
Origami programming
Jeremy Gibbons

3

origami (ǫrigā·mi)
The Japanese art of making
elegant designs using folds

in all kinds of paper.
(From ori fold + kami paper.)

3.1 Introduction

One style of functional programming is based purely on recursive equations.
Such equations are easy to explain, and adequate for any computational pur-
pose, but hard to use well as programs get bigger and more complicated. In
a sense, recursive equations are the ‘assembly language’ of functional pro-
gramming, and direct recursion the goto. As computer scientists discov-
ered in the 1960s with structured programming, it is better to identify com-
mon patterns of use of such too-powerful tools, and capture these patterns
as new constructions and abstractions. In functional programming, in con-
trast to imperative programming, we can often express the new constructions
as higher-order operations within the language, whereas the move from un-
structured to structured programming entailed the development of new lan-
guages.

There are advantages in expressing programs as instances of common
patterns, rather than from first principles — the same advantages as for any
kind of abstraction. Essentially, one can discover general properties of the
abstraction once and for all, and infer those properties of the specific instances
for free. These properties may be theorems, design idioms, implementations,
optimisations, and so on.

In this chapter we will look at folds and unfolds as abstractions. In a pre-
cise technical sense, folds and unfolds are the natural patterns of computation
over recursive datatypes; unfolds generate data structures and folds consume
them. Functional programmers are very familiar with the foldr function on
lists, and its directional dual foldl; they are gradually coming to terms with
the generalisation to folds on other datatypes (IFPH §3.3, §6.1.3, §6.4). The

Jeremy Gibbons
Text Box
From "The Fun of Programming" (Jeremy Gibbons and Oege de Moor, editors), Palgrave, 2003

42 The Fun of Programming

computational duals, unfolds, are still rather unfamiliar [45]; we hope to show
here that they are no more complicated than, and just as useful as, folds,
and to promote a style of programming based on these and similar recursion
patterns.

We explore folds and unfolds on lists, numbers and trees. In fact, a single
generic definition of fold can be given once and for all such datatypes, and
similarly for unfold. This fact has been promoted in the world of functional
programming by Meijer and others [93]; for a tutorial introduction, see [44], or
in a different style, [12]. However, such ‘generic origami’ is beyond the scope
of this chapter.

3.2 Origami with lists: sorting

The most familiar datatype in functional programming is that of lists. In-
deed, from one perspective, functional programming is synonymous with list
processing, as reflected in the name of the first functional programming lan-
guage, LISP. Haskell has a built-in datatype of lists, with a special syntax to
aid clarity and brevity. In this chapter, we will not make use of the special
privileges enjoyed by lists; we will treat them instead on the same footing as
every other datatype, in order to emphasise the commonalities between the
different datatypes.

We will start our exploration of origami programming with some algo-
rithms for sorting lists. As pointed out by Augusteijn [2], a number of sorting
algorithms are determined purely by their recursion pattern; in some fortu-
nate cases, once the recursion pattern has been fixed, there are essentially no
further design decisions to be made. Evidently, therefore, it is important to
be familiar with recursion patterns and their properties: this familiarity may
lead a programmer straight to an algorithm.

Recall (IFPH §4.1.1) that lists may be defined explicitly via the following
datatype declaration:

data List α = Nil | Cons α (List α)

As a concession to Haskell’s special syntax, we will define a function wrap for
constructing singleton lists:

wrap :: α → List α
wrap x = Cons x Nil

We also define a function nil for detecting empty lists:

nil :: List α → Bool
nil Nil = True
nil (Cons x xs) = False

3 Origami programming 43

Folds for lists

The natural fold for lists may be defined as follows:

foldL :: (α→ β→ β) → β → List α → β
foldL f e Nil = e
foldL f e (Cons x xs) = f x (foldL f e xs)

This is equivalent to Haskell’s foldr function; the ‘L’ here is for ‘list’, not for
‘left’.

The crucial fact about foldL is the following universal property:

h = foldL f e
�

h xs = case xs of
Nil →e
Cons y ys →f y (h ys)

(Recall that Haskell’s case expression matches a value against each of a se-
quence of patterns in turn, yielding the right-hand side corresponding to the
first successful match.)

