACM Trans. Program. Lang.
Syst., 28(6):1035-1087, 2006.

David K. Gifford and John M. Lucassen. Integrating functional and
imperative programming. In LFP ’86. Proceedings of the 1986
ACM Conference on LISP and Functional Programming, pages
28-38. ACM Press, 1986.

David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W.
O’Toole. Report on the FX-91 programming language. Tech-
nical Report MIT/LCS/TR-531, MIT Laboratory for Computer
Science, 1992,

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java

Language Specification, Third Edition. Addison-Wesley, 2005. '
Robert Harper, Furio Honsell, and Gordon Plotkin. A framework
for defining logics. J. ACM, 40(1):143-184, 1993.

Michael Isard and Andrew Birrell. Automatic mutual exclusion. In
11th Workshop on Hot Topics in Operating Systems, 2007.

Yitzhak Mandelbaum, David Walker, and Robert Harper. An effec-
tive theory of type refinements. In Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 213-225, 2003.

Milo Martin, Colin Blundell, and E. Lewis. Subtleties of transac-

tional memory atomicity semantics. IEEE Comput. Archit. Lett.,
5(2), 2006.

Eugenio Moggi. Computational lambda-calculus and monads. In
LICS ’89: Proceedings of the Fourth Annual Symposium on
Logic in Computer Science, pages 14-23, 1989,

Aleksandar Nanevski. From dynamic binding to state via modal
possibility. In PPDP '03: Proceedings of the 5th ACM SIG-
PLAN International Conference on Principles and Practice of
Declaritive Programming, pages 207-218, 2003.

Aleksandar Nanevski. A modal calculus for exception handling. In
Intuitionistic Modal Logics and Applications Workshop, 2005.

Tulian Neamtiu, Michael Hicks, Jeffrey Foster, and Polyvios
Pratikakis. Contextual effects for version-consistent dynamic
software updating and safe concurrent programming. In Pro-
ceedings of the 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2008.

Peter @rbzk and Jens Palsberg. Trust in the A-calculus. Journal of
Functional Programming, 7(6):557-591, November 1997.

Frank Pfenning and Carsten Schiirmann. System description: Twelf
— A meta-logical framework for deductive systems. In Proceed-
ings of the 16th International Conference on Automated Deduc-
tion (CADE-16), pages 202-206, Trento, Italy, 1999.

Benjamin C. Pierce. Types and Programming Languages. The MIT
Press, Cambridge, Massachusetts, 2002,

Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wag-
ner. Detecting Format String Vulnerabilities with Type Quali-
fiers. In Proceedings of the 10th Usenix Security Symposium,
Washington, D.C., August 2001.

Rob Simmons. Twelf as a unified framework for language for-
malization and implementation, 2005. URL http://www.
cs.princeton.edu/~rsimmons/thesis.pdf. Undergraduate
honors thesis, Princeton University.

Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region
and effect inference. Journal of Functional Programming, 2(3):
245-271, 1992,

Mads Tofte and Jean-Pierre Talpin. Implementation of the typed
call-by-value A-calculus using a stack of regions. In Proceedings
of the 215t ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 188-201. ACM Press, 1994,

Philip Wadler and Peter Thiemann. The marriage of effects and
monads. ACM Trans. Comput. Logic, 4(1):1-32, 2003.

David Walker, Karl Crary, and Greg Morrisett. Typed memory
management via static capabilities. ACM Trans. Program. Lang.
Syst., 22(4):701-771, 2000.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness. Information and Computation, 115(1):38-94,
November 1994,

