
A Natural Semantics for I&y Evaluation

John Launchbury

Computing Science llepartment

Glasgow l.University

jl@ldcs.glasgow. ac,uk

Abstract

We define an operational semantics for lazy evaluation

which provides an accurate model for sharing. The only

computational structure we introduce is a set of bind-

ings which corresponds closely to a heap The semantics

is set at a considerably higher level of abstraction than

operational semantics for particular abstract machines,

so is more suitable for a variety of proofs. Furthermore,

because a heap is explicitly modelled, the semantics pro-

vides a suitable framework for studies about space be-

haviour of terms under lazy evaluation.

1 Introduction

In this paper we provide an operational semantics for

lazy evaluation of an extxmded ~-calculus. Lumness im-

plies a number of things: first that the language is non-

strict, second that cert am reductions are shared, and

lastly that evaluation ceases once an outer lambda is

encountered, The semantics captures each of these as-

pects.

Why bother with an explicit semantics for laziness

at all? The reason is that it is often quite hard to know

how a particular term will behave under lazy evaluation.

Will a certain subcomputation be repeated or rot? How

much heap will be required? Will a particular closure

be accessed once or many times?

The following example shows the effect of sharing.

When evaluating the term,

let u = 3+2, w=u+lzn v-t-v

v is demanded twice but, because the closure which v
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represents is overwritten with its value (6) after the first

demand, the computation u + 1 is only performed once

(as a consequence, u is only accessed once). ‘1’he let

construct may be thought of as naming closures (or srrb-

computations) that are only evaluated when required.

For a more taxing example, consider the difference

in evaluation of the following two terms.

letu=3+ 2, f=(letv =u-t-l~71A,r. v+x)

2nf2+f3

In the first of these the computation u + 1 is repeatec~,

once for each use of f (and so u is ~ccessecl twice). In

the second, the computation u + 1 is performed once

only (and u is accessed just once). Showing why this

happens is exactly what the sernantcs is for. In parti~ -

ular, this work was motivated by a need to be l>recise

about when closures where built, how ofh 1 comput a-

tions were performed, how often closures were accessed,

and the operational implications of lambda lift i] lg and

full laziness [PL91], Similarly, a semantics for lazi ness is

vital precursor to being precise about the difference be-

tween laziness and optimal reduction stral egies [L6v80].

The semantics for laziness presented ill thi:s paper

are simpler than any previously published. The key

reason is that we separate the semantics into two parts.

The first stage is a static conversion of the A-calculus

into a form where the creation and sharing of clc,sures is

explzcit. This leads directly to a very simple semantics

at the level of closures.

The rest of the paper is organised as follows. After

discussing related work, we define the explicit-closure

version of the A-calculus we use, and describe the static

normalizing transformation for con~ ertirtg arbitrary >.-

expressions into that language. We ~herl provide a nat -

ural semantics (a big-step operational selnantics) fcr

terms in the language, which both preserves and is com-

putationally adequate with respect to an appropriate
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denotational semantics. The

placations and extensions.

2 Related Work

paper concludes with ap-

There have already been a number of attempts to pro-

vide semantics for laziness. Perhaps the best known

is due to Abramsky and Ong [Abr90, Ong88] where

they explore the theoretical consequences of treating

A-terms in weak head normal form as values. Abram-

sky and Ong argue that since implementations of lazy

languages cease reduction once an outer lambda is en-

countered (i.e. values are terms in weak head normal

form—whnf), the semantic implications of this should

be studied. This leads to a large and powerful theory,

but one in which sharing is ignored completely. Thus

they omits precisely the aspect of laziness we wish to

study.

Abramsky and Ong’s semantics are defined at a high

level of abstraction. At the other end of the scale is the

operational semantics given to define the behaviour of

abstract machines. Examples of this are the G-machine

[Jon84], the STG-machine [Pey92], the TIM [FW87]

and TIGRE [KL89]. At the level of these machines

we have to deal with code pointers, stacks, indirection

nodes, and the like. These operational semantics cap-

ture laziness completely, but contain so much extra de-

tail as to make reasoning or proofs nigh on impossible.