Exercise 3.1 Using the universal property, prove the fusion law: for strict h,

h · foldL f e = foldL f ′ e′

⇐
(h (f a b) = f ′ a (h b)) ∧ (h e = e′)

Why does the law not hold for non-strict h? Where does the proof break down?
�

Exercise 3.2 Define as instances of foldL equivalents of the standard prelude
functions map, ++ and concat :

mapL :: (α → β) → List α → List β
appendL :: List α → List α → List α
concatL :: List (List α) → List α

�

Exercise 3.3 As a corollary of the general fusion law, and using your answer
to Exercise 3.2, prove the map fusion law

foldL f e · map g = foldL (f · g) e

�

One classic application of foldL is the insertion sort algorithm [80, §5.2.1],
as discussed in IFPH Exercise 4.5.4 and §5.2.4. This may be defined as follows:

44 The Fun of Programming

isort :: Ord α ⇒ List α → List α
isort = foldL insert Nil

where
insert :: Ord α ⇒ α → List α → List α
insert y Nil = wrap y
insert y (Cons x xs)

| y < x = Cons y (Cons x xs)
| otherwise = Cons x (insert y xs)

IFPH defines insert using takeWhile and dropWhile, but we make the recursion
pattern explicit so that we can study it.

Exercise 3.4 The fact that insert y (Cons x xs) sometimes requires xs as well
as insert y xs means that insert y is difficult to write as an instance of foldL.
However, the tupled function insert1 satisfying

insert1 y xs = (xs, insert y xs)

can be written straightforwardly as a fold; show how. �

Exercise 3.5 As we have just seen, the value of insert y (Cons x xs) depends
not only on the result insert y xs of a recursive call on a substructure, but
also on the substructure xs itself. Our solution above is to define a new func-
tion that returns both of these; afterwards we can discard the one we do not
want. An alternative solution is to capture this modified recursion pattern
explicitly as a higher-order operator; in this case, the operator is known as a
paramorphism [92]. In the case of lists, we could define

paraL :: (α → (List α, β) → β) → β → List α → β
paraL f e Nil = e
paraL f e (Cons x xs) = f x (xs, paraL f e xs)

Here, the argument f takes a copy of the tail xs along with the result paraL f e xs
of the recursive call on that tail. Define insert as an instance of paraL. �

Unfolds for lists

The dual of folding is unfolding. The Haskell standard List library defines the
function unfoldr for generating lists:

unfoldr :: (β → Maybe (α,β)) → β → [α]

Here, an instance of the type Maybeα may or may not have an instance of the
type α:

data Maybeα = Just α | Nothing

We define an equivalent of unfoldr for our list datatype:

3 Origami programming 45

unfoldL′ :: (β → Maybe (α,β)) → β → List α
unfoldL′ f u = case f u of

Nothing →Nil
Just (x,v)→Cons x (unfoldL′ f v)

Sometimes it is convenient to provide the single argument of unfoldL′ as
three components: a predicate indicating when that argument should return
Nothing, and two functions yielding the two components of the pair when it
does not. The resulting function unfoldL takes a predicate p indicating when
the seed should unfold to the empty list, and for when this fails to hold,
functions f giving the head of the list and g giving the seed from which to
unfold the tail:

unfoldL :: (β → Bool) → (β → α) → (β → β) → β → List α
unfoldL p f g b = if p b then Nil else Cons (f b) (unfoldL p f g (g b))

Exercise 3.6 Express unfoldL in terms of unfoldL′, and vice versa. �

The crucial fact about unfoldL is the universal property

h = unfoldL p f g
�

h b = if p b then Nil else Cons (f b) (h (g b))

Exercise 3.7 Using the universal property, prove the fusion law:

unfoldL p f g · h = unfoldL p′ f ′ g′

⇐
(p · h = p′) ∧ (f · h = f ′) ∧ (g · h = h · g′)

�

Conversely, one could define a function foldL′ taking a single argument of
type Maybe (α,β) → β in place of foldL’s two arguments:

foldL′ :: (Maybe (α, β) