
A Natural Semantics for I&y Evaluation
John Launchbury

Computing Science llepartment
Glasgow l.University

jl@ldcs.glasgow.ac,uk

Abstract
We d efine an operational semantics for lazy evaluation
which provides an accurate model for sharing. The only
computational structure we introduce is a set of bind-
ings which corresponds closely to a h eap The semantics
is set at a c onsiderably higher level of abstraction than
operational semantics for particular abstract machines,
so i s m ore suitable for a variety of proofs. Furthermore,
because a heap is e xplicitly modelled, the semantics pro-
vides a suitable framework for studies about space be-
haviour of t erms under lazy evaluation.

1 Introduction
In this paper we provide an operational semantics for

lazy evaluation of a n extxmded ~-calculus. Lumness im-
plies a n umber of things: first that the language is non-
strict, second that certa m reductions are shared, and
lastly that evaluation ceases once an outer lambda is
encountered, The semantics captures each of these as-
pects.

Why bother with an explicit semantics for laziness
at a ll? The reason is that it is o ften quite hard to k now
how a p articular term will behave under lazy e valuation.
Will a certain subcomputation be repeated or r ot? How
much heap will be required? Will a p articular closure
be accessed once o r m any times?

The following example shows the effect of sharing.
When evaluating the term,

let u = 3+ 2, w =u lz n v t-v

v i s demanded twice but, because the closure which v

Permission to copy without fee all or part of this material is
granted provided that the copies are not made c}r d istributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is g iven
that copy~ng is b y p ermission of the Association for Computing
Machinery. To copy otherwise, or t o republish, requires a fee
and/or specific permission.
ACM-20th PoPL-1 /9 3-S.C., USA~ 7 993 ACM o-89791 -561 -5/93/0001 /014 1...$ l .50

represents is o verwritten with its value (6) after the first

demand, the computation u + 1is only performed once
(as a consequence, u is o nly accessed once). ‘1’he le
construct may b e thought of a s n aming closures (or srrb-
computations) that are only evaluated when required.

For a m ore taxing example, consider the difference
in evaluation of the f ollowing two t erms.

letu =3 + 2, ,f= le v =u t- ~7 1A r. v +x)
2nf 2+ 3

In the first of t hese the c omputation u + 1is r epeatec~,
once for each use o f f (and so u i s ~ ccessecl twice). In
the second, the computation u + 1 i s p erformed once
only (and u i s accessed j ust once). Showing why this
happens is exactly what the s ernantcs is f or. In parti~ -
ular, this work was m otivated by a n eed to be l>recise
about when closures where built, how ofh1 computa-
tions were p erformed, how o ften closures were accessed,
and the o perational implications of lambda lifti]lg and
full laziness [PL91], Similarly, a s emantics for l azin ess is
vital precursor to b eing precise about the d ifference be-
tween laziness and optimal reduction stral egies [L6v80].

The semantics for laziness presented ill thi:s p aper

are simpler than any previously published. The key
reason is t hat we separate the s emantics into two p arts.
The first stage is a static conversion of the A-calculus
into a f orm where the creation and sharing of c lc,sures is
explzcit. This leads directly to a very simple semantics
at the l evel o f closures.

The rest o f the paper is o rganised as follows. After
discussing related work, we d efine the explicit-closure
version of the A -calculus we u se, and describe the static
normalizing transformation for con~ ertirtg arbitra ry >.-
expressions into that language. We ~herl provide a n at-
ural semantics (a big-step operational selnantics) fcr
terms in the l anguage, which both preserves and is c om-
putationally adequate with respect to an appropriate

144

denotational semantics. The paper concludes with ap-
placations and e xtensions.

2 Related Work
There have already been a n umber of attempts to p ro-
vide semantics for laziness. Perhaps the best known
is due to Abramsky and Ong [Abr90, Ong88] where

they explore the theoretical consequences of treating
A-terms in w eak head normal form as values. Abram-
sky and Ong argue that since implementations of lazy
languages cease r eduction once an outer lambda is en-
countered (i.e. values are t erms in weak head normal
form—whnf), the semantic implications of t his should
be studied. This leads to a l arge and powerful theory,
but one in w hich sharing is ignored completely. Thus
they omits precisely the aspect of laziness we wish to
study.

Abramsky and O ng’s semantics are defined at a h igh
level o f a bstraction. At the o ther end o f the scale i s the
operational semantics given to d efine the behaviour of
abstract machines. Examples of t his are the G -machine
[Jon84], the STG-machine [Pey92], the TIM [FW87]
and TIGRE [KL89]. At the level of these machines
we h ave to deal with code pointers, stacks, indirection
nodes, and the like. These operational semantics cap-
ture laziness completely, but contain so m uch extra de-
tail as t o m ake reasoning or proofs nigh on i mpossible.
Furthermore, being so specific makes i t hard to t ranslate
results about one abstract machine to another. One o f
the g oals o f t his work is to provide a c ommon semantic
base for a w ide range of abstract machines.

