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Abstract

The operational semantics of a partial, functional language is often
given as a relation rather than as a function. The latter approach
is arguably more natural: if the language is functional, why not
take advantage of this when defining the semantics? One can im-
mediately see that a functional semantics is deterministic and, in a
constructive setting, computable.

This paper shows how one can use the coinductive partiality
monad to define big-step or small-step operational semantics for
lambda-calculi and virtual machines as total, computable functions
(total definitional interpreters). To demonstrate that the resulting se-
mantics are useful type soundness and compiler correctness results
are also proved. The results have b een implemented and checked
using Agda, a dependently typed p rogramming language and proof
assistant.

Categories and Subject D escriptors F.3.2 [Logics and M ean-
ings of Programs]: Semantics of Programming Languages—Oper-
ational semantics; D.1.1 [Programming Techniques]: Applicative
(Functional) Programming; E .1 [Data Structures]; F .3. 1 [Logics
andM eanings of Programs]: Specifying and Verifying and Reason-
ing about Programs—Mechanical verification

Keywords Dependent types; mixed induction and coinduction;
partiality monad



1. Introduction

Consider the untyped λ-calculus with a countably infinite set of
constants c:

t ::= c |x | λx.t | t1 t2

Closed terms written in this language can compute to a value (a
constant c or a closure λx.tρ), but they can also go wrong (crash)
or fail to terminate.

How would you write down an operational semantics for this
language? A common choice is to define the semantics as an induc-
tively defined relation, either using small steps or big steps. For an
example of the latter, see Figure 1: ρ ‘ t ⇓ v means that the term
te xcaamn tpelremo ifn athtee wlatitther ,ths ee evaF luigeu rve ew1 h:eρ n e ‘va tlu⇓ at evdm mine atnhes ethnavtit rhoenmt eermnt
ρ. However, as noted b y Leroy and Grall (2009), this definition
provides no way to distinguish terms which go wrong from terms
which fail to terminate. If we want to do this, then we can define
two more r elations, see F igure 2: ρ ‘ t ⇑, defined coinductively,

?c ACM, 2012. This is the author’s version of the work. It is posted here by per-
?mcis sAioCnM o,f2 A01C2M.T fhoirs your epe arutsohonarl’s uv see.r Nionot ffot rh erewd isotrrki.buI ttioi ns. T ohstee dde hfiernieti vbey vpeerr--

sion was published in the Proceedings of the 17th ACM SIGPLAN international
conference on Functional p rogramming (2012), http ://doi .acm .org/10 .1145/
2364527 .2364546.

ρ ‘c ⇓ c ρρ(‘ x)x =  ⇓ vv ρ ‘λ x.t ⇓λ x.tρ



ρ ‘ t1 ⇓ λx.t0ρ0 ρ ‘ t2 ⇓ v0 ρ0, x = v0 ‘ t0 ⇓ v
ρ ‘ t⇓ λx.tρ‘  t⇓v ,x= v ‘t ⇓v

ρ ‘ t1 t2 ⇓ v

Figure 1. A call-by-value operational semantics for the untyped λ-
calculus with constants, specifying which terms can terminate with
what values (very close to a semantics given b y Leroy and Grall
(2009)).

ρ ‘ t1 ⇑ ρ ‘ t1 ⇓ v ρ ‘ t2 ⇑
ρ‘ t ⇑ ρ ‘t ⇓ vρ‘ t ⇑

ρ ‘ t1 t2 ⇑ ρ ‘ t1 t2 ⇑
ρ ‘ t1 ⇓ λx.t0ρ0 ρ ‘ t2 ⇓ v0 ρ0, x = v0 ‘ t0 ⇑
ρ‘  t⇓ λx.tρ‘  t⇓v ,x= v ‘t ⇑

ρ ‘ t1 t2 ⇑

ρ ‘ t =def ¬(∃v. ρ ‘ t ⇓ v) ∧ ¬(ρ ‘ t ⇑)
ρ‘ t

Figure ρ2. ‘Tt w  o more operational semantics for the untyped λ-
calculus with constants, specifying which terms can fail to termi-
nate or go wrong. The definition written using double lines is coin-
ductive, and i s taken almost verbatim from Leroy and Grall (2009).

means that the term t can fail to terminate when evaluated in the
environment ρ ; and ρ ‘ t means that t goes wrong.

iNroownm ween thρ av;ae nad cρ om ‘plt et  e mdeefainnsitt iohna.t tH og woeesvw err, othngis. definition is
esonmvierwonhmaet pnrtoρ b;la emndaρt ic‘:



1. There are four separate rules which r efer to application. For a
small language this may be acceptable, but for large languages
it seems to be easy to forget some rule, and “rule duplication”
can be error-prone.

2. It is not immediately obvious whether the semantics is deter-
ministic and/or computable: these p roperties need to be proved.

3. If we want to define an interpreter which is correct b y construc-
tion, then the setup with three relations is awkward. Consider
the following type-signature, where ]is the sum type con-
structor:

eval : ∀ ρ t → (∃v. ρ ‘ t ⇓ v) ] ρ ‘ t ⇑ ] ρ ‘ t

Thise vsaiglna: t∀ ureρ st t →ates( ∃thva.t,ρ ρfo‘ r a tn y⇓ ev n)vi] ronρ me‘ ntt ρ⇑ an ]d tρ er m‘ t t, the
inteerpvarelte: r e∀iρt het r→ → retu (∃rnvs. aρ v‘ al ute⇓ ⇓vv a)n]d ]a ρ pr‘ ooft ⇑t ha t] ]t cρan ‘ ‘tet r m i-
nate with this value when evaluated in the given environment;
or a proof that t can fail to terminate; or a proof that t goes
wrong. It should be clear that it is impossible to implement eval



in a total, constructive language, as this amounts to solving the
halting problem.

The situation may have been a bit less problematic if we had
defined a small-step semantics instead, but small-step semantics are
not necessarily better: L eroy and Grall (2009) claim that “big-step
semantics is more convenient than small-step semantics for some
applications”, including proving that a compiler is correct.
Isuggest another approach: define the semantics as af unction in

a total meta-language, using the p artiality monad (Capretta 2005)
to represent non-termination, where the p artiality monad is defined
coinductively as A ⊥ = νX. A ] X . If this approach is followed
then we avoid all th⊥e p=rob νleXm.sA a b]ov Xe:.

1. We have one clause for applications, and the meta-language is
total, so we cannot forget a clause.

2. The semantics is a total function, and hence deterministic and
computable.

3. The semantics is an interpreter, and its type signature does not
imply that we solve the halting problem:

JK : Term → Environment → (Maybe Value)⊥

An addJitiKo na: l aedrmvan→ tagE en ovifr ousnmingen at d→efi (nMitaioybnael Vianlteurep)reter is that
this can make it easy to test the semantics (if the interpreter is not
too inefficient). Such tests can b e useful in the design of non-trivial
languages (Aydemir et al. 2005).

The main technical contribution of this paper is that Ishow
that one can prove typical meta-theoretical properties directly for
a semantics defined u sing the partiality monad:

• A big-step, functional semantics is defined and proved to be
classically equivalent to the relational semantics above (Sec-



tions 3 and 5; for simplicity well-scoped de Bruijn indices are
used instead of names).

• Type soundness is proved for a simple type system with recur-
sive types (Section 4).

• The meaning of a virtual machine is defined as a small-step,
functional semantics (Section 6).

• A compiler correctness r esult is p roved (Section 7).

• The language and the type soundness and compiler correct-
ness results are extended to a non-deterministic setting in or-
der to illustrate that the approach can h andle languages where
some details—like evaluation order—are left up t o the compiler
writer (Section 8).

• Finally Section 9 contains a brief discussion of term equiva-
lences (applicative b isimilarity and contextual equivalence).

As far as Iknow these are the first proofs of type soundness or
compiler correctness for operational semantics defined using the
partiality monad. The big-step semantics avoids the rule duplica-
tion mentioned above, and this is reflected in the proofs: there is
only one case for application, as opposed to four cases in some c or-
responding proofs for r elational semantics due to Leroy and Grall
(2009). Related work is discussed further i n Section 1.3.

1.1 Operational?

At this p oint some readers may complain that JK does not define
Aant othpiserp aotioinntas lo smemear enatdicesr,s b  muta yrac tohmerp laa idne nthoattatJ ionK ad l oense n. Pted rehfiapnse
aA b tte httiesr p toerinmt swomoueldr baed e“rhsym braidy coopmerpatlaiionnat hl/adteJ notK atd ioonesaln ”,o t bd ute tinhee
semantics is not denotational:

• It is not defined in a compositional way: J t K is not defined



Ibty i r senc uotrsd ioenfi noend t ihne astc ruocmtuproes iotifo tn, ablu wt raayt:he Jr ta Kcoi sm nbointad tieofinn eodf
cIto irsecn uorstiod nef iannedd si tnruca tc uroaml preocsuirtisoionnal l(w seaey S:eJ ctt ioK n i3s) .n

• Furthermore the “semantic domain” is r ather syntactic: it in-
cludes closures, and is not defined as the solution to a domain
equation.

Ido not see this kind of semantics as an alternative to denotational
semantics, but rather as an alternative to usual operational ones.
(See also the discussion of term equivalences in Section 9.)

1.2 Mechanisation

The development p resented below has b een formalised in the de-
pendently typed, functional language Agda (Norell 2007; Agda
Team 2012), and the code has been made available to download.

In order to give a clear picture of how the results can be mech-
anised Agda-like code is also used in the p aper. Unfortunately
Agda’s support for total corecursion is somewhat limited,1 so to
avoid distracting details the code is written in an imaginary vari-
ant of Agda with a very clever productivity checker (and some
other smaller changes). The accompanying code is written in actual
Agda, sometimes using workarounds (Danielsson 2010) to con-
vince Agda that the code is productive. There are also other, minor
differences between the accompanying code and the code in the
paper.

1.3 Related Work

Reynolds (1972) discusses definitional interpreters, and t here is
a large b ody of work on using monads to structure semantics
and interpreters, going b ack at least to M oggi (1991) and Wadler
(1992).