Furthermore, being so specific makes it hard to translate

results about one abstract machine to another. One of

the goals of this work is to provide a common semantic

base for a wide range of abstract machines.

To be able to study sharing, therefore, we need a

semantics cent aining more detail than Abramsky and

Ong’s, but less than provided by particular abstract ma-

chines. The earliest intermediate level semantics seems

to have been Josephs’ [Jos89]. This denotational se-

mantics is continuation-based, and rnallipulates both an

environment and a store. Sharing is successfully mod-

elled, including the sharing that occurs in implementing

fixed points. However, using both a store and a contin-

uation provides the semantics with all the usual mecha-

nisms required for modelling imperative languages with

gotos! so again it makes the prospect of performing

proofs rather daunting. Furthermore, because the se-

mantics was denotational, Josephs had to introduce a

forcing function (corresponding to the print-demand)

for controlling the extent of evaluation required at any

point.

An operational alternative was adopted by Pu-

rushothaman and Seaman [PS92]. The authors present

an operational semantics for Lazy PCF which they

prove equivalent to a standard denot ational semantics

(observations at higher types are treated specially be-

cause o~ this), Their rules capture most sharing, but

as many closures are built within terms, the application

rule is greatly complicated, and also the semantics is

unsuitable for studying space behaviour. However, the

main weakness is the inability of the semantics to cap-

ture sharing in recursive computations. By their seman-

tics, a recursive term pt. e is equivalent to e[(fli .e)/t].

If e is of the form If e’ then Nil else Cons 1 t, for ex-

ample, then the computation of e’ will be repeated for

every element of the infinite list. Sharing has been lost,,

Much work has been done on making substitution

explicit, the most relevant for our purposes being that

by Maranget [Mar91], where he develops a framework of

LabellecL Terms Rewriting Systems. Using these he stud-

ies the weak A-calculi and shows the lazy strategy to be

optimal. The resulting semantics for laziness is signifi-

cantly more complex than that presented here (having

been developed with different goals in mind), and also

omits recursive /ets which are a vital part of rnoder n

lazy functional languages.

The semantics for Id also deserve a mention at this

point [AN P89]. While not lazy, Id has a non-strict se-

mantics with sharing defined by a small-step semantics

of a core of the Id language. Many rules may apply at

any one time, but as the system is confluent the result is

deterministic. By defining a particular reduction order

and extending their rules to discard unneeded redexes,

laziness can be modelled. A further point of contact is

that, when providing a semantics for the kernel of Id,

Ariola and Arvind use a similar technique to ours for

making closures explicit [AA91],

3 Modelling Laziness

The semantics we present is an intermecliate-level oper-

ational semantics, lying midway between a straightfor-

ward denotational semantics (or, equivalently, the op-

erational semantics of Abramsky and ong) and a full

operational semantics of an abstract machine. As such

it accurately captures the sharing within lazy evaluation

without requiring the extra machinery either of contin-

uations or of stacks, code pointers, dumps, and the like.

The heap is the only computational structure required.

We capture laziness in two stages. The first is

a static transformation of the A-expression to a nor-

malised form in which sharing is easy to express, and the

second is a dynamic semantics for normalised lambda

expressions, Separating these phases means that the

dynamic semantics is much simpler that would other-

wise be the case.
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3.1 Normalizing Terms

We begin with a lambda calculus extended with (recur-

sive) lets and normalise it to a restricted syntax. These

normalised A-expressions have two distinguishing fea-

tures: all bound variables are distinct; and all appli-

cations are applications of an expression to a variable.

Thus,

x E Var
e E Exp ::= Axe

I ex

/x

[ letxj=el j..., xn=enine

Operationally Zets maybe viewed as the construct that

builds closures in the heap, and the fact that iets are

recursive allows a closure to contain a reference to itself.

This can give rise to cyclic structures in the heap, ex-

actl y as arises in most implementations. Wit bout tets

it would be impossible to build cycles, so they are more

than merely syntactic sugar.

Having distinct names means that scope becomes

irrelevant. In particular, though lets permit recursion,

they may be used to model a nonrecursive binding as

no untoward name capture can occur.

The synt attic restriction on application means that

arguments to functions are only ever explicitly-named

closures. This is valuable in that it removes the issue of

generating new closure sites from within the dynamic

semantics.