To be a ble to study sharing, therefore, we n eed a
semantics centa ining more detail than Abramsky and

Ong’s, but less t han provided by p articular abstract ma-
chines. The earliest intermediate level semantics seems
to have been Josephs’ [Jos89]. This denotational se-
mantics is continuation-based, and r nallipulates both an
environment and a s tore. Sharing is s uccessfully mod-
elled, including the sharing that occurs in i mplementing
fixed points. However, using both a s tore and a contin-
uation provides the s emantics with all the u sual mecha-
nisms required for m odelling imperative languages with
gotos! so a gain it makes the prospect of p erforming
proofs rather daunting. Furthermore, because the se-
mantics was d enotational, Josephs had to i ntroduce a
forcing function (corresponding to the print-demand)
for c ontrolling the extent of e valuation required at any
point.

An operational alternative was adopted by Pu-
rushothaman and Seaman [PS92]. The authors present
an operational semantics for Lazy PCF which they
prove equivalent to a standard denota tional semantics

(observations at h igher types are treated specially be-
cause o~ this), Their rules capture most sharing, but
as m any closures are b uilt within terms, the a pplication
rule is greatly complicated, and also the semantics is
unsuitable for studying space b ehaviour. However, the
main weakness is the inability of the s emantics to cap-
ture sharing in r ecursive computations. By t heir seman-
tics, a recursive term pt.e i s e quivalent to e[(fli .e)/t].

If e i s o f the f orm If e’ then Nil else Cons 1 t, for ex-
ample, then the computation of e’ will be repeated for
every element of the infinite list. Sharing has been lost,,

Much work has b een done on m aking substitution
explicit, the most relevant for our purposes being that
by Maranget [Mar91], where he develops a framework of
LabellecL Terms Rewriting Systems. Using these h e stud-
ies the weak A -calculi and s hows the l azy strategy to be
optimal. The resulting semantics for laziness is signifi-
cantly more complex than that presented here (having
been d eveloped with different goals in mind), and also
omits recursive /ets which are a v ital part of rnoder n
lazy f unctional languages.

The semantics for I d a lso deserve a mention at t his
point [ANP 89]. While not lazy, Id has a n on-strict se-
mantics with sharing defined by a small-step semantics
of a c ore of the Id language. Many rules may apply at
any one time, but as the s ystem is c onfluent the result is
deterministic. By defining a p articular reduction order
and extending their rules to discard unneeded redexes,
laziness can b e modelled. A further point of contact is
that, when providing a s emantics for the kernel of Id,
Ariola and Arvind use a similar technique to ours for
making closures explicit [AA91],

3 Modelling Laziness

The semantics we present is a n intermecliate-level oper-
ational semantics, lying midway between a s traightfor-
ward denotational semantics (or, equivalently, the op-
erational semantics of Abramsky and ong) and a full
operational semantics of an abstract machine. As s uch
it a ccurately captures the sharing within lazy evaluation
without requiring the e xtra machinery either of contin-
uations or of stacks, code p ointers, dumps, and the like.
The heap is the o nly computational structure required.

We capture laziness in two stages. The first is
a static transformation of the A-expression to a nor-
malised form in w hich sharing is easy t o express, and the
second is a dynamic semantics for normalised lambda
expressions, Separating these phases means that the
dynamic semantics is m uch simpler that would other-
wise be the c ase.

145

3.1 Normalizing Terms

We b egin with a l ambda calculus extended with (recur-
sive) lets and n ormalise it t o a r estricted syntax. These
normalised A-expressions have two distinguishing fea-
tures: all bound variables are d istinct; and all appli-
cations are a pplications of a n e xpression to a v ariable.
Thus,

x E Va
e E Exp ::= Axe

I e

letx =el j . , xn= en ne

Operationally Zets m ayb e viewed as the c onstruct that
builds closures in the heap, and the fact that iets are
recursive allows a closure to contain a r eference to itself.
This can give rise t o c yclic structures in the heap, ex-
actly a s a rises in m ost implementations. Witb out tets
it w ould be i mpossible to b uild cycles, so t hey are m ore
than merely syntactic sugar.

Having distinct names means that scope becomes
irrelevant. In particular, though lets p ermit recursion,
they may be u sed to model a n onrecursive binding as
no untoward name capture can o ccur.

The synta ttic restriction on a pplication means that
arguments to f unctions are o nly ever explicitly-named
closures. This is valuable in t hat it removes the i ssue of
generating new closure sites from within the dynamic
semantics.