The toy language above is taken from Leroy and Grall (2009),
who b ring up some of the disadvantages of (inductive) big-step



semantics mentioned above. The type system in Section 4 is also
taken from Leroy and Grall, who discuss various formulations of
type soundness (but not the main formulations given below). Fi-
nally the virtual machine and compiler defined in Sections 6–7 are
also t aken from Leroy and Grall, who give a compiler correctness
proof.

Leroy and Grall also define a semantics based on approxima-
tions: F irst the semantics is defined (functionally) at “recursion
depth” n; if n = 0, then the result ⊥ is r eturned. T his function
dise sptihm”ilan r; t iof t nhe =fun0 c,tit honenal stheemr aenstuilcts ⊥Ji K sdr eefitnuernde din. T Sehcitsiof nu n3c, biount
dise fsiinmedil aurs itnogt hr eec fuunrsciotino noanl sn imnsatneatidc soJf cK or deecfuirnseidoni n naS nde cthtieo npa 3r,tbi aul-t
iitsy s mimoinlaard. t oTt hhee s feumncatnitoincas los fe am taenrtmic st Jis Kthd eenf indeedfini endS (ercetlaiotnio n3a,lb lyu)t
to be s if there is a recursion depth n0 such that the semantics at
recursion depth n is s for all n > n0. Leroy and Grall p rove t hat
this semantics is equivalent to a relational, big-step semantics. This
proof is close to the p roof in Section 5 which shows that JK is
peqrouoivfai lesnc tl otos ea rtoel tahteio nparol, ob fig i-nsS tepec tseiomnan5 t iwcsh.i

oFufr itshe crl ocsoem topa rtihseopn rs otoof fthi en Sweocrkti oonf 5 Le wrohyi cahnd s hGorwasll tihs aintc JludK e isd
below.

The type soundness p roof in Section 4 is close to proofs given
by Tofte (1990) and Milner and T ofte (1991). They use ordinary,
inductive big-step definitions to give semantics of languages with
cyclic closures, define t yping relations for values coinductively (as
greatest fixpoints of monotone operators F), and use coinduction
(x ∈ ν F if x ∈ X for some X ⊆ F(X)) to p rove that certain
(vxalu ∈es ν hFav eif cx er t∈ainX tyf operss . Imn ethX is paper tXh)e) vt oalpu re vtyep itnhga t rec learttaioinn
is defined inductively rather than coinductively. However, another
typing r elation, that for possibly non-terminating computations, is
defined coinductively, and the proof still uses coinduction (which
takes the form of corecursion, see Section 2).

Capretta (2005) discusses the p artiality monad, and gives a se-
mantics for partial recursive functions (primitive recursive func-



tions p lus minimisation) as a function of type ∀ n. (Nn * N) →

t(iNo⊥nsn →lu sN m⊥in)i.

1Thes amea ppliest oC oq( CoqD evelopmentT eam2 011).



Nakata and Uustalu (2009) define coinductive big-step and
small-step semantics, in b oth r elational and functional style, for
a while language. Their definitions do not use the p artiality monad,
but are trace-based, and have the property that the trace can be com-
puted (productively) for any source term, converging or diverging.
My opinion is that the relational big-step definition is r ather tech-
nical and brittle; the authors discuss several modifications to the
design which lead to absurd results, like while true do skip having
an arbitrary trace. The f unctional big-step semantics avoids these
issues, because the semantics is required to be a p roductive func-
tion from a term and an initial state to a trace. N akata and Uustalu
have extended their work to a while language with interactive in-
put/output (2010), but in this work they use relational definitions.

Paulin-Mohring (2009) defines partial streams using (essen-
tially) the p artiality monad, shows that partial streams form a
pointed CPO, and uses this CPO to define a functional semantics
for (a minor variation of) Kahn networks.

Benton et al. (2009) use the p artiality monad to construct a lift-
ing operator for CPOs, and use this operator to give denotational
semantics for one typed and one untyped λ-calculus; the former
semantics is crash-free by construction, the latter uses ⊥ to r epre-
sseemnta cnrtiaschsei ss. Braesnhto-fnre eanb dy H courn s(t2r0u0ct9i)o nd,e tfhiene l aat ecrom uspeilse⊥ r f rtoomr e pornee-
of these languages to a variant of the SECD machine (with a r ela-
tional, small-step semantics), and p rove compiler correctness.

Ghani and Uustalu (2004) introduce the p artiality monad trans-
former, λM A . νX. M (A ] X). (In the setting of Agda M should
bfoer rmesertr,icλ tMed Ato. νbeX .sM trict( lAy p ]osiX t)iv.e (.I)n

Goncharov and Schr o¨der (2011) use the p artiality monad trans-
former (they use the term resumption monad transformer) to give a
class of functional semantics for a concurrent language.



Rutten (1999) defines an operational semantics for a while lan-
guage corecursively as a function, using a “non-constructive” vari-
ant of the partiality monad, A ⊥ = (A ×N) ] {∞} (where ∞

represents non-termination and⊥ the= =na (Atur× al Nn)um ]ber{ ∞ ∞sta}n (dwsh feorre t h∞e
number of computation steps needed t o compute the value of type
A). With this variant ofthe monad the semantics is not a computable
function, because the semantics returns ∞ iff a program fails to ter-
mfunincatiteo.n ,R buettceanu saels tho edis secmuasnsetsic sw reeatukr nb sis ∞imi ilfafria typ aongrda mexp flaailisnst o oht eorw-
to construct a compositional semantics from the operational one.

Cousot and Cousot (1992, 2009) describe bi-inductive defi-
nitions, which generalise inductive and coinductive definitions,
and give a number of examples of their use. One of their ex-
amples is a big-step semantics for a call-by-value λ-calculus.
This semantics captures both terminating and non-terminating be-
haviours in a single definition, with less “duplication” of r ules
than in Figures 1–2, but more than in Section 3. An operator F on
℘(Term ×(Term ∪ {⊥})), where Term stands for the set of terms
a℘n(dT e⊥rm mst×a n( dsT efromr n ∪o {n⊥-t}er)m),iw nahteioren,T eisr mfirss tt adnedfisnef odr rbt yh eths ee tfoo lflot ewrminsg
iannfder⊥ ens ceta nrduslesf o(rw nhoenre-t evr ranges oonv,ei rs vf airlsute sde):f

v⇒ v t1t1t2⇒⇒⊥ ⊥ t1⇒t1v t2⇒t2 ⊥⇒⊥

t1 ⇒ λx.t t2 ⇒ v t[x := v] ⇒ r
⇒λ x.t⇒v t[x: =v ]⇒ r

t1 t2 ⇒ r

These rules should neither be read inductively nor coinductively.
The semantics is instead obtained as the least fixpoint of F with
respect to the order v defined by

X v Y = X+ ⊆ Y+ ∧ X− ⊇ Y−,



where Z + = { (t, s) ∈ Z | s = ⊥ } and Z − = Z \ Z + . F is not
monotone w=ith{ r(ets,pse)ct∈ ∈toZ |  v s=6 =(w⊥ hi} cah nfodr Zms a =coZm p\ let Ze lattice), so
Cmoonusootto anned w Cithour seostp egicvtet oan vexp l(iwcihti cp rho foofr mofs sta hec oexmisptleentecel a aottfi cae l)e,a ssot
fixpoint (for a closely related semantics).

2. The Partiality Monad

Agda is a total language (assuming that the implementation is b ug-
free, etc.). Ordinary data types are inductive. For instance, we can
define the type Fin n of natural numbers less than n, and the type
Vec A n of A-lists of length n, as follows:

data Fin : N → Set where
ztear oFi n: {:nN N: →N} → Fin (1+ n)
szuerco :: {{nn :: NN}} → Fin n →→ FFiinn ((11 ++ nn))

data Vec (A : Set) : N → Set where
[t ]a :c Vec A 0
::: {n : N} → A → Vec A n → Vec A (1+ n)

(Cons is an infix operator, :: ; the u nderscores mark the argument
positions.) Inductive types can b e destructed using structural recur-
sion. As an example we can define a safe lookup/indexing function:

lookup : {A : Set} {n : N} → Fin n → Vec A n → A
llooookkuupp z :e r{Ao ( Sxe t::} x  {sn) :=N }x

lookup (suc i) ((xx :::: xx  ss)) == lxookup ix s

The arguments within braces, {. . .}, are implicit, and can b e omitted
Tifh Aea grdgau cmanen itns wferit htihnemb r. Tceos ,av {.o.i.}d, aclruetit emrp mlicoits,t aimndpc liacnitb aergo ummitetendt
declarations are omitted, together with a few explicit instantiations
of implicit arguments.

Agda also supports “infinite” data through the use of coinduc-



tion (Coquand 1994). Coinductive types can b e introduced using
suspensions: ∞ A is the type of suspensions, that if forced give u s

saotemde uthsiinngg] of:t ypeA .S uspensionsc anb ef orcedu sing[,a ndc re-
[ : ∞ A → A

] : A → ∞ A

(Here ]is a tightly binding prefix operator. In this p aper nothing
binds tighter except for ordinary function application.)

The partiality monad is defined coinductively as follows:

data ⊥ (A : Set) : Set where
now : A → A ⊥
later : ∞ (A⊥) →→ A  A⊥⊥

You can read this as the greatest fixpoint νX.A ] X.2 The con-
Ystrouuctc oarn nr oewad r ethtuisrna ss a th evag luree itmesmtf eidxipaoteinlyt, νaXnd. Ala] terX p.ostpones a
computation. Computations can b e p ostponed forever:

never : A ⊥

never = l⊥ater (] never)

Here never is defined using corecursion, in a p roductive way: even
though never can unfold forever, the next constructor can always be
computed in a finite number of steps. Note that structural recursion
is not supported for coinductive types, as this would allow the
definition of non-productive functions.