The process of normalisation can be specified in two

stages. The first, which we write as 6, is simply a-

conversion: a renaming c)f all the bound variables in e

using completely fresh variables. The second, which we

write as e+, ensures that function arguments are always

variables. It is defined as follows.

(Axe)” = Ax. (e”)

x*

(let XI = e: . .V,rn = en in e)”

= let xl =(e~), . . ..xn= (e:) m (e*)

(e, e~)’ = (e;) ez if ez is a variable

= let y = (ej) in (ej ) y otherwise

[y is a fresh variable]

Thus, apart from a-conversion, normalisation consists

purely of naming the argument terms in applications,

and expressing that naming using let.

This process of normalisation borrows heavily from

the STG language [Pey92], which has an even more re-

stricted form of application. The value of the STG lan-
guage is its direct operational reading (though far less

abstract than appearing here).

3.2 Dynamic Semantics

The rules are presented in Figure

following naming conventions:

1. They obey the

T, A,@ E Heap = Var -& .Exp

z G Val ::= ~x. e

A heap is a partial function from \ariables to expres-

sions. It may be viewed as an (unordered) set of vari-

able/expression pairs, binding distinct variable names

to expressions. A value is a expression in whnf, i.e.

whose outermost structure is a lambda. As we see later,

it causes no problems to add constants and constructors

and to treat these as values also.

Judgments of the form T : e JJ 4: z are to be

read, ‘(the term e in the context of the set of bindings r

reduces to the value z together with the (modified) set

of bindings A.’) In the course of evaluation, new bind-

ings may be added to the heap, and old bindings which

bound variables to unevaluated terms may be updated

to bind those variables to their evaluated counterparts.

A proof of a j udgement corresponds to a reduction

sequence. A proof may fail in one of two ways: either

there may be no finzte proof that a reduction is valid,

which corresponds to an infinite loop, or there may be

no rule which applies in (a sub-part of) the proof. which

corresponds to a so-called black hole. Denotationally,

each of these failures corresponds to a value 1.

3.2.1 Reduction Rules

Referring to Figure 1, the Lambda rule states that terms
whose outermost component is a lambda rewrite to

themselves without affecting the heap. Such ter,ms are

in whnf so are already values and have no need of fur-

t her evaluation.

The App/zcatzon rule reduces the term i,o the left c,f

the application (the function), substitutes the argument

in for the A-variable, and continues reduction. Simple

substitution is sufficient because we only substitute a

variable, so no duplication of work is incurred. This is

the point of the static e* transformation.

The payoff of the renaming transformation ~ appears

in the Let rule. The bindings may be added to the heap

with no worries about name clash.

The most intriguing rule is the Variable rule. This
is where sharing is captured. To evaluate a variable r

in the context of some heap, the heap must contain a

binding of the form x M e. Assuming this is the case,

e is reduced in the context of the heap omitttng the

reference to x, If this reduction produces a value z, the

new heap is augmented with the binding .x x z, and a
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F : Axe J r : Axe

I’:e JA:Ay.e’ A : e’[x/y] J). @ : z

I’:letxl =el. ..x~=e~ineu A :Z

Figure 1: Reduction Rules

Lambda

Application

Variable

Let

renamed version of z is returned as the result. This is

a natural place for renaming to occur, as it is only here

that terms may be duplicated. As we will show later,

this one occurrence of renaming is sufficient to avoid all

unwanted name capture.

What if x is recursive, and e has a (possibly indirect)

reference back to x? It may seem that reducing e in the

context of a heap which contains no reference to x could

cause a problem. There are two possibilities: either 6

reduces to whnf without requiring the value of x, in

which case we reintroduce a binding for x (binding it to

its value now), or else e requires the value of z before

reducing to whnf. This means that x depends directly

on itself before any value can be returned, so should

have denotation 1. In this latter case we will attempt

to reduce x in a heap containing no reference to x. As

there is no rule which covers this situation the proof for

the reduction sequence fails. Note that the variable rule

is the only place where the proof may actually faill.