The process of normalisation can be specified in two
stages. The first, which we write as 6, is simply a-
conversion: a renaming c)f all the bound variables in e
using completely fresh variables. The second, which we
write as e+ , ensures that function arguments are always
variables. It is defined as follows.

(Axe)” = Ax.(e”)
x*
(let XI = e: . . V r n = en in e)”

= let xl =(e ~), . . . x n= (e:) m (e*)
(e, e~)’ = (e;) ez if ez is a variable

= let y = (ej) in (ej) y otherwise
[y is a fresh variable]

Thus, apart from a-conversion, normalisation consists
purely of naming the argument terms in applications,
and expressing that naming using let.

This process of normalisation borrows heavily from
the STG language [Pey92], which has an even more re-
stricted form of application. The value of the STG lan-
guage is its direct operational reading (though far less

abstract than appearing here).

3.2 Dynamic Semantics

The rules are p resented in Figure 1. They obey the
following naming conventions:

T, A,@ E Heap = Var -& .Exp
z G Val ::= ~x.e

A h eap is a partial function from \ariables to expres-
sions. It may be v iewed as a n (unordered) set o f v ari-
able/expression pairs, binding distinct variable names
to expressions. A value is a e xpression in whnf, i.e.
whose o utermost structure is a lambda. As w e see l ater,
it c auses n o problems to add c onstants and c onstructors
and t o t reat these a s v alues also.

Judgments of the form T T: e JJ 4 : z are to be
read, ‘(the t erm e i n the context of the set o f bindings r
reduces to the v alue z together with the (modified) set
of bindings A.’) In the c ourse of e valuation, new b ind-
ings may b e a dded to the h eap, and old bindings which
bound variables to u nevaluated terms may be updated
to b ind those variables to t heir evaluated counterparts.

A p roof of a j udgement corresponds to a r eduction
sequence. A p roof may fail in one o f two ways: either
there may be n o f inzte proof that a r eduction is v alid,

which corresponds to a n infinite loop, or t here may be
no r ule which applies in (a sub-part of) the p roof. which
corresponds to a s o-called black hole. Denotationally,
each of these failures corresponds to a value 1.

3.2.1 Reduction Rules

Referring to Figure 1, the Lambda rule states that terms
whose outermost component is a lambda rewrite to
themselves without affecting the heap. Such ter,ms are
in whnf so are already values and have no need of fur-
th er evaluation.

The App/zcatzon rule reduces the term i,o the left c,f
the application (the function), substitutes the argument
in for the A-variable, and continues reduction. Simple
substitution is sufficient because we only substitute a
variable, so no duplication of work is incurred. This is
the point of the static e* transformation.

The payoffoft he renaming transformation ~ appears
in the Let rule. The bindings may be added to the heap
with no worries about name clash.

The most intriguing rule is the Variable rule. This
is where sharing is captured. To evaluate a variable r
in the context of some heap, the heap must contain a
binding of the form x M e. Assuming this is the case,
e is reduced in the context of the heap omitttng the
reference to x, If this reduction produces a value z, the
new heap is augmented with the binding .x x z, and a

146

renamed version of z i s returned as the result. This is
a natural place for renaming to o ccur, as i t is o nly here
that terms may be d uplicated. As w e w ill show later,
this one o ccurrence of renaming is s ufficient to a void all
unwanted name capture.

What if x is r ecursive, and e has a (possibly indirect)
reference back t o x ? I t may s eem that reducing e i n the
context of a h eap w hich contains no r eference to x c ould
cause a problem. There are two possibilities: either 6

reduces to whnf without requiring the value of x , in
which case w e r eintroduce a binding for x (binding it t o
its value now), or else e requires the value of z b efore
reducing to w hnf. This means that x depends directly
on itself before any value can be returned, so s hould
have d enotation 1. In t his latter case w e w ill attempt
to r educe x i n a h eap containing no r eference to x . As
there is n o r ule which covers t his situation the p roof for
the r eduction sequence fails. Note that the variable rule
is the only place where the p roof may actually faill.

4 Examples

To examine the behaviour of the A-expressions pre-
sented in the introductifm, we w ill need to make use
of the f ollowing additiorml rules. They are discussed in

Io nce we add ~on~tants t}le Application rule c Ould c ause fail.
ure on a t ype-incorrect term.

more detail in Section 6.1.

r:n JJ ’:n

I? ell,l. A : l A: 2 J. @ n 2

I’: e1 +e 2$C C3: 1+ t2

To stress the sequential nature of reduction we lay
proofs out vertically: if r : e J A z w e write

4[[:2aan southber -psruoobf–p roof

with sul~-derivations contained within the square brack-
ets. To see this notation in action consider reducing
letu ?+ 2,u =u +1i v u ill them ntext of an

147

which u i s b ound to 5 and v t o 6 .
The next two examples exhibit the difference be-

tween defining a closure inside a lambda, and outside.
First inside: (as a s horthand we w ill write j H . . . for
~i +-~ .let v u+ in v-t)

{}:l t u =3 +2, ~= Az.letv= u+ lin V +Z

Notice each time ~ is called, its body is c opied and
renamed. After application and substitution j‘s body
generates a new closure in the heap bound to the c om-
putation u + 1 so the value of u - t 1 is not shared

across separate applications of ~ (though the compu-
tation 3 + 2 i s shared). Contrast this with the case

where the let occurs ouside the l ambda of j :

{}:/ t =3 +2 j= etv u+ lin r. l-x
mf +f

{u*3 +2, fti etv =u lin Az u x}:
f2 f3

This time the closure for v is loaded into the heap o nce
only, and the binding for f is updated to its w hnf. Thus
the computation of u + 1 is performed just once, and
the result is s hared across all u ses off

4.1 Recursion

The simplest case o f recursion (usin~ let) is

letx xi x

An attempt to reduce this reaches a p oint where no r ule
applies, so n o progress may be m ade toward finding a
proof of r eduction.

{}:le tx =.zt x

{[X+fax{}i:}X:luxre
Many run-time systems would halt at this point and
report a b lack-hole (a d etectably self-dependent infinite
loop). In c ontrast, the loop defined by

let f= Ax.f x nf2

148
is not detected as a b lack hole. Its “evaluation” pro-
ceeds a s follows.

{}:l t ~=A x.~ $in .f2

{[f={{ff==Az.AAfz$x}..:fff2zz}}::fA z.jz
{[f={{ff==A2A.Afzzz}..:jff2zz}}::f Ax.fz

This time there i? a lways an a pplicable rule, so a n at-
tempt to reduce this term leads to an infinite proof.
More operationally, because there is n o s ingle closure
which ends u p pointing directly to itself, the l oop is n ot,
discovered. This sort of example provides intuition as
to the relative benefits of a lternative definitions of fix.
The most direct definition is:

let fix = Af.f (jix f) in fir

but better sharing is g iven by the a lternative

let fix = Af.(let x = f x in z) in fix

because a new c ycle i n the h eap i s created each t ime the
second definition is u sed. Using this second definition
of j%, the reduction of fix id ceases w ith a b lack hole,
but using the first definition of fix leads to a n infinite
loop.

The section on extensions includes more examples
of r ecursion.

5 Semantic Properties
5.1 Retaining Normalisation

Having gone t o the bother of n ormalizing terms before
beginning reduction, we s hould check that the proper-
ties o f t erms introduced by normalisation, are p reserved
throughout a r eduction proof. Preservation of the p rop
erty that functions are ouly ever applied to v ariables is
immediately obvious: because we o nly ever s ubstitute
variables for v ariables it is i mpossible to c reate a t erm in
which an e xpression is applied to a n on-variable. The
naming property is l ess obvious and requires a m ore
general definition.

Definition 1

A h eap/term pair r : e is distinctly named if every bind-
ing occurring in I’ and in e b inds a distinct variable
(which is a lso distinct from any free v ariables of T : e).
o

By “binding occurring in I’” we m ean either top level
bindings, or let or lambda bindings occurring within
bound expressions. Only the latter two can occur within
expressions.

Theorem 1
If r : e JJ A : z and T : e i s distinctly named, then ev-
ery heap/term pair occurring in the proof of the reduc-
tion is also d istinctly named.

Proof
The rules for Lambda and Let are trivial. Application
follows as s oon as w e recognise that if A : Ag. e’ is d is-
tinctly named, then so is A : e’[z/y]. The only rule that
could cause a problem is the Variable rule, but e ven here
if A : z is distinctly named then so i s (A, z I-) z) :,be-
cause b y definition of renaming with fresh variable, i
will only bind completely fresh variables. Note that ,4
cannot contain a binding for x else (T, z H e) : z would
not have b een d istinctly named. n

In the light of t his result we restrict the definition c,f
$ to a pply solely to distinctly named heap/term pairs.
For the r est oft he p aper a statement like I’ : e JJ A : z

carries the a ssumption that I’ : e is distinctly named.

5.2 Relating to Denotational Semantics

5.2.1 Semantics of Terms

Following Abramsky and Ong [Abr91)], the d enotational
semantics models functions by a l ifted function space,
so it distinguishes between a t erm O (a n on-terminating
computation) and Ax.f l. This distinction in the model
reflects the fact that reduction ceases a t whnf rather
than head n ormal form (hnf). We r epresent lifting using
the i njection Fn, and the p rojection using .~~n (written
as a postfix operator).

An e nvironment is a function mapping variables into
values,

p C 13nv = Var ~ Value

where $blue is s ome appropriate domain containing at
least a lifted version of its own fu oction space.The
initial “undefined” environment PO m aps all variables
to 1 .

Meanings are g iven to expressions using the seman-
tic function [–] : 13xp + Erav - + Value which is de-
fined as follows.

[Ax.ej, = Fn (Jv.[el~ul~~~l)
[ex np = ([e],) l-~n ([zIPJ
[X X]p = p(x)

[letx~ ej . . z =en ne P

= [e]g~l$~e, ~.*.r.IP

149
The recursion generated by a let is captured through a
recursively defined environment, given by the semantic
function % – % : H eap - + Env + Enu defined as follows.

{Z lxe . z n +en }p

= pp’.p U(zf+[e]p, . . . rn+ [en p)
where p s tands for the least fixed point operator. Be-
cause the bindings in the h eap are (mutually) recursive,
we obtain a recursively defined environment. Note that
the d efinition only makes s ense o n e nvironments p which
are c onsistent with T (i.e. ifp and T b ind the same v ari-
able, then they are bound to values for w hich an u pper
bound exists).

The function {– } : Heap ~llnv -+ Env should be
thought of as a n e nvironment modifier-it extends its
environment argument by the meanings of the bindings
given in its h eap argument. This flexibility is useful for

giving a s emantics to the h eap i tself in a h eap/term pair
to a llow for f ree v ariables. Note that the rules nowhere
require the terms to b e closed. Indeed, because of the
variable rule, some r eductions are b ound to b e o f open
terms: a variable is o nly rebound once the expression
to w hich it was b ound reduces to w hnf.

An equivalent definition of the semantics for heaps
is

go }p
{~ ,z~e }p = jp’.{~ }p’U U (~t +[e] ,,) Up

It is a n e asy c onsequence of this definition that, assum-
ing r and p are c onsistent,, V%.p(%) Q (f r}p) (x). This
is because the heap only adds new bindings, or refines
old ones. Using this fact, and by u nfolding the recur-
sion, we can s how that,

We will use t his fact in the proof of the variable case o f
the Correctness Theorem (Theorem 2).

We also d efine an o rdering< on environments, which
captures the concept of ‘(added bindings”. We d efine
p ~ p’ to mean

V$. p (x) # 1* p(z) = p’(x)

So i f p < p’ then p’ may b ind more variables than p, but

otherwise is equal to p.

5.2.2 Correctness

We are now in a position to s tate and prove the correct-
ness o f the o perational rules w ith respect to the denota-
tional semantics. The correctness theorem states that
reductions preserve the meanings of t erms and only al-
ter the meaning of h eaps by (possibly) adding new bind--
ings.

Theorem 2
If r : e U A : z then for all environments p,

Proof
The p roof is by induction on the s tructure of the deriva-
tion r : e JJ A : z. There are f our cases c lepending on

the form of e:
Case: Axe
This is immediate.
Case: e x
The first part is a direct calculation.

[e==XliI(I(TU[[AJIenLyld{p.dur}c]{,t)~i4o]n~,])n.J~n(U~liI(r[E~pli)IAIIP)

=== 1i(lA1e’4vl.~~[pd/v]u]~]t~pyp+i{,[+~v]f}f.)~p(l[~]{LI],)
= [z] ~, [Induction]

The second part follows from tr ansitiivity of <.
Case: c
The variable rule is only applicable if there is a b ind-
ing for the variable in the heap, so the redu ction
is of the form: (r,x~ e) :r$ (A, xs z) :.By

ianndductionthatwger}mpay<ass{umAe }p.thatW[e c]{a~re }P=requ[lzl ! {edA} tPo
p{rr,ovez *thate,}P[Z<]~r{,A~,+~yzP+-+ z=}p.[~]{We4s)hXa+ll.JdPot haem: lsecthoantd
first.

{1 ’,z~ e p
= /W’.{~ P ’ (~+ [~’] ’) L P= I/JLP[I’pn’d..uflrg clptri’o}np]’uu((<Xrl~+[2+11[{eA]1+{f)r)})#)uLJ~~
<< f~ipp’’..{{AA}]pp’’ UU ((zz*NIL[z]{]PA)]),,,)LI/7UP
= gA,xt z%p

Using this, we can now s how the first part,

[~lf=lr,~~~fr],,x~e]p(z)
= {A ,zxz }p (z) [defn of<]

= [[zi]?{j{A,mA+,z.}*pz]p [[cde-cfonnvoefrsi{ on-]};
Case: letx~ =e~ . . . x n= e., w e

For the first part,

[let===zl=[[eee]l[lP,.V..aP,rffllirral,bPz,lue+(seC,,,+.Ix~zlnlP,=,en,.i~n. ne+.]felr. Z }np}np, not~n+b[o..ul,)ndin1’]
= [z] { A }, [Induction]

150

as r equired. For the s econd part,

{T ~p ~ {l’, x~H ej,.., xnt en]p
[Variables q,.. . xn not bound in I’]

~ {A } p [Induction]

n

5.2.3 Computational Adequacy

Having proved that when reductions exist they preserve
the denota tional semantics, we m ust now characterise
when reduction exist.

Theorem 3
[e e]{r],O# #J- s (3 A,.z . ~:e J A:z)

The theorem states that a heap/term pair reduces ex-
actly when its d enot atioll is n on-bottom (in the initial
environment pO).

The one d irection is e asy t o s how as i t arises as a
corollary to Theorem 2.

Theorem 4
~:e JA 5[e]{ r]P #l

Proof
The term value z can ordy be o f the f orm Ax.e l. Then

[el{rlpo ;= [F1~-nz. ~(A’]v.{[Ae’}]{P4O}p,u{~ti~})
0

The other direction (that is, i f the d enotational seman-
tics is non-bottom then the natural semantics has a

valid reduction) is h arder to show and requires a n umber
of i ntermediate steps. As t hey stand, the denota tional
and natural semantics formulations are too far a part to
be related directly. To r emedy this we i ntroduce a new
version of e ach which can then be directly related to
each o ther.

We b egin with the denotational semantics, and de-
fine a r esourced denotational semantics. The semantic
function takes as a n e xtra argument an element of the
countable chain domain C’ defined as the l east solution
to the domain equation C = CL. We r epresent lifting
in C b y the i njection function S :C + C’. T hus the el-
ements of C are -L, S J-, S(S l-), and s o on, w ith limit
element S(S(S . . .)) w hich we w rite as w .

The type of the environment is given by
a : Vim + (C + W). That is, v ariables are b ound to
functions which, when provided with a r esource, yield a

This resourced semantics equals the original semantics

if g iven infinite resources. That is, i f V x.p x = I S x w
then

Put the o ther way around, the r esourced semantics al-
lows us to focus on a pproximations to the original de-
notational semantics. In particular, as the resourced
semantics is a c ontinuous function (“being defined using
continuous operations only), then if the original seman-
tics assigns a non-bottom value to s ome term, so d oes
some f inite approximation. This provides the proof c)f
the f ollowing lemma.

Lemma 5
If [e]P # -L, then there exists a natural number ~tz such
that Af[e a (Sin-L) # 1w here Vz . p N = a z w .

Returning to our overall goal, w e now h ave t o w ork from
the other direction. We d efine an a lternative riatural
semantics in which Application and Variable rules are
replaced with the following alternat;.ves:

The o nly effect o f the new a pplication rule i s to increase
the number of closures by adding indirection whenever
a l ambda is reduced, rather than by substituting the
new vahle for the bound variable. [t mimics the opera-
tion on the e nvironment in the denotational semantics
more closely than the original versicm d id.

The effect of the new variable rule is t o remc,ve up-
dating from the s emantics, and t o remove the p ossibility
of d etecting black holes (the only way a r eduction proc)f
may fail in the revised system is b y b eing infinite).

Apart from these changes the two versions of the
natural semantics are equivalent: they both respect
the d enotational semantics and, furthermore, the s ame
heap/term pairs r educe s uccessfully. This may be s hown
by induction on the r eduction proofs.

Finally, the last l ink needed is to relate the r esourced
semantics to the alternative versior of the natural se-
manti cs. This is d one b y the n ext lemma.

15 1

Lemma 6

then there exists a h eap A and a v alue z s uch that
(z~~ e~ . . . z ~ + en) : e J A : z in the alternative
version of the natural semantics.

Proof
By induction on m. K

At last w e are in a position where we can put the p ieces
together and p rove the se(:ond p art of the c omputational
adequacy theorem.

Theorem 7

Proof
If the original semantics is n on-bottom, then by L emma
5 t here exists an m s uch t hat

However, by L emma 6 t his implies a r eduction proof in
the alternative version of’ the natural semantics, which
in t urn implies a r eduction proof in the original version.
•1

6 Extensions
Now that we h ave defined the semantics and shown it
to be correct the obvious response is, “so what?” In
the example section we n ave already seen the value of

the s emantics for d emonstrating when closures are b uilt,
updated, and accessed, and when computations are re-
peated or shared. While this is a n i mportant use of the
semantics it i s not the o nly one.

One of our aims is t o provide a h igh level base to
which various gadgets may b e a dded and studied in the
context of l azy evaluation. In this section we look at a
number of p ossibilities. It does not constitute anything
like a detailed examination of these areas; rather its
purpose is t o d emonstrate potential.