The partiality monad is a monad, with now as its return opera-
tion, and bind defined corecursively as follows:

>> = : A ⊥ → (A → B⊥) → B ⊥
n>o> w= x > >= ⊥ f→ →=( Af →x

later x >> = f = later (] ([ x >> = f))



If x fails to terminate, then x >> = f also fails to terminate, and if x
tIfer xmf ianialtset os w teitrmh ian avtaleu,et h, ethnex nf >  > i=s afp p alliseod ftaoi ltsh atot t vearlumein.

It is easy to p rove the monad laws u p to (strong) bisimilarity,
which is a coinductively defined r elation:

2Thisi sn ote ntirelyc orrecti nt hec urrent version of Agda (Altenkirch
and Danielsson 2010), but for the purposes of this paper the differences
are irrelevant.

data =∼ : A ⊥ → A ⊥ → Set where
now : ntow wh e xr =∼ now x

later : ∞ ([ x =∼ [ y) → later x =∼ later y

(Note that the constructors have been overloaded.) This equivalence
relation relates diverging computations, and it also relates compu-
tations which converge to the same value using the same number of
steps.

Note that =∼ is a type of potentially infinite p roof terms.
Proving x =∼ y =amounts to constructing a t erm with this type. T his
proof technique is quite different from the usual coinductive proof
technique (where x ∈ ν F for a monotone F if x ∈ X for some
Xtec h⊆n iFqu(Xe() w), sheor leext xm∈ e s νhFowf oinr adem taoiln hootown eoFn e icfa nx prove ftohrats boimned
iXs a⊆ sso Fc(iXat)iv)e,:s

associative :
(x : A⊥) (f : A → B⊥) (g : B → C⊥) →
(x > >= ⊥ ⊥ f) (> f>=  : Ag ) →=∼ (⊥x >>(   g= :λB y →→ C f⊥ y > →> = g )

We can do this u sing corecursion and case analysis on x :

associative (now x ) f g = ?
aassssoocciiaattiivvee ((lnaotewr x  x)) f f g == ??

We can ask Agda what types the two goals (?) have. The first



one has type f x >> = g =∼ f x >> = g , and can be completed b y
aopnepeh ala stot yrpeeflef xx ivi> ty> = =(re gfl-=∼ f: x(x> := = Ag ⊥,) →nd x c ∼=n bxe c caonm bpel epterodveb yd
separately):

associative (now x ) f g = refl-=∼ (f x >> = g )

The second goal has type later s1 =∼ later s2 for some suspensions
s1 and s2, so we can r efine the goal using a later constructor and a
suspension:

associative (later x ) f g = later (] ?)

The new goal has type

([ x >> = f >> = g ) =∼ ([ x >> = λ y → f y >> = g),

so we can conclude b y appeal to the coinductive hypothesis:

associative (later x ) f g = later (] associative ([ x) f g )

Note that the p roof is p roductive. Agda can see this, because the
corecursive call is guarded b y a constructor and a suspension.

Strong bisimilarity is very strict. In many cases weak bisimilar-

iatpyp,rw ophircihatei g:3noresf inited ifferencesi nt hen umbero fs teps,i sm ore
data ≈ : A ⊥ → A ⊥ → Set where

now : ntw owh r xe ≈ now x

later : ∞ ([ x ≈ [ y) → later x ≈ later y

laterl : [ x ≈ y → later x ≈ y

laterr : x ≈ [ y → x ≈ later y

This relation is defined u sing mixed induction and coinduction (in-
duction nested inside coinduction, νX.µ Y. F X Y). Note that later
is coinductive, while laterl and laterr are inductive. An infinite



sequence of later constructors is allowed, for instance to p rove
never ≈ never:

allowed : n ever ≈ never

allowed = later (] allowed)

However, only a finite number of consecutive laterl and laterr
constructors is allowed, because otherwise we could prove never ≈

now x :

3Capretta(2005)definesweakbisimilarityinadifferentbutequivalentway.

disallowed : never ≈ now x
disallowed = laterl disallowed

On the other hand, because the induction is nested inside the coin-
duction it is fine to use an infinite number of laterl or laterr con-
structors if they are non-consecutive, with intervening later con-
structors:

also-allowed : never ≈ never

also-allowed = laterr (later (] also-allowed))

If we omit the laterr constructor from the definition of weak
bisimilarity, then we get a preorder &with the property that
x & y h olds if y terminates in fewer steps than x (with the same
value), but not if x terminates in strictly fewer steps than y , or if
one of the two computations terminates and the other does not:

data &: A ⊥ → A ⊥ → Set where
now : tnow wh e xr & now x

later : ∞ ([ x & [ y) → later x & later y



laterl : [ x & y → later x & y

It is easy to p rove that x =∼ y implies x & y, which in turn implies
x ≈ y.

≈The three relations above are transitive, but one needs to be
careful when using transitivity in corecursive proofs, because other-
wise one can “prove” absurd things. For instance, given refl-≈ :
(x : A⊥) → x ≈ x and trans-≈ : x ≈ y → y ≈ z → x ≈≈ z
we can⊥ ⊥“)p →rovex ” t≈hat weak b isimilarity is≈ triyvi→ al:

trivial : (x y : A⊥) → x ≈ y
trivial x y =

tviraalnxs -≈ y (=laterr (refl-≈ x))

(trans-≈ (later (] trivial x y))

(laterl (refl-≈ y)))

This “proof” uses the following equational reasoning steps: x ≈

later (] x) ≈ later (] y) ≈ y. The problem is that trivial
is not p roductive: trans-≈ is “≈too strict”. This issue is closely
related to the problem of w≈eak bisimulation up to weak b isimilarity
(Sangiorgi and Milner 1992).

Fortunately some uses of transitivity are safe. For instance, if
we are proving a weak b isimilarity, then it is safe to make use of
already p roved greater-than results, in the following way (where
y .z is a synonym for z & y):

x & y → y ≈ z → x ≈ z

x ≈ y →→ y .z →→ x ≈ z

(Compare Sangiorgi and Milner’s “expansion up to .”.) Agda does
not provide a simple way to show that these lemmas are safe, but
this could be d one using sized types as implemented in MiniAgda
(Abel 2010).4 With sized types one can define x ≈i y to stand for



potentially incomplete p roofs of x ≈ y of size (at least) i, and
prove the following lemma:

∀ i. x & y → y ≈i z → x ≈i z

This lemma is not “too strict”: the type tells us that the (bound on
the) size of the incomplete definition is p reserved. Unfortunately
MiniAgda, which is a research p rototype, is very awkward to use
in larger developments.

For more details about coinduction and corecursion in Agda,
and further discussion of transitivity in a coinductive setting, see
Danielsson and Altenkirch (2010).

4Thee xperimentali mplementationo fs izedt ypesi nA gdad oesn ots upport
coinduction.



3. A Functional, Operational Semantics

This section defines an operational semantics for the untyped λ-
calculus with constants. Let us start b y defining the syntax of the
language. J ust as Leroy and Grall (2009) Iuse de Bruijn indices to
represent variables, but Iuse a “well-scoped” approach, using the
type system to keep track of the free variables. Terms of type Tm n
have at most n free variables:

data Tm (n : N) : Set where
con : N → Tm n -- Constant.
var : Fin n →→ TTmm nn -- Variable.
lam : Tm (1+ n) →→ TTmm n n -- A bstraction.
· :: TTmm (n1 1→+ nTm) n →→ TTmm nn -- Application.

Environments and values are defined mutually:

mutual

Env : N → Set
EEnnvv n: =N →VeSc eVtalue n

data Value : Set where
con : N → Value -- Constant.
lam : Tm (1 + n) → Env n →→ VVaalluuee -- Closure.

Note that the b ody of a closure has at most one free variable which
is not b ound in the e nvironment.

The language supports two kinds of “effects”, p artiality and
crashes. The partiality monad is used to r epresent partiality, and
the maybe monad is used to represent crashes:

JK : Tm n → Env n → (Maybe Value)⊥

(MaJybK e A: Thmas ntw→ o cEonvnsn tr→ ucto( rMs, nybotehV inaglu :) M aybe A and j ust :



A →J M :a Tymben A→.) Tnhve n c→ om (bMinaeydb emV oanluaed) is the maybe monad
Atran →sforM maery (bλeM A AA .). M  Th (eMc aoymbeb Aine))d da pmpolineadd dtoi stht eh peamr tiaalyibtey m moonnaadd.
We can define a failing c omputation, as well as return and b ind, as
follows:

fail : (Maybe A)⊥
fail = now noth⊥ing

return : A → (Maybe A)⊥
rreettuurrnn nx : =A →no( wM (ajuybste A  x))

>> = : (Maybe A)⊥ → (A → (Maybe B )⊥) → (Maybe B)⊥
n>o> w= nothing >> = f⊥ =→ f a( Ail
nnooww (njoutsht n x)g >>> > = = f f == f  fa i xl

later x >> = f = later (] ([ x >> = f))

It should also be possible to use the reader monad transformer to
handle the environment, but Ibelieve that this would make the code
harder to follow.

With the monad in p lace it is easy to define the semantics using
two mutually (co)recursive functions:

mutual

JK : Tm n → Env n → (Maybe Value)⊥
JJ c Kon : :iT Km ρn →= rEentvurn n →(co( nM i)a
JJJ cvK oanr : :x i T KKm ρρn →== Erreenttuvurrn nn →((lcoo( onMki u)apy b xe eρV )a
JJJ lvcaaomrn xti KKK ρρρ === rrreeetttuuurrrnnn (((llcoaomonk iut) pρx)
JJJ ltv1aa m·r xtt2 KKK ρρρ === Jrree ttt1uu rrKnn nnρ(( oa>mo> = ku pλρ )xvρ1 →)

rJJe ttt2u rKKn nρρ( a>>>m>  == λλρ )vv2 →→
JvJ1tt • KKvρρ 2

• : Value → JV taluKeρ ρ→> =(Mλ ayb ve Value)⊥
co•n i1: •u v2 →=V afl uaeil

lam t1 ρ1 • v2 = later (] (J t1 K (v2 :: ρ1)))



Constants are returned immediatel(yJ, vaKri( avbles are looked u p in the
environment, and abstractions are( Jp atireKd( vu p with the environment
to form a closure. The interesting case is application: t1 · t2 is
evaluated b y first evaluating t1 to a value v1, then (if the e valuation
of t1 terminates without a crash) t2 to v2, and finally e valuating
the application v1 • v2. If v1 is a constant, then we crash. If v1

is a closure, then a• •lav ter constructor is emitted and the closure’s
body is evaluated in its environment extended b y v2. The r esult
contains one later constructor for every β-redex that has been
reduced (infinitely many in case of non-termination).