4 Examples

To examine the behaviour of the A-expressions pre-

sented in the introductifm, we will need to make use

of the following additiorml rules. They are discussed in

I once we add ~on~tants t}le Application rule cOuld cause fail.

ure on a type-incorrect term.

more detail in Section 6.1.

r:n JJ1’:n

I?:el l,l. A:nl A:e2J. @:n2

I’:e1+e2$C3:n1+7t2

To stress the sequential nature of reduction

proofs out vertically: if r : e J A z we write

[
a sub - proof

[

another sub – proof

4:2

we lay

with sul~-derivations contained within the square brack-

ets. To see this notation in action consider reducing

letu=?+ 2,u=u+1inv+u ill themntext of an
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{U*3+2}:U

[:

{}:3+2

[
{}’: 5

{U*5}:5

{ul-+5}:1

{ul-+5}:1

J+5}:6

+5, ul-+6}:6

}5, V+6}:U

}5, vH6}:6

The result is the number 12, together with a heap in

which u is bound to 5 and v to 6.

The next two examples exhibit the difference be-

tween defining a closure inside a lambda, and outside.

First inside: (as a shorthand we will write j H . . . for

~i+-~x.let v=u+linv-tx)

{}:letu =3+2, ~= Az.letv=u+lin V+Z

[’
{ti”~5,~~..,sH6}:8

{uN5,~+..,s-6}:f3

[

{u*5,~+...,s+6}:~

{u~5,~~..,sti6}

: Ax.lett=u+ lint-t-x

{UN5jjN.,S+6}

: lett=u+lint+3

\u*5,f* ..., si+-6, t*u+l}:t+3

1’
{u+5, f*..., s++6, tl-+6}:9

11-+ 5,j ++..., s~6, t~6} :17

Notice each time ~ is called, its body is copied and

renamed. After application and substitution j‘s body

generates a new closure in the heap bound to the com-

putation u + 1, so the value of u -t 1 is not shared

across separate applications of ~ (though the compu-

tation 3 + 2 is shared). Contrast this with the case

where the let occurs ouside the lambda of j:

{}:/etu =3+2, j=letv= u+linkr.v-l-x

mf2+f3

{u*3+2, ftiletv =u+linAz.u+x}:

f2+f3

This time the closure for v is loaded into the heap once

only, and the binding for f is updated to its whnf. Thus

the computation of u + 1 is performed just once, and

the result is shared across all uses off.

4.1 Recursion

The simplest case of recursion (usin ~ let) is

letx=xinx

An attempt to reduce this reaches a point where no rule

applies, so no progress may be made toward finding a

proof of reduction.

{}:letx=.ztnx

{X+x}:x

[

{}:X

failure

Many run-time systems would halt at this point and

report a black-hole (a detectably self-dependent infinite

loop). In contrast, the loop defined by

let f= Ax. fxinf2
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is not detected as a black hole. Its “evaluation” pro-

ceeds as follows.

{}:let~=Ax.~$in.f2

{f= Az.fz}:f2

[

{f= Ax.f z} :f

{f= A$.f z} : Az.j z
{f= A2.fz}:j2

[

{f= Az.f z} : f

{f= Az.f z} : Ax.f z

This time there i? always an applicable rule, so an at-

tempt to reduce this term leads to an infinite proof.

More operationally, because there is no single closure

which ends up pointing directly to itself, the loop is not,

discovered. This sort of example provides intuition as

to the relative benefits of alternative definitions of fix.

The most direct definition is:

let fix = Af.f (jix f) in fir

but better sharing is given by the alternative

let fix = Af. (let x = f x in z) in fix

because a new cycle in the heap is created each time the

second definition is used. Using this second definition

of j%, the reduction of fix id ceases with a black hole,

but using the first definition of fix leads to an infinite

loop.

The section on extensions includes more examples

of recursion.

5 Semantic

5.1 Retaining

Properties

Normalisation

Having gone to the bother of normalizing terms before

beginning reduction, we should check that the proper-

ties of terms introduced by normalisation, are preserved

throughout a reduction proof. Preservation of the prop

erty that functions are ouly ever applied to variables is

immediately obvious: because we only ever substitute

variables for variables it is impossible to create a term in

which an expression is applied to a non-variable. The

naming property is less obvious and requires a more

general definition.