6.1 Constructors and Constants

Adding extra constructs to the language causes no
real difficulty. For example, to extend the language
with constructors we w ould add the following synta t-
tic f orms:

c ~ Constructor
e G Exp ::= C I. . ~

] case e of {c, y~ . . y .n, -+ e,} ~=l

As before, we e xpect arbitrary terms to be s tatically
normalised in order not to clutter the reduction rules.
Constructors are l ike functions, so they are o nly to b e
applied to variables and, furthermore, they should be

saturated, that is, f ully applied (by introducing new A-
bound variables if n ecessary).

Adding numbers likewise requires the f bllowing.

Numbers may be v iewed as nullary constructors, so re-
ally Numbers ~ Constructor. We a ssume the o perators
@ (e.g. -+, *,, > , e tc.) are s trict in both arguments, and
will produce a nullary constructor such a s a number, or
a boolean as a result. If t his is the c ase, t hen & opera-
tions require no special treatment during normalisation.

Figure 2 s hows the rules for three new constructs.
Constructors (including numbers) immediately evaluate
to themselves. Primitive operations are e valuated by
evaluating the l eft operand, then the r ight, and then by
carrying out the a ppropriate operation on the resulting
values.

The Case rule looks complicated purely because of
the subscripts needed to express the flexibility of the
construct which allows any n umber of cases, e ach c on-
structor having its own n umber of a rguments. The rule
only succeeds i f the constructor returned by the evalu-

ation of e is c ontained in the case l ist. M so, t hen again
simple substitution of the arguments of the constru(-

tor for the f ormal variables is s ufficient: normalisation
ensures that these are v ariables so n o sharjng is l ost,

Constructors provide a v ery s imple example of s har-
ing i n r ecursively defined structures. Taking the e xam-
ple f rom the d iscussion of related work:

let u = False, t = if u then Nil else Cons 1 t an t

(where the if construct mayb e thought of a s s yntactic
sugar for a c ase o ver b ooleans). This reduces as follows.

{} : let u = False, t = zf u then Nil else Cons 1 t
in t

{u + False, t+ + tf u then Nil else Cons 1 t} : t

[{{u[u{{U++ a+++-) tF iF adslFFseeaaJ}llssee}};:iCf::oFuunaslsteh1ent NilelseCons1t
{u+)False, t + + Cons 1 t) : C onS 1 t

The closure for t has been updated to w hnf, and u w ill
never be accessed again.

152

6.2 Garbage Collection

It is perhaps slightly surprising that a llotion of garbage
collection could find its way into the semantics. In ret-
rospect, however, it is vital that it does so if we ever
wish to study the space behaviour of lazy programs at
a higher level of abstraction than provided by abstract
machines. When a term is said to evaluate in constant
space under lazy evaluation, it only does so if ciiscarded
cells are reclaimed. Thus we need a rule for garbage
collection which may be applied at any time, and which
will discard from the heap any unnecessary closures.

To do this we need to augment the $ relation
with a set of “active” Ilames, that is, variables still
possibly needed in the reduction but not necessarily
pointed to from the expression currently under reduc-
tion. The only rule wherf~ this shows u p n on-trivially is

the Application rule which becomes,

1’ : e J.J.Nu{~ A : Av.e’ A :e’[z/y] .ijN @ : z

I’: ez lJ ~@ :z
Then one possible rule for garbage collection is,

(r,x t+r:ee’$)N:eA:z$NA:z ifx@ z(r,e,N)

where R(l’, e, IV) i s the set o f v ariables reachable from
e o r N via I’. There are clearly many ways in w hich
this function may be defined, the obvious one corre-
sponding to the u sual method of marking variables, but
reference counting is another (possibly giving an o ver
approximation with cyclic structures).

Note that the garbage collection rule does not prc-
serve the semantics of heaps, so a proof showing the
equivalence of the system with and w thout, garbage col-

lection is s required.
Once we can specify garbage collection like dlis, we

have the opportunity to explore alternative methods
(perhaps generational or parallel methods) of c-olleci-
ing and/or marking. The greater level of abstla ction

means that the results are not tied to one particular
abstract machine.

6.3 Counting the Cost

In the same way that the reduction rules were aug-
mented to compute extra information for garba,xe col-
lection, a similar mechanism could be developed fcr
recording the cost of computation. For example, the
Application rule might become,

r:e JJ. A:A y .e’ A : e’[x/y] J,l @ : z
——. -

I’: ex & +~l@ z

Now the s ubscripts indicate how r mmy reduction steps
were performed. This may prove to b e a u seful route
for f ormalizing the n otion of cost centres [SP92], and i s
the t opic of current work.

6.4 Abstractions and Analyses

One motivation for this work was a d esire to a l oid un-
necessary updates [Lau92]. Previously we had no good
semantics against which to prove our analysis cmrect.
Now t hat we h ave s uch a s emantics we can not o nly h ope
to b e a ble t o v erify our existing analysis, but can a lso

153

expect that abstracting the s emantics will lead t o o ther [FW87]
(perhaps weaker and cheaper) forms of the analysis.

7 Conclusion [Jon84]

In this paper we h ave presented a natural semantics
which models lazy evaluation as i t is commonly imple-
mented. The model works on the level of t erms, using
a h eap to capture shariug. The result is r emarkably [Jos89]
simple, especially when compared with other attempts.

tionTfhoersanem aabnstitrcasctdomeasnch’tinedirebcetclyauseprotvheidreeisan s open coiftiicoan- [KL89]
of explicit control. It seems as t hough this aspect is
the essential cause of the wide diversity of the many
abstract machines, so its omission from the semantics [Lau92]
means that there is a r easonable hope for it t o provide
a b asis for studying a b road spread of implementations.

Finally it is w orth commenting on the presence of
lets. It turns out that much of the work can b e d one

wwiitthhoutthethoenme.uIsneddeedin,tbhey repprolaocfingofc tohmepa uptaptliiocnaatiolnarudlee- [L&80]

quacy even the lifting out of a rguments can b e omitted
as sharing is captured by the addition of the indirec-
tion. However, lets are i rreplaceable in l azy functional
languages in t hat they nlay create cyclic structures in
the heap. This cannot he achieved without them (or [Mar91]
without something essentially equivalent), and cyclic
structures have an huge implication for the amount of
computation that may be performed.

[Ong88]

8 Acknowledgements

lHikaevint og thinasnigkhtfuClordecloialleagHuaells,Jisoha n grHeuagthebso,on,AnadnydMI w ooraunld, [Pey92]
Simon Peyton Jones and Philip Wadler for excelling in
that capacity.

References [PL91]

[Abr90] S.Abramsky, The Lazy Lambda Calculus,

iAnddDiso. Tnu-Wrneesrley,ed.,19D9e0c.larative Programming, [PS92]

[AA91] Z. Ariola and Arvind, A Syntack Approach to
Program Transformationsj in Proc. SIGPLAN
PEPM 91, New Haven, pp 116-129, 1991. [SP92]

[ANP89] Arvind, R. Nikhil and K. Pingali, I-Structures;
Data Structures for Parallel Computing, in
TOPLAS (11) 4 pp 598-632, oct 1989.

15 4

J. Fairbairn and S.Wray, A Stmple Lazy
Abstract-Machine to Execute Supercombma-
tors , in P roc. FPCA, Portland, pp 3 4-45, S-
V, 1987.

T.Johnsson, EfjicZent C’omptlation of Lazy
Evaluation, in Proc. SIGPLAN Symp. on
Compiler Construction, SIGPLAN Notices 19
pp 5 8-59, 1984.

M. Josephs, The Semantics of Lazy Functional
Languages, in TCS 68 , p p 1 05-11 1, 1989.

P.Koopman and P .Lee, A Fresh Look at Com-
binator Graph Reduction, m SIGPLAN PLDI
89, P ortland, pp 110-119, 1989.

J. Launchbury, A. Gill, J. Hughes, S.Marlow,
S.Peyton Jones and P.Wadler, Avoiding Un-

necessary Updatesl Glasgow Functional Pro-
gramming Workshop, Ayr, (draft proceed-
ings), 1992.

J.-J.L&y, Optzmal Reductions in the Lambda
Calculus, in Seldin and Hindley eds., 1%
H.B. Curry: Essays in Combinatory Logic,
Lambda Calculus and Forrnaltsm, pp 159-1 91.,
Academic Press, 1980.

L. Maranget, Optimal Derivations nt Weak
Lambda-calculi and in Orthogonal Term
Rewriting Systems, in Proc SIGI ’LAh POPL
91, Orlando, pp 255-269, 1991.

C.-H.L .Ong, The Lazy Lambda Calculus: An
Investigation in the Foundations of Func-
tional Programming, Phi) Thesis, Imperial
College, London, 1988.

S.Peyton Jones, Implementing Lazy Func-
tional Languages on Stock Hardware: the
Spineless Tagless G-Machine, Journal of
Functional Programming, CUP, 1992, to ap-
pear.

S.Peyton Jones and D. I,ester, A Fully-Lazy
Lambda-Lifier in Haskell, Software 1’ractice
and Experience, 21 (5), , pp 479-506, 1991.

S.purushothaman and J. Seaman, An Ade-
quate Operational Semantics of Sharing m
Lazy Evaluation, in Proc ESOP 92, Rennes,
S-V, 1992.

P.Sansom and S.Peyton Jones, Projiling Lazy
Functional Languages, Glasgow Functional
Programming Workshop, Ayr, (draft proceed-
ings),1992.