Note that this is a call-by-value semantics, with f unctions eval-
uated b efore arguments. N ote also that the semantics is not compo-
sitional, i.e. not defined by recursion on the structure of the term, so
it is not a denotational semantics. (It would b e if• were defined
prior to JK ; it is easy to construct a composition•al semantics on
tporipo orft tohi Js o K;nei t.)

oArg todaJ d oK;ei st in soet aascycet opt c tohnes cruocdtea a cboomvep;o siitt oisn anlo ts ombavniotiucss oton
the p roductivity checker that JK and •are total (productive)
fthunecp tiroondsu. Itifv ibtiyndc hheacdk eb ree tnha at cJoKn sta rnudctor•, then Agda would have
ftoheunp dr othduatc ttihveit ycoc dhee ucskeesr tah aletx JicoK g raanpdhic combination of guarded

JcorK eic sure istihoenra nd structuralr ecursion:e veryc allp athf romJ K  to
J1o Jo.r egc isuuaer ristdiohedenr b ayn dons et rourc mturorale rceocnusrtsriuocnto:re sv aenrdy a cta llela spta tohne f rsoumspJ enK siot no

( aisne di tnhoetrhing else), or

2. guardedness is “preserved” (zero or more constructors/suspen-
sions), and the term argument becomes strictly smaller.

Now, b ind is not a constructor, but it does preserve guardedness:
it takes apart its first argument, but introduces a new suspension
before forcing an old one—in MiniAgda one can show that bind
preserves the sizes of its arguments. For a formal explanation of



totality, see the accompanying code.5
The semantics could also h ave b een defined using continuation-

passing style, and then we could have avoided the use of bind:

mutual

JK CPS : Tm n → Env n → (Value → (Maybe A )⊥) →
(Maybe A)⊥

JJJJt v l c a1aomn·r t xi t 2KKKK   CCCCPPPPSSSSρρρρk  kk  k= = = = J k Jk k (v  tt( ( ( 121lcloao•KKomCnCCkPPPui t SS)Spρ ρvρx )2( )ρ ( λλ)k )v v )12→→
•CPS : Value → VaJltu e → (Value → (Maybe A )⊥) →

(VMalauyeb→ e A) Va⊥l
(con i1 •CPS v2) k⊥ = f ail

(lam t1 ρ1 •CPS v2) k = later (] (J t1 KCPS (v2 :: ρ1) k))

This definition would not h ave made the pJrto duKctivity checker any
happier (it is p roductive, though, see t(hJe acKcompanying code).
However, it avoids the inefficient implementation of bind; note that
bind traverses the full p refix of later constructors before encounter-
ing the now constructor, if any.

Before we leave this section, let us work out a small example.
The term (λx.xx) (λx.xx) can b e defined as follows (writing 0
instead of zero):

? : Tm 0
? = lam (var 0 · var 0) · lam (var 0 · var 0)

It is easy to show that this term does not t erminate:



5In the accompanyingc odeJ K i sd efined using a data type containing
thIen c tohnesa trcuccotomrsp arenytuinrgn, o>d >e= J , Kfai ils ad nedfi nlaedter u, tinhugs aend sautrain tgyp geuc aordnetadnineinssg.
TIhnes eth ecoa ncsctorumctpoarnsy ainreg ic note>d >rep =rJ et, ef K adi slina d nethdfien eaudstuea ru,ls iwngaya aeidnn auat aisnet gcypog enuda c poantssa nnoevisnesgr.

the result. T his technique is explained in detail by Danielsson (2010).



?-loops : J ? K [ ] ≈ never

??--llooooppss :=J l?at eKr[ (]] ?-loops)

4. Type Soundness

To illustrate how the semantics can b e u sed, let us define a type
system and p rove type soundness.
Ifollow L eroy and Grall (2009) and define recursive, simple

types coinductively as follows:

data Ty : Set where
nat : Ty_ : ∞ Ty → ∞ Ty → Ty

Context_s can b e defined as vectors of types:

Ctxt : N → Set
CCttxxtt n: =N →VeSc eTty n

The type system can then b e defined inductively. 0 ‘ t ∈ σ means
tThhate tt yhpaes styysptee σm cina ncot nhtenext b e0d :

data ‘∈ (0 : Ctxt n) : Tm n → Ty → Set where
con ‘: 0∈ ∈‘( 0co:n Ci ∈tx ntn at)
vcoarn :: 00 ‘‘ vcoarn x i ∈∈ lnoaotkup x 0

lam : [0 σ :: 0 ‘ t ∈ [o τ → 0 ‘ lam t ∈ σ _ τ

· : 0 ‘ t1 ∈ σ _ τ →→ →00 ‘‘ ‘tl 2a ∈m m[t σ∈ σ→_

0 ‘ t1 ·∈ tσ2 ∈_ _[ ττ

The use of negativ∈e σre_ cursτ ive types implies that there are well-
typed terms which do not terminate. For instance, ? is typeable
with any type:

?-well-typed : (τ : Ty) → [ ] ‘ ? ∈ τ



?-well-typed τ = · {σ = ][ σ} {τ = ] τ}
({lσam = (varσ ·} v{ τar)= ) (lamτ} (var · var))

where σ = ] σ _ ] τ

(Some implicit argumσe_n ts which Agda could not infer have been
given explicitly usingσ σth_ e {x = . . .} notation.)

eLne te xupsl inciotwly prove tthheat{ xwe= ll-t. y.p.e}dn programs (closed terms) do
not go wrong. It is easy to state what should be proved:

type-soundness : [ ] ‘ t ∈ σ → ¬(J t K [ ] ≈ fail)

Here ¬is negation (¬A = A →→ E m¬ p (tJy,t wK[ he]re E mpty is the
eHmerpety¬ ¬typeis). nAegs antiootned (b¬y ALer =oy Aan →→d →G Er¬ malpl( tJyit, ,tiswK hh [a]errdeerE tmo psttyati es styt phee
soundness for usual big-step semantics, because such semantics do
not distinguish between terms which go wrong and terms which
fail to terminate.

We can start by defining a reusable p redicate transformer which
lifts predicates on A to predicates on (Maybe A)⊥ . If Lift P x h olds,
then we know both that the computation x does⊥ ⊥not crash, and that
if x terminates with a value, then the value satisfies P . L ift is defined
coinductively as follows:

data L ift (P : A → Set) : (Maybe A)⊥ → Set where
tnaowL i-jftu(s Pt P: P A x → a→yb L eA ift) P⊥ →(retS urent w x)h

later : ∞ (Lift P ([ x)) → L ift P (later x )

The proof below uses the fact that bind “preserves” L ift:

>> = -cong : L ift P x → ({x : A } → P x → L ift Q (f x)) →
L Liifftt QP (xx→ > >=(  {x xf :)

Let us now define some typing p redicates for values and com-
putations, introduced mainly as part of the proof of type soundness.
WFV σ v means that the value v is well-formed with respect to the



type σ . This relation is defined inductively, mutually with a corre-
sponding relation for environments:

mutual

data WFV : Ty → Value → Set where
con : WF:VT yn→ at ( Vcaolun ei)→

lam : [ σ :: 0 ‘ t ∈ [ τ → WFE 0 ρ →

WσFV: : (0σ ‘_t τ∈) (lτam→ →t Wρ)F

data WFE : Ct(xσt n_ _→τ E)( nvla nm → t ρ )Set where

[] : Ww hFEer [e] []
::: WFV σ v → WFE 0 ρ → WFE (σ :: 0) (v :: ρ )

The most interesting case above is that for closures. A closure
lam t ρ is well-formed with respect to σ _ τ if there is a context 0
slaumch ttρ hai ts s0w ‘ell -lafomrm mt ∈d wσ t_h τe sapnedc tρt oisσ σw_ ell-τ foi rfmt heedr ewi sitah r c eosnpteecxtt t0o
0lsau.m mcTht ht ehρ ap tisr0 ew dei‘ claltl -efaosm matr ee∈ ∈dr ew  σlai_ tthed r τebsa yp ntedhcetρ ρtfoi os lσlow w_ eilnl- τgfo iurfmn thseeudrrpew ri isitsah inc r geo slnpeemtecxmtt0t  ao:

lhot ohkautp 0w‘f ‘: a(mx :t ∈Fiσn n_) τ→a dW ρFi sE w0e lρl →orm

(WxF :V (ilnoo nk)up→ →x →0W) (Floo0ku pρ ρx →ρ)

We can use the predicate transformer introduced above to lift
WFV to computations:

WF⊥ : Ty → (Maybe Value)⊥ → Set
WF⊥⊥ σ: T x =→ L ( iMft a(WybeFVV aσlu) x)

Non-terminating computations are well-formed, and t erminating
computations are well-formed if t hey are successful (not nothing)
and the value is well-formed. The following lemma implies that
type soundness can be established by showing that J t K [ ] is well-
ftyoprmese do:u

ed soeosun-ndont-egsos-c wanrobn eg :s WablFis⊥h eσd x b y→s ¬o w(ixn g≈t hfaatiJl )
does-not-go-wrong (now-⊥jusσt x ) → →()



does-not-go-wrong (later wf) (laterl eq) =
does-not-go-wrong ([ wf) eq

Recall that negation is a function into the empty type. The lemma
is proved by structural r ecursion: induction on the structure of
the proof of x ≈ fail. The first clause contains an “absurd pat-
tern”, (), to indic≈ate that there is no constructor application of type
return v ≈ fail.