Definition 1

A heap/term pair r : e is distinctly named if every bind-

ing occurring in I’ and in e binds a distinct variable

(which is also distinct from any free variables of T : e).

o

By “binding occurring in I’” we mean either top level

bindings, or let or lambda bindings occurring within

bound expressions. Only the latter two can occur within

expressions.

Theorem 1

If r : e JJ A : z and T : e is distinctly named, then ev-

ery heap/term pair occurring in the proof of the reduc-

tion is also distinctly named.

Proof

The rules for Lambda and Let are trivial. Application

follows as soon as we recognise that if A : Ag. e’ is dis-

tinctly named, then so is A : e’[z/y]. The only rule that

could cause a problem is the Variable rule, but even here

if A : z is distinctly named then so is (A, z I-) z) :2, be-

cause by definition of renaming with fresh variable, i

will only bind completely fresh variables. Note that ,4

cannot contain a binding for x else (T, z H e) : z would

not have been distinctly named. n

In the light of this result we restrict the definition c,f

$ to apply solely to distinctly named heap/term pairs.

For the rest of the paper a statement like I’ : e JJ A : z

carries the assumption that I’ : e is distinctly named.

5.2 Relating to Denotational Semantics

5.2.1 Semantics of Terms

Following Abramsky and Ong [Abr91)], the denotational

semantics models functions by a lifted function space,

so it distinguishes between a term O (a non-terminating

computation) and Ax. fl. This distinction in the model

reflects the fact that reduction ceases at whnf rather

than head normal form (hnf). We represent lifting using

the injection Fn, and the projection using .~~n (written

as a postfix operator).

An environment is a function mapping variables into

values,

p C 13nv = Var ~ Value

where $blue is some appropriate domain containing at

least a lifted version of its own fu oction space. The

initial “undefined” environment PO maps all variables

to 1.

Meanings are given to expressions using the seman-

tic function [–] : 13xp + Erav -+ Value which is de-

fined as follows.

[Ax.ej, = Fn (Jv.[ el~ul~~~l )

[exnp = ([e],) l-~n ([zIPJ
[X]p = p(x)

[letx~=ej . ..zn=enine]P

= [e]g~l$~e, ~.*.r.IP
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The recursion generated by a let is captured through a

recursively defined environment, given by the semantic

function % – % : Heap -+ Env + Enu defined as follows.

{Zlxel .znt-+en}p

= pp’.p U(zf+[e~]p, . . . rn++[en]p, )

where p stands for the least fixed point operator. Be-

cause the bindings in the heap are (mutually) recursive,

we obtain a recursively defined environment. Note that

the definition only makes sense on environments p which

are consistent with T (i.e. if p and T bind the same vari-

able, then they are bound to values for which an upper

bound exists).

The function { – } : Heap ~ llnv -+ Env should be

thought of as an environment modifier-it extends its

environment argument by the meanings of the bindings

given in its heap argument. This flexibility is useful for

giving a semantics to the heap itself in a heap/term pair

to allow for free variables. Note that the rules nowhere

require the terms to be closed. Indeed, because of the

variable rule, some reductions are bound to be of open

terms: a variable is only rebound once the expression

to which it was bound reduces to whnf.

An equivalent definition of the semantics for heaps

is

go}p

{~,z~e}p = jp’.{~}p’U (~t-+[e],,,)Up

It is an easy consequence of this definition that, assum-

ing r and p are consistent,, V%.p(%) Q (f r }p) (x). This

is because the heap only adds new bindings, or refines

old ones. Using this fact, and by unfolding the recur-

sion, we can show that,

We will use this fact in the proof of the variable case of

the Correctness Theorem (Theorem 2).

We also define an ordering< on environments, which

captures the concept of ‘(added bindings”. We define

p ~ p’ to mean

V$ . p(x) # 1 * p(z) = p’(x)

So if p < p’ then p’ may bind more variables than p, but

otherwise is equal to p.

5.2.2 Correctness

We are now in a position to state and prove the correct-

ness of the operational rules with respect to the denota-

tional semantics. The correctness theorem states that

reductions preserve the meanings of terms and only al-

ter the meaning of heaps by (possibly) adding new bind--

ings.

Theorem 2

If r : e U A : z then for all environments p,

Proof

The proof is by induction on the structure of the deriva-

tion r : e JJ A : z. There are four cases clepending on

the form of e:

Case: Axe

This is immediate.

Case: e x

The first part is a direct calculation.

[e XliIITJLp
= (Uel{r},)4~n (U~liIrEp)
= ([Ay.d]{~],).J~n ([~liIAIIP)

[Induction]

= (Av.[d]~pi{,+v}) ([~]{LI],)
= ile’l~puty+[~]ff.~pl
= 114~/v]]~p
= [z] ~, [Induction]

The second part follows from t ransitiivity of <.

Case: c

The variable rule is only applicable if there is a bind-

ing for the variable in the heap, so the reduction

is of the form: (r,x~e):r$ (A, xsz) :;. By

induction we may assume that [ e]{ ~ }P = [ z !{ A }P

and that g r}p < { A }p. Wc are requll ed to

prove that, [Z]~r,~+~yP = [~]{ 4)X+.JP aml that

{r, z * e }P < {A, z +-+ z }p. We shall do the :second
first.

{1’,z~e}p

= /W’.{~}P’ U (~++[~’]p’) L P
= /Lp’. gr}p’ u (<r++ [e]+fr}#) LJ ~

= IJP’ .flrlp’ u (Xl~[211{A1{))) u ~
[Induction]

< ~p’ .{ A}p’ U (z*IL]{A],,,) U P

< fip’ .{ A]p’ U (zN[z]P)) LI /7

= gA, xtiz%p

Using this, we can now show the first part,

[~lflr,~~~],
= fr,x~e]p(z)

= {A,zxz}p (z) [defn of<]

= [z?j{A,m+z}p [defn of { - };

= [i]{ A,.*z]p [c-conversion]

Case: letx~=e~, . . ..xn= e., w e

For the first part,

[let zl=el,..., xn=enine]flr}p

= [elPPflrlPu(C,+I~llP ~n+[..l,)

== [e] flr,z,+e,,. ,~n+en}p

[Variables z,, . . . . Zn, not bound in 1’]

= [ z]{ A }, [Induction]
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as required. For the second part,

{T~p ~ {l’, x~Hej,..., xntien]p

[Variables q,..., xn not bound in I’]

~ { A }p [Induction]

n

5.2.3 Computational Adequacy

Having proved that when reductions exist they preserve

the denot ational semantics, we must now characterise

when reduction exist.

Theorem 3
[e]{r],O#J- s (3 A,.z. ~:e J A:z)

The theorem states that a heap/term pair reduces ex-

actly when its denot atioll is non-bottom (in the initial

environment pO ).

The one direction is easy to show as it arises as a

corollary to Theorem 2.

Theorem 4
~:e JA:z5[e]{r]PO#l

Proof
The term value z can

[el{rlpo =

;

ordy be of the form Ax. el. Then

[~z.~’]{A}PO
Fn (Av.[e’]{4}p,u{~ti~})
1-

0

The other direction (that is, if the denotational seman-

tics is non-bottom then the natural semantics has a

valid reduction) is harder to show and requires a number

of intermediate steps. As they stand, the denot ational

and natural semantics formulations are too far apart to

be related directly. To remedy this we introduce a new

version of each which can then be directly related to

each other.

We begin with the denotational semantics, and de-

fine a resourced denotational semantics. The semantic

function takes as an extra argument an element of the

countable chain domain C’ defined as the least solution

to the domain equation C = CL. We represent lifting

in C by the injection function S : C + C’. Thus the el-

ements of C are -L, S J-, S(S l-), and so on, with limit
element S(S(S . . .)) which we write as w.

The type of the environment is given by

a : Vim + (C + W). That is, variables are bound to
functions which, when provided with a resource, yield a

This resourced semantics equals the original semantics

if given infinite resources. That is, if Vx.p x = IS x w

then

Put the other way around, the resourced semantics al-

lows us to focus on approximations to the original de-

notational semantics. In particular, as the resourced

semantics is a continuous function (“being defined using

continuous operations only), then if the original seman-

tics assigns a non-bottom value to some term, so does

some finite approximation. This provides the proof c)f

the following lemma.

Lemma 5
If [ e ]P # -L, then there exists a natural number ~tzsuch

that Af[e]a (Sin-L) # 1 where Vz . p N = a z w.

Returning to our overall goal, we now have to work from

the other direction. We define an alternative riatural

semantics in which Application and Variable rules are

replaced wit h the following alternat ;.ves:

The only effect of the new application rule is to increase

the number of closures by adding indirection whenever

a lambda is reduced, rather than by substituting the

new vahle for the bound variable. [t mimics the opera-

tion on the environment in the denotational semantics

more closely than the original versicm did.

The effect of the new variable rule is to remc,ve up-

dating from the semantics, and to remove the possibility

of detecting black holes (the only way a reduction proc)f

may fail in the revised system is by being infinite).

Apart from these changes the two versions of the

natural semantics are equivalent: they both respect

the denotational semantics and, furthermore, the same

heap/term pairs reduce successfully. This may be shown

by induction on the reduction proofs.

Finally, the last link needed is to relate the resourced

semantics to the alternative versior of the natural se-
mant ics. This is done by the next lemma.
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Lemma 6

then there exists a heap A and a value z such that

(z~~e~ . . . z~ + en) : e J A : z in the alternative

version of the natural semantics.

Proof ‘
By induction on m. ❑

At last we are in a position where we can put the pieces

together and prove the se(:ond part of the computational

adequacy theorem.

Theorem 7

Proof
If the original semantics is non-bottom, then by Lemma

5 there exists an m such that

However, by Lemma 6 this implies a reduction proof in

the alternative version of’ the natural semantics, which

in turn implies a reduction proof in the original version.
•1

6 Extensions

Now that we have defined the semantics and shown it

to be correct the obvious response is, “so what?” In

the example section we nave already seen the value of

the semantics for demonstrating when closures are built,

updated, and accessed, and when computations are re-

peated or shared. While this is an important use of the

semantics it is not the only one.

One of our aims is to provide a high level base to

which various gadgets may be added and studied in the

context of lazy evaluation. In this section we look at a

number of possibilities. It does not constitute anything
like a detailed examination of these areas; rather its

purpose is to demonstrate potential.

6.1 Constructors and Constants

Adding extra constructs to the language causes no

real difficulty. For example, to extend the language

with construct ors we would add the following synt at-

tic forms:

c ~ Constructor

e G Exp ::= CXI .,.x~

] case e of {c, y~ . ..y.n, -+ e,}~=l

As before, we expect arbitrary terms to be statically

normalised in order not to clutter the reduction rules.

Constructors are like functions, so they are only to be

applied to variables and, furthermore, they should be

saturated, that is, fully applied (by introducing new A-

bound variables if necessary).

Adding numbers likewise requires the fbllowing.

Numbers may be viewed as nullary constructors, so re-

ally Numbers ~ Constructor. We assume the operators

@ (e.g. -+, *, >, etc.) are strict in both arguments, and

will produce a nullary constructor such as a number, or

a boolean as a result. If this is the case, then & opera-

tions require no special treatment during normalisation.

Figure 2 shows the rules for three new constructs.

Constructors (including numbers) immediately evaluate

to themselves. Primitive operations are evaluated by

evaluating the left operand, then the right, and then by

carrying out the appropriate operation on the resulting

values.

The Case rule looks complicated purely because of

the subscripts needed to express the flexibility of the

construct which allows any number of cases, each con-

structor having its own number of arguments. The rule

only succeeds if the constructor returned by the evalu-

ation of e is contained in the case list. M so, then again

simple substitution of the arguments of the constru( -

tor for the formal variables is sufficient: normalisation

ensures that these are variables so no sharjng is lost,

Constructors provide a very simple example of shar-

ing in recursively defined structures. Taking the exam-

ple from the discussion of related work:

let u = False, t = if u then Nil else Cons 1 t an t

(where the if construct maybe thought of as syntactic

sugar for a case over booleans). This reduces as follows.

{} : let u = False, t = zf u then Nil else Cons 1 t

in t

{u+ False, t++ tf u then Nil else Cons 1 t} : t

[

{u ++ FdseJ : if u then Nil else Cons 1 t

[

{U+) False} : u

{ a ti False} : False

{u ++- False} ; Cons 1 t

{u+) False, t ++ Cons 1 t) : ConS 1 t

The closure for thas been updated to whnf, and u will

never be accessed again.
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r:~xl . . . .Cn q r:cxl. ..xn Constructors

r:e JA:ckxl. ..x,nk A : ek[xi/yi]~~ u @ : Z
Case

I’: case e of {c~ yl. <+ymt +e~}~=l J- @:z

r:el $A:m A:e2JJ@:n2
Primitive ~

r : el@e2 J @ : nlcwz

Figure 2: Additional Reduction Rules

6.2 Garbage Collection

It is perhaps slightly surprising that a llotion of garbage

collection could find its way into the semantics. In ret-

rospect, however, it is vital that it does so if we ever

wish to study the space behaviour of lazy programs at

a higher level of abstraction than provided by abstract

machines. When a term is said to evaluate in constant

space under lazy evaluation, it only does so if ciiscarded

cells are reclaimed. Thus we need a rule for garbage

collection which may be applied at any time, and which

will discard from the heap any unnecessary closures.

To do this we need to augment the $ relation

with a set of “active” Ilames, that is, variables still

possibly needed in the reduction but not necessarily

pointed to from the expression currently under reduc-

tion. The only rule wherf~ this shows up non-trivially is

the Application rule which becomes,

1’: e J.J.Nu{~} A: Av.e’ A : e’[z/y] .ijN @ : z

I’:ezlJ.~@:z

Then one possible rule for garbage collection is,

r:e$NA:z

(r, xt+e’):e $N A:z
if x @z(r, e,N)

where R(l’, e, IV) is the set of variables reachable from

e or N via I’. There are clearly many ways in which

this function may be defined, the obvious one corre-

sponding to the usual method of marking variables, but

reference counting is another (possibly giving an over

approximation with cyclic structures).

Note that the garbage collection rule does not prc -

serve the semantics of heaps, so a proof showing the

equivalence of the system with and without, garbage col-

lection is required.

Once we can specify garbage collection like dlis, we

have the opportunity to explore alternative methods

(perhaps generational or parallel methods) of c-olleci-

ing and/or marking. The greater level of abstl action

means that the results are not tied to one particular

abstract machine.

6.3 Counting the Cost

In the same way that the reduction rules were aug-

mented to compute extra information for garba,xe col-

lection, a similar mechanism could be developed fcr

recording the cost of computation. For example, the

Application rule might become,

r:e JJ.PA:Ay.e’ A : e’[x/y] J,l @ : z
——. -

I’:ex&+~+l @ z

Now the subscripts indicate how rmmy reduction steps

were performed. This may prove to be a useful route

for formalizing the notion of cost centres [SP92], and is

the topic of current work.

6.4 Abstractions and Analyses

One motivation for this work was a desire to al oid un-

necessary updates [Lau92]. Previously we had no good

semantics against which to prove our analysis cmrect.

Now that we have such a semantics we can not only hope

to be able to verify our existing analysis, but can also
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expect that abstracting the semantics will lead to other

(perhaps weaker and cheaper) forms of the analysis.

7 Conclusion

In this paper we have presented a natural semantics

which models lazy evaluation as it is commonly imple-

mented. The model works on the level of terms, using

a heap to capture shariug. The result is remarkably

simple, especially when compared with other attempts.

The semantics doesn’t directly provide a specifica-

tion for an abstract machine because there is no notion

of explicit control. It seems as though this aspect is

the essential cause of the wide diversity of the many

abstract machines, so its omission from the semantics

means that there is a reasonable hope for it to provide

a basis for studying a broad spread of implementations.

Finally it is worth commenting on the presence of

lets. It turns out that much of the work can be done

without them. Indeed, by replacing the application rule

with the one used in the proof of computational ade-

quacy even the lifting out of arguments can be omitted

as sharing is captured by the addition of the indirec-

tion. However, lets are irreplaceable in lazy functional

languages in that they nlay create cyclic structures in

the heap. This cannot he achieved without them (or

without something essentially equivalent), and cyclic

structures have an huge implication for the amount of

computation that may be performed.
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