We can now prove the main lemma, which states that the
computations resulting from evaluating well-typed terms in well-
formed environments are well-formed. T his lemma uses the same
form of nested corecursion/structural recursion as the definition of
the semantics:

mutual

JKwf : 0 ‘ t ∈ σ → WFE 0 ρ → WF⊥ σ (J t K ρ)
JJKKwf c:o0n ρwf W=F no0wρ -jus→ t →coWn

JJJKKKwf (var {x = x}) ρwf == nnooww--jjuusstt (cloonokupwσf ( xJ Jρt wK f)ρ
JJJKKKwf ((lvaamr tx∈)= ρwf == nnooww--jjuusstt ((lloamok t∈ ρwf)

JJJKKKwf (t1∈ · t∈2∈) ρwf ==
JKwf1 ∈t1∈ ρwf >> = -cong =λ fwf →
JJKKwf t12∈∈ ρwf >> = -cong λλ vwf →→
JJ•KKwffw2f∈ vwf

•wJfK : WFV (σ _ τ) f → WFV ([ σ) v →

WF⊥ (([σ τ _) (τf )• v)
•wf (la m t1⊥ ∈ ρσ1τ_ w)f() τv)2 wff =

later (] JKwf t1∈ (v2wf :: ρ 1wf))

The implicit variaJKble pattern {x = x } is used to bind the variable
Tx,h wehi imchp iisc iuts veadr ioaJnbK lteh ep arittgehrnt-h {axnd= =sidx e}.

Finally we can conclude:



type-soundness : [ ] ‘ t ∈ σ → ¬(J t K [ ] ≈ fail)
ttyyppee--ssoouunnddnneessss t∈ =] ‘do t e∈s- σnot→-go-¬ wro( nJgt K(J[ K]wf t∈ [ ])

Note that t here is only o=ned ocaesse-n footr-→ →gaop-p¬w lric(o aJntig toK(  nJ [Kin] the p roof above
(plus one sub-case in •w=f).d



The p roof of type soundness is formulated for a functional se-
mantics defined using environments and closures, whereas L eroy
and Grall (2009) prove type soundness for r elational semantics de-
fined using substitutions. Ih ave chosen to use environments and
closures in this p aper to avoid distracting details related to substi-
tutions. However, given an implementation of the operation which
substitutes a term for variable zero it is easy to define a substitution-
based functional semantics using the partiality monad, and given a
proof showing that this operation p reserves types it is easy to adapt
the proof above to this semantics. See the accompanying code for
details.

The p roof above can b e compared to a typical type sound-
ness proof formulated for a relational, substitution-based small-
step semantics. Such a p roof often amounts to proving progress
and preservation:

progress : [ ] ‘ t ∈ σ → Value t ] ∃ λ t0 → t;t0
preservation : [[ ]] ‘‘ tt ∈ σ →→ tV;te0 →] ∃[ λ] ‘t →t0 ∈ σ

Here Value t means that t is a value,;is the small-step relation,
and ∃ λ t0 → . . . can b e read as “there exists a t0 such that. . . ”.
aGnidven∃ tλh etse→ →tw. o. .lecm amnab se eor neea cdana prove rtyep eex siostusnad n tess using classi-
cal reasoning (Leroy and Grall 2009):

type-soundness : [ ] ‘ t ∈ σ →
t[ ];‘ ∞t ∈] ∃ λ→ →t0 → t ; ? t0 ×Value t0

Here ;? is the r eflexive transitive closure of ;,t ; ∞
means that t can reduce forever, and ×can b e read as “and”.
(Note that this statement of type sound×ness is inappropriate for
non-deterministic languages, as it does not rule out the possibility
of crashes.) The lemma JKwf above can be seen as encompassing
booft chr ap srhoegsr.e)ssT haned l pmrmesaervJ aKtion, plus the combination of these two
olefm cmrasash eins.t)o tyhpee l smoumnadnJ eKss. This combination does not need to



involve classical reasoning, because WF⊥ is defined coinductively.

5. The Semantics are Classically Equivalent

Let u s now p rove that the semantics given in Section 3 is classically
equivalent to a relational semantics.

The semantics given in Figures 1–2 can b e adapted to a setting
with well-scoped terms and de Bruijn indices in the following way:

data ‘⇓ (ρ : Env n ) : Tm n → Value → Set where
con ‘: ρ ⇓‘( cρon: iE n⇓v c no)n i:
vcoarn :: ρ ‘‘ vcoarn x i ⇓⇓ lcooonku ip x ρ
lvaamr :: ρ ‘‘ lvaamr xt ⇓⇓ llaoomk tu ρ
app : ρ ‘‘ t1 ⇓ tla⇓ ml at0m mρt0 → ρ ‘ t2 ⇓ v0 →

vρ0 :: ρ  t0 ‘⇓ lta0 ⇓ v → ρ ‘ρ t1 · t2 ⇓ v

data ‘⇑ (ρ : Env n) : Tm n → Set where

appl : ∞ (ρ ‘ t1 ⇑) → ρ ‘ t1 · t2 ⇑
appr :: ρ ‘ (ρ t1 ‘⇓ v →) →∞ (ρρ ‘‘t t2 ⇑ t) → ρ ‘ t1 · t2 ⇑
app : ρ ‘‘ t1 ⇓ lvam→ →t0 ρ ∞0 → ρ ‘⇑ t2 ⇓ →v0 →

∞ ‘(vt0 :: ⇓ρl 0a ‘m tt0 ⇑) →→ ρ ‘‘ t1 · t2 ⇑

‘ : Env n → Tm n → Set
ρ ‘‘ t : E=n v¬n ( →∃ →λT vm →n →ρ ‘S tt ⇓ v) ×¬(ρ ‘ t ⇑)

Noteρ ‘t‘h a t t :‘ =E⇓ nv¬ nis( → →∃d λeT fiv nme→ dn in →ρ du‘  Scett tiv⇓ el yv) a ×nd ¬ ¬(‘ ρ⇑ ‘ c to ⇑in)ductively.
Hρo‘w ts h ‘ou=l⇓d ⇓w ¬ ie s( s∃ dtλa etfienv et →hdei ρenqdu ‘ucivtt aivl⇓ eelnyv c)a e× ×nodf¬ ¬‘( ‘ρ⇑  ‘⇓  c to/ ⇑ in‘ )du⇑ ct/ive‘ ly.

and JK ? The following may seem like a suitab‘le s⇓ta/ tem‘ en⇑ t:

ρJ ‘ K? ?t T⇓h ev l⇔low nJg gt mK a ρy s≈e rmetl uirkne va
ρJ ‘‘ K? ?tt T⇓⇑h l⇔⇔low nJJg gtt mKK a ρ ρy s≈e mnel viekre

ρ ‘‘ tt ⇑ ⇔⇔ JJJ ttt KKK ρ ρ ρ ≈ fail

Howρe‘v er,t i n a construJJct t itvKK  e ρρsetting one cannot p rove that J t K ρ ≈



nHeovwρere v‘iemrt ,pi  l niea s c ρo ‘st tu t⇑i tv .K eT ρso e tstieeng gw ohnye, claetn nuost pt rryo. vAes tshuamteJ tthK aρt we
nHheaovvweer rav i mrpp,r iolinoeas f c  po no ‘fst rt utycp⇑ teiv .Je T sot1e s·t enet2g gKw ρn ,≈ cl a ntnnu eosvett pr r.yr o.Nv Aeowst hs awmte eJ tnt hKe eatρ d wtoe

construct a p roof starting with either appl, appr or app. In order
to do this we need to know whether t1 terminates or not, but this is
not decidable given only the proofp . It also seems unlikely that we
can prove that ρ ‘ t implies J t K ρ ≈ fail: one might imagine
tchaant pthroisv ecat nh ab te ρ ρp ‘r ovt ed b iym pj ulisets sex Jet c Kutρ ing J t K ρ u ntil it terminates
tachannadt pt thhroeinsv cepat enhrfao btre ρmp ir‘ nogvt tea d d c abimsyep aulsinetas elyJ xse itscK ,u bρtiuntg gthJ et fK ac ρt ut hnatti lt idto teers mniont a fateils
ttoh attet rmhisinca atne ibs enop tr o(ovbevdib oyuslj yu)s ten eoxeucguht itnog gc oJnt vK inρ ceu Antgildia t t thearmt iitn ndaoteess
terminate.

We can avoid these issues by assuming the following form of
excluded middle, which states that everything (in Set) i s decidable:

EM : S et1
EM = (A : Set) → A ] ¬A

We end up with the following six proof obligations:

ρ ‘ t ⇓ v → J t K ρ ≈ return v (1)
ρ ‘‘ tt ⇑⇓ →→ JJ tt KK ρρ ≈≈ never (2)
Jρ ρt ‘K ρ ≈ return v →→→ JρJ tt‘KK ρtρ ⇓ v (3)

EM → JJ tt KK ρρ ≈≈ nreetvuerrn →→→ ρJ t‘‘K ttρ ⇑⇓ (4)

EEMM →→ JJρJ t  tt ‘ K KK  ρ   t ρρ  ≈fail →→ Jρt ‘ K ρ t   ≈fail ((56))
TheE laMst →t wo f Jρo tl ‘lK owρ t easily from th→→e →→p re  ρJvt i‘ oK u ρt s ones, so let us focus
on the first fouJrt:

1. Given p : ρ ‘ t ⇓ v it is easy to p rove J t K ρ ≈ return v b y
Grecivuernsiop n :oρn t h‘e tst⇓ rucv ti utrei s so efap sy.

TGhivee onnp ly :in ρter‘ est tin⇓ g vca itsie s eisa sayp ptolip cartoiovne.J L te Kt ρus introduce the
following abbreviation:

x1 J·K x 2 = x 1 >> = λ v1 → x 2 >> = λ v2 → v1 • v2



We canJ t·hK exn proceed as follows (using the same names as in the
app coJn·Kstrx uctor’s type signature):

J t1 ·t 2 K ρ =∼
JJ tt1 K· ρ J·K J t2 K ρ ≈
JJrett  turKnρ (laKmρ t0 ρ0) JJ··KK rJe tturKnρ ρv0 &
JJ tt0 KK (ρ v0 :: ρ0) ≈

rJe tturKn( vv

TheJ i ntdKu( cvtive hypothesis is used twice in the second step and
once in the last one.

2. One can prove that ρ ‘ t ⇑ implies J t K ρ ≈ never using
cOonreecc uarnsiop nr povlues athna itnρ ner‘ ret c⇑ ursi imonp oiens s thJ et sK tr uρct≈ure of t.

OInn tehec caanse p orofv vthee t ahaptp ρco‘ nst tr⇑ uctoi mr pwliee csaJn ptK roρc eed as follows:

J t1 · t2 K ρ =∼
JJ tt1 K· ρ J·K J t2 K ρ &
JJrett  turKnρ (laKmρ t0 ρ0) JJ··KK rJe tturKnρ ρv0 =∼

Jlat terK ( ρ] J t0 K (v0 ):: ··ρKK0)  Jr)e ≈

never

The second Jstt epK Ku( sevs (1) twice, once forp1 : ρ ‘ t1 ⇓ lam t0 ρ0
and once for p 2 : ρ ‘ t2 ⇓ v0, p lus the fa:c ρt t‘hat t x⇓ ≈ la mnot w v
implies that x & :nρ ow‘ ‘v. Th⇓e vlast step u ses the coindu≈ctive hy-
pothesis (under a guard) for p 3 : v0 :: ρ0 ‘ t0 ⇑.

The appl case is different:

J t1 · t2 K ρ =∼
JJ tt1 K· ρ JK·ρK J t2 K ρ ≈
JJnett  veKr KJJ··KρK JJ tt2 KK ρρ ∼=≈
Jnet verK



The last stepJ KusJ ets thKeρ fact that never is a left zero of b ind. The
second step u ses the inductive hypothesis for p : ρ ‘ t1 ⇑;
nsoecteo nthda st t1 ius ssetsru tchteuri anlldyu cstmivaelle hry pthotanhe st1i s· fto2,r apnd : :thρ at ‘t hits c⇑all;
is not guarded.



The appr case is similar to the appl one, and omitted.

Note that the use of transitivity in this proof is safe, as discussed
in Section 2.

3. Given p : J t K ρ ≈ return v one can observe that p cannot
cGoivnteaninp pth: e Jcto nK sρ tru≈ctors later or laterr: it must have the form
Glaitvereln (p. . :. J( lt a tKeρ rl now) ...), with a finite number of laterl
constructors—one for every β -reduction i n the computation of
J t K ρ . Let the size of p b e this number. One can prove that
JJ tt KK ρ ρ L≈ tre tthuerns vz eimo pflpi es b eρ h‘is tn u⇓m vb eb ry. Oc onempc laente i rnodvuect thioant
JoJntt K Kt hi ρ ρs. s ≈Lizeetr.

JOtn Kl yρ the application case is interesting. We can prove the fol-
lowing inversion lemma:

(x >> = f ) ≈ return v →

x∃> >λ= =v0 →) (x e≈tu rrnet uvrn→ →v0) × (f v0 ≈ return v)

Here the size of the left-hand p roof i s equal to the sum of the
sizes of the two right-hand proofs. If we have J t1 · t2 K ρ ≈

rsieztuersno fvt, etht ewn owr eig chat-nh au nsed ipnrvoeorfss.ioI nf twwei chea vp elu Js cas·et anKaρ lysis
tsioz edse doufct eh th twato rJi gt1h tK- hρa ≈d rreotourfns. (Ilfa mwe th0 ρav0)e Jant d J t2 KK ρρ ≈

treotu drend vfu0ct feort hsoatmJe tt0, Kρρ0 , avn≈0 such that J tw0 K (v0 ::) ρa n0) d≈J retKuρr n v.
tWoe d ceadnu fcieni sthha tb yJ at ppKlyρ ing aucpph tthoa tthJr tee Kin (svtan)cae sn dof≈ Jtht e iKnd ρuc-
tive h ypothesis, after maksuincgh tshuaret t thaKt (thve p roofs are small
enough.

This p roof is a bit awkward when written out in detail, due to
the use of sizes.

4. Finally we should prove that excluded middle and J t K ρ ≈

nFeinvearll yimw pely ρh ‘ul dt ⇑p r. oTvheist hcaant ebxec plurdoveeddm musidindgle eco arndecJ urst iK oρ n.

AFisn ablelyforw e eths eh oonullyd ipn rteorveest itnhgat tce asxce uisd aepdplm iciadtdiolne. aW nde J ca tnK Kp r ρove

the following inversion lemma b y using excluded middle:



(x >> = f ) ≈ never →

xx> ≈= n f)ever n]e
∃≈ λn v v→er (]x ≈ return v) × (f v ≈ never)

If x >> = f does not terminate, then either x f ails to t erminate,
Iofr xx t e> >r= min fatd eose wsn ithot tat evramluien avt aen, tdhef nv editoheser rn xoft ta ielrsmt oinat etrem. Giniaveten,
a p roof of J t1 · t2 K ρ ≈ never we can use inversion twice to
ade pterroomfino ef Jw htic·ht ofK aρppl, appr and app to emit, in each case
caop nrtoionfuino gf Jcto recursKivρ ely (and in the latter two cases also using
(3)).

6. Virtual Machine

This section defines a virtual machine (VM), following Leroy and
Grall (2009) but defining the semantics functionally instead of
relationally, and using a well-scoped approach. (The accompanying
code contains a relational semantics and a p roof showing that it is
equivalent to the functional one.)

The VM is stack-based, and uses the following instructions:

mutual

data Instr (n : N) : Set where
var : Fin n → I nstr n -- Push variable.
con : N →→ IInnssttrr nn -- Push constant.
clo : Code (1+ n) →→ IInnssttrr nn -- Push closure.
app :: IInnssttrr nn -- Apply function.
ret : Instr n -- Return.

Code : N → Set
CCooddee n: =N → LisS te (tInstr n )

Instructions of type I nstr n have at most n free variables. The type
family Code consists of sequences of instructions.

Values and environments (VM-Value and VM-Env) are defined



as in Section 3, but using Code instead of Tm in the definition of
closures. Stacks contain values and return frames:

data Stack-element : Set where
val : VM-Value → Stack-element
ret : Code n → VM-Env n →→ SSttaacckk--eelleemmeenntt

Stack : Set
Stack = L ist Stack-element

The VM operates on states containing three components, the
code, a stack, and an environment:

data State : Set where
h, , i : Code n → Stack → VM-Env n → State

The result of running the VM one step, starting in a given state, is
either a new state, normal termination with a value, or abnormal
termination (a crash):

data R esult : Set where
continue : State → R esult
done : VM-Value →→ RReessuulltt
crash :: RR eessuulltt

The function step (see Figure 3) shows how the r esult is computed.
Given s tep it is easy to define the VM’s semantics corecursively:

exec : S tate → (Maybe VM-Value)⊥
eexxeecc cs: :wS tiatht step ( sM

... | continue s0 = later (] exec s0)

... || cdoonneti v == rlaettuerrn( v

... || cdroanseh == f r eaitlu

In a state s, run step s. If the result is continue s0, continue running
from s0; i f it is done v, return v; and if it is crash, fail.



The function exec is an example of a functional, small-step
operational semantics. As before it is c lear t hat the semantics is
deterministic and computable, and j ust as with a r elational small-
step semantics we avoid duplication of r ules. However, the use of a
wild-card in the last clause of step means that it is possible to forget
a rule. If we t ried to omit one of the clauses from the definition of
JK (Section 3), t hen the definition would be rejected, but this is not
tJheK c( Saseec ftoiorn nt3 he), f tihrsetn sit hxe ecd laeufisneits oofn s wteopu.

7. Compiler Correctness

Let us now define a compiler from Tm to Code and p rove that
it p reserves the semantics of the input program. The definition
follows L eroy and Grall (2009), but uses a code continuation to
avoid the use of list append and some proofo verhead (Hutton 2007,
Section 13.7):

comp : Tm n → Code n → Code n
comp (: co Tnm mi)n c→ =C cdoen n ni →:: →cC

comp ((vcoarn x  i)) cc == vcoarn x i :::: cc
comp ((lvaamr xt)) cc == cvalor (x c o::mc p t [ ret]) :: c
comp ((lt1a m· t t2)) cc == comp t1 p(cto m[ rpe t2 (: a:pc p :: c))

We can also “compile” values:

compv : Value → VM-Value
compv (:coV na liu) →=V Mco-nV ail
compv (lam t ρ) == lcaomn (icomp t [ret]) (map compv ρ)

Istate compiler correctness as follows:

correct : (t : Tm 0) →
e(xte :c hT comp →t [ ], [ ], [ ] i ≈

e(Jc th cK o[ m] p>> t = [ ,λ[ ]v, →[] rieturn (compv v))



Given a closed (teJr tmK [t,] th>  >= e reλ su vlt→ →ofr ertuunrnni( ngco mthpe corresponding
compiled code (c(oJm tpK t[ [] ]]>) >o= n tλ he v vV→ M r(esttaurrtnin (gc womitph an empty stack
and environment), should b e the same as evaluating the term (in

step : State → R esult
step h [] , Rveasl v :: [ ] , [] i = done v
step h var x :: c, s, ρ i = dcoonnteinv ue h c , val (lookup x ρ ) :: s, ρ i
step h con xi :: c, s, ρ i = ccoonnttiinnuuee h c , vvaall (con i) :: s, ρ i
step h ccolon c i0 :: c, s, ρ i = ccoonnttiinnuuee h c , vvaall (lam ic)0 ρ) :: s, ρ i
step h app :: c,val v :: val (lam c0 ρ0) :: s, ρ i = ccoonnttiinnuuee h cc0,, ret c ρ :: s, v :: ρ0 i
step h ret :: c,val v :: ret c0 ρ0 :: s, ρ i = ccoonnttiinnuuee h cc0, val v :: s, ρ0 i
step = ccroansthin

Figure 3. A function which computes the result of running the virtual machine one step from a given state.

an empty environment) and, if evaluation terminates with a value,
return the “compiled” variant of this value.

We can compare this statement to a corresponding statement
phrased for r elational semantics:

([] ‘ t ⇓ v ⇔ h comp t [], [], [] i; ?
ho [m ]p, v ta [l ,(c[o]m,[p]v iv; ) :: [], [ ] i) ×

([] ‘ t ⇑ ⇔ h comp vt a[l] ,( c[o],m [p] iv; ) :∞:[ )] ××
([] ‘ t ⇔ h comp t [], [], [] i;;)

Here([ ];‘ t : State → State → Set is the VM ’s small-step relation,
;(?[] i t‘s tre : flS extiavtee → tran Ssitatitvee→ →cloS suerti e,s t sh ; eV ∞M m’se samnas ltlh-satte pthre reela tisi ann,
infinitet ransition sequence startingi ns , ands;means thatt here
is a “stuck” transition sequence starting in s (i.e., a sequence which
cannot be extended further, and which does not end with a state of
the form h [ ], val :: [], [ ] i). Ip refer the statement of correct
tahbeovf eor: mI fi hnd [ ]it, evaaslier :to: u[n],d[e]rsi ta).nId panredf egre tth ceosr rteactet.m

Let us now prove correct. I n order to do this the statement can
be generalised as follows:

correct0 :
(t : Tm n) {k : Value → (Maybe VM-Value)⊥}



((hty :p T: (nv ): kVa: luV ea)l u→e
yexpe c: h( c, :vV ala (lcueom)→p v v) :: s, map compv ρ i ≈ k v) →

exeecx ehc comp ta c, s, map compv ρ i ≈ (J t Kρ ρ > >= k vk))

This statement is written in continuation-pa(sJs tinK g ρ s>t  y>= le k to) avoid
some uses of transitivity (which can be p rob(lJem tK at ρic, >a=s d kis)cussed
in Section 2). The statement is proved mutually with the following
one:

•-correct :
c(ov1r v2 t:: Value) {k : Value → (Maybe VM-Value)⊥}
(hyp : (:vV a: uVea)lu{ ke) :→V

yexpe c: h( c, :vV ala (lcueom)→p v v) :: s, map compv ρ i ≈ k v) →
exeecx ehc app :v: c, (vcaol m(cpompv v2) :: val (compρv v1) ::k s,

map compv ρ io
≈ (v1 • v2 > >= ρ k i)

The statements can b e p roved u sing the same recursion structure as
J KCPS/• CPS: mixed corecursion/structural recursion.

The interesting case of correct0 is application, where we can
JproK ceed as follows (with safe uses of transitivity):

exec h comp t1 (comp t2 (app :: c)), s, map compv ρ i ≈

Je t1 cK ρ m> >p=  t λ v1 → J t2 K ρ >> = λ v2 → v1 • v2 >> = k ∼=≈
JJ tt1 KK ρ ρ >>> > = = λλ v1 →→ (JJ tt2 KK ρρ >>> > = = λλ vv2 →→ v1 •• vv2) >>> > = = k k ∼==
J(JJtt t1 KKK ρ >>> > = = λλ v1 →→→ JJJ ttt2 KKK ρρρ >>>  >> >= == λλλ vvv2 →→ v1 •• vv2)) >>> > = = kk ∼==
(JJJ Jtt 1t ·K Ktρ 2ρ ρK >ρ> =>> λ = k

TJ(hJt e t laKstρ ρK th> ρ > re= e> s =λ te vp ks →use Jast soKcρi ati v>> =i ty oλfv bind twice. (These u ses
ofJ tassociKat iρvi>t  y> =cou kld h ave b een avoided b y using continuation-
passing style instead of bind when defining the semantics. See the
accompanying code.) The first step is more complicated. Here is its
proof term:



correct0 t1 (λ v1 → correct0 t2 (λ v2 → •-correct v1 v2 hyp))

First an appeal to the inductive hypothesis (t1 is structurally smaller
than t1 · t2), then, in the continuation, another appeal to the in-
ductive ·ht ypothesis, and finally, in the nested continuation, a use
of •-correct.

•T-cheor rienctet.resting case of •-correct is when v1 is a closure,
lamT th1 ρ1 , teinr ewsthinicgh c caassee w oef n• e-ecdo trroe p rove wt hhate

exec h app :: c, val (compv v2) :: val (compv (lam t1 ρ1 )) :: s,
map compv ρ io

is weakly b isimilar to

lam t1 ρ1 • v2 >> = k.

We can start by emitting a later constructor and suspension:

later (] ?)

The question mark should be replaced b y a p roof showing that

exec h comp t1 [ret], ret c (map compv ρ) :: s,
map compv (v2 :: ρ1 ) i

is weakly bisimilar to

J t1 K (v2 :: ρ1) >> = k .
ThisJ t canK b  (ev p roved b y appeal to the coinductive hypothesis:

correct0 t1 (λ v → laterl (hyp v))

Heret heu seo fl aterl correspondst o ther eductiono f

exec h [ret], val (compv v) :: ret c (map compv ρ) :: s,
map compv (omv2p :: ρ1 ) i



to

exec h c, val (compv v) :: s , map compv ρ i,

which has the right form for the use of hyp.
The proof sketch above—and especially the compact proof

terms—may look a bit bewildering. Fortunately one does not have
to understand every detail of a machine-checked p roof. It is more
important to understand the statement of the theorem.6 Further-
more, the writer of the p roof has the support of a proof assistant,
that in my case provided much help with the construction of the
proof terms.

The proof above can b e compared to that of Leroy and Grall
(2009), who p rove the following two implications (in their slightly
different setting):

[] ‘ t ⇓ v → h comp t [], [], [] i ; ?
ho [m ]p, v ta [l ,(c[o]m,[p]v iv; ) :: [], [ ] i

[] ‘ t ⇑ → h comp vt a[l] ,( c[o],m [p] i v; ) :∞:[

6With thec aveatt hato nes houldn otp utt oo mucht rusti nto Agda, which
is a very experimental system.



Consider application. In the proof above there is one case for ap-
plication, with two sub-cases, one for crashes and one for closures.
In the proof of the two implications there are f our cases for ap-
plication: one in case of termination and three for non-terminating
applications. The r ule duplication in the semantics shows u p as rule
duplication in the p roof.

8. Non-determinism

The compiler correctness statement used above is sometimes too
restrictive (Leroy 2009). For instance, evaluation order may be
left up to the compiler. This section illustrates how this kind of
situation can b e handled by defining a non-deterministic language,
and i mplementing a compiler that i mplements one out of many
possible semantics for this language.

The syntax of the language defined in Section 3 is extended with
a term-former for non-deterministic choice:

|: Tm n → Tm n → Tm n

The semantic domain is now the maybe monad transformer applied
to the p artiality monad transformer (λM A . νX. M (A ] X ) for
tstori cthtley ppaorstiitaliviety m moonnadads M  tra)n aspfoprlmieder t (oλ aM n oA.nν- dXe.teM rmi( nAism] Xm)onf oadr
(λA. µX. A ] X ×X ; Moggi (1990)), implemented monolithi-
c(aλAlly. µasX .foA llow] s:X

data D (A : Set) : Set where
fail : D A
return : A → D A
|: D A → DA →→ D D A A
la|ter :: ∞D A(D→ →A D) →→ D D A A

>> = : D A → (A → D B ) → DB
fa>> il= D>>  =A →f = (A → fail



return x >>> > = = f f == f  fa i xl

(rex1t |r nx 2x ) >>> > = = f f == (fxx 1 >> = f ) | (x2 >> = f )

later x >> = f = later >(=] =([f x >> = f))

As b efore the monad laws h old up to strong b isimilarity, which can
be defined as follows:

data =∼ : D A → D A → Set where
fail : feail =∼ fail
return : return x ∼== return x
|: x 1 =∼ y1 → x 2 =∼ y2 → x 1 | x 2 ∼== y1 | y 2

later : ∞ ([ x =∼ →[ y) → later x =∼ later y

Finally we can extend the semantics b y adding a clause for choice
(note that|is overloaded):

J t1 | t2 K ρ = J t1 K ρ | J t2 K ρ

It mJaty b e wKor ρth =p oJi ntt ingK ρou| tJ Jtt hatK nρ ow the semantics is no longer
deteJrmt inistiKc, ρde= spitJ e tb eKin ρg |dJ efi tneKd ρas a function.

As an example we can define a call-by-value fixpoint combi-
nator (Z = λf. (λg. f (λx. g g x)) (λg. f (λx. g g x ))) and a non-
ndaetteorrm( iZni=s tic λnfo.n (-λtegr.mf in( λaxti.ngg gtex rm)) ( (tλ g=. Z ( λ(xλ.fg gx g. gf x ) x) |) a f n xd) 0a)n:

Z : Tm 0
Z = lam (h · h)

w =he larme mh( h=· hla)m (var 1 · lam (var 1 · var 1 · var 0))

t : Tm 0
t = Z · lam (lam (var 1 · var 0 | var 1 · var 0)) · con 0

The semantics of t, J t K [ ], is strongly b isimilar to t-sem:

ets -seemma n: c Ds oV falut ,e J

ets -seemma =ti sla otfert , ( J] tlaK te[ r], ,(i ]s slatrteorn g(l]y l abitesrim m(i]l a(rt- stoet m- |e tm-:sem)))))



The virtual machine is unchanged, so the compiler correctness
statement will relate deterministic and non-deterministic computa-
tions. To do this we can use the following variant of weak bisimi-
larity:

data ≈∈ : (Maybe A)⊥ → DA → Set where
fail : now nothing ≈→∈ Df ai lA

return : now (just x ) ≈∈ return x

|l : x ≈∈ y1 → x ≈∈ y1 | y 2

||r :: x ≈≈∈ y2 →→ x ≈≈∈ y1 || y 2

later : ∞ ([ x ≈∈ [ y) → later x ≈∈ later y

laterl : [ x ≈≈∈ y → later x ≈≈∈ y

laterr : x ≈≈∈ [ y → x ≈≈∈ later y

You can read x ≈∈ y as “x implements one of the allowed seman-
tYicosu o cfa ny ”r.

Compiler correctness can now be stated as follows:

correct : (t : Tm 0) →
exec hT comp →t [ ], [ ], [ ] i ≈∈

eJc ct hK [o o]m p> >= t [ ]λ, v ,→[ re it ≈urn (compv v)

If we extend the Jc otmK [ pi]ler> > i=n thλ e v f →ollo rwetiungrn nw( caoy,m mthpen we can p rove
that it is correct Just inK g[ a]n> a> =rguλ mv en→ t wr ehticuhr nis( vceomryp similar to that in
Section 7:

comp (t1 | t2) c = comp t1 c

We can also prove type soundness for the non-deterministic
language, using the type system from Section 4 extended with the
following r ule:

|: 0 ‘ t1 ∈ σ → 0 ‘ t2 ∈ σ → 0 ‘ t1 | t2 ∈ σ



Type soundness can b e stated using ≈∈. Type-correct terms
should not crash, no matter how the non-d≈eterminism is r esolved:

type-soundness : [ ] ‘ t ∈ σ →
[¬] (‘ no tw∈ n σoth→ing ≈∈ J t K [ ])

It is easy to p rove this statement b y adaptingJ tthK e[ p ]r)oof f rom Sec-
tion 4. All it takes is to extend the L ift type wJitt hK Kt[ he]) constructor

|: L ift P x → L ift P y → L ift P (x | y),

and then p ropagating this change through the rest of the proof.
Note that the new definition of L ift uses induction nested inside
coinduction (as do D and ≈∈).

9. Term Equivalences

Let us now return to the deterministic language from Section 3.
Weak b isimilarity as defined in Section 2 is, despite its name, a very
strong notion of equality for the semantic domain (Maybe Value)⊥.
We can lift this equality to closed terms in the following way:

≡ : Tm 0 → Tm 0 → Set

t1 ≡ t2 m= J→ t1 TK m[]0 →≈ JS t2 K []

This is a very= sy Jn ttacKt[ ic] equJalti ty,K w []hich distinguishes the obser-
vationally eq=uiva Jlet ntK t[e]rms tJ1 =K [la]m (lam (var 0)) · con 0 and
t2 = lam (var 0), because

J t1 K [] ≈
rJe tturKn[ (]lam (var 0) (con 0 :: [ ])) ≈
rJe tturKn[ (]lam (var 0) [ ]) ≈

J t2 K [].

TheJ r t elaKti[ o]n.al big-step semantics from Section 5 is no different:
[ ] ‘J tt1 K⇓[ ]v. does not imply that we h ave [ ] ‘ t2 ⇓ v.



‘Tht is ⇓sevc tid oone sdn eofitni ems sloym thea tlew sse hsyanvetac[ ]tic‘ al ter⇓mv .equivalences.
Discussion of the finer p oints of these equivalences is out of scope
for this p aper; the main point is that they can be defined without too
much fuss.



Let u s start b y defining a notion of applicative bisimilarity
(Abramsky 1990). Computations are equivalent (≈⊥) if they
are weakly b isimilar, with equivalent (rather than eq⊥ual) possi-
bly exceptional values; possibly exceptional values are equivalent
(≈MV) if they are of the same kind and, in the case of success,
con≈tain equivalent values; and values are equivalent (≈V) if they
are either equal constants, or closures which are equivalentw hen
evaluated with the free variables bound to an arbitrary value:7

mutual

data ≈⊥ :
(⊥Maybe Value)⊥ → (Maybe Value)⊥ → Set where

now : u ≈MV →v M→a ynboewV aul ≈⊥ →nowS vt

later : ∞ ([ x ≈⊥ [ y) → later x ≈⊥ later y

laterl : [ x ≈⊥ y → later x ≈⊥ y

laterr : x ≈⊥ [ y → x ≈⊥ later y

data ≈MV : M aybe Value → M aybe Value → Set where
just : u: ≈V v e→V a lj uuest→ →u ≈MV jauluste →v

nothing : njuostthui ng ≈MV nothing

data ≈V : Value → Value → Set where
con : con: :iV ≈V c→onV ia
lam : (∀ v → ∞ (J t1 K (v :: ρ1) ≈⊥ J t2 K (v :: ρ 2))) →

l(a∀m v t→1 →ρ∞1 ≈ (JVt laKm( v t :2: ρρ2

This ilsa myet :a( g∀aivn a→ de∞ fin (iJtit on Kw (hvic: :hρ uses i nduJct tioKn( vne: :stρe d inside
coinduction. Note t hat the lam constructor is coinductive. If this
constructor were inductive, then the relations would not be reflex-
ive: lam (var zero) [ ] would be provably distinct from itself.

Using the relations above we can define applicative bisimilarity
by stating that terms are equivalent if they are equivalent when
evaluated in an arbitrary context:



≈T : Tm n → Tm n → Set

t1 ≈T t2 m=n ∀→ ρ T→m Jn t1 →K ρ ≈⊥ J t2 K ρ

The definitio=n o∀fρ ρ≈ →⊥J its vKer ρy similJart toK Ktρh e definition of weak
bisimilarity in S=ec∀ tioρ n→ ≈ →2⊥. IJt is Kpρ ossible tJo deKfiρn e a single notion of
weak b isimilarity, parametrised b y a relation to use for values. The
accompanying code uses such a definition.

Let us now turn t o contextual equivalence. Contexts with zero
or more holes can b e defined as follows:

data Context (m : N) : N → Set where
thaol Ce :n Context m m
con : N → Context m n
var : Fin n →→ CCoonntteexxtt mm nn
lam : Context m (1+ n) →→ CCoonntteexxtt mm nn
· :: CCoonntteexxtt mm (n1 →+ nC)ontext m n →→ CCoonntteexxtt mm nn

The type Context m n contains contexts whose h oles expect terms
of type Tm m. If we fill the holes, then we get a term of type Tm n:

[] : Context m n → Tm m → Tm n
ho[le] [ntt]e t=m mtn
con i [[tt]] == tcon i
var x [[tt]] == vcoarn x i

lam C [[tt]] == lvaamr (C [t])

(C1 · C2) [[tt]] == Clam1 [ (t]C C· [Ct]2) [t]

Contextual equivalence can be defined in two equivalent ways.
The usual one states that t1 and t2 are contextually equivalent if
C [t1] terminates iff C [t2 ] terminates, for any closing context C:

⇓ : A ⊥ → Set
x ⇓⇓ :=A ⊥∃ λ→ →v S→et x ≈ now v



7∀v →  ...m eanst hes amea s( v: ) → ...;A gdat riest oi nfert hev alue
of∀ thv e → →un. d.e.rm scoeraen saut hteoms aatmiecala lsy(.

≈C : Tm n → Tm n → Set

t1 ≈C t2 m=n ∀ → →C m→n →J →CS e[tt1 ] K [] ⇓ ⇔ J C [t2] K [] ⇓

However, we c=an ∀alC so d→efinJ e Cco[ ntte]xK tu[ a]l ⇓equivalenJc Ce u[tsi]ngK [w]e a⇓k
bisimilarity:

≈C0 : Tm n → Tm n → Set

t1 ≈C0 t2 = ∀ →C → J →CS [t1] K [] ≈◦ J C [t2] K []

Here ≈◦ is =a n∀ ot Cion →of wJ e Cak[ b]isKi m[ i]larity wJhC ich[ tide] nKti[ fi]es all
termina≈ting com=pu ∀taC tion→ s:

now : now u ≈◦ now v

It is easy to p rove that these two notions of contextual equivalence
are equivalent.

As an aside one can note that the contextual equivalences above
are a bit strange, because there is no context which distinguishes
con 0 from con 1. This could b e fixed b y extending the language
with suitable constructions for observing the difference between
distinct constants.

10. Conclusions

When writing down a semantics Ithink one of the main priorities
should b e to make it easy to understand. Sometimes a more com-
plicated definition may b e more convenient for certain tasks, but
in that case one can define two semantics and prove that they are
equivalent.
Ih ope Ihave convinced you that functional operational seman-

tics defined u sing the partiality monad are easy to understand. I
have also used two such semantics to state a compiler correctness



result, and Ifind this statement to b e easier to understand than a cor-
responding statement phrased using relational semantics (see Sec-
tion 7).

The semantics also seem to b e useful when it comes to proving
typical meta-theoretic p roperties, at least for the simple languages
discussed in this paper. Ihave p roved type soundness and com-
piler correctness directly for the semantics given above. The type
soundness proof in Section 4 is given in relatively complete, formal
detail, yet it is short and should be easy to follow. Furthermore, as
mentioned in Section 7, the compiler correctness proof avoids some
duplication which is present in a corresponding proof for r elational
semantics.

As discussed above the support for total corecursion in lan-
guages like Agda and Coq is somewhat limited: definitions like
JK are often rejected. However, my experience with sized types
iJn KMa inreiAo gftdean (s reeeje Scteecdt.ioH no 2w) vise er,n cmoyure axgpinegri.e In sceus wpeictht tshiazet da mtyporese

pJol Kisa hreedo oimftepnler mejeencttaedti.onH oofw seivzeedr, tym pyese cxopeulrdie bncee eqw uitieth hsa stiizesfdyint ygp etos
work with.

Finally Iwant to mention a drawback of this k ind of semantics:
proofs which proceed b y induction on the structure of ‘⇓
when a r elational big-step semantics is used can b ecome some‘w⇓ hat
awkward when transferred to this setting, as illustrated by the proof
in Section 5 showing that J t K ρ ≈ return v implies ρ ‘ t ⇓ v.
Hinow Seecvteiorn, nit5 5iss uhnowclienagr t  toh mtJe thK owρ of≈tenre tthurisn ivs a icmtupallileys ρa p‘ rob tl⇓ em v..
iFnor S ienctstiaonnc 5e, snheoitwheinrg gtht eh ttyJ pet sKoρ undness proofs nor the compiler
correctness p roofs in this paper are affected b y this drawback.
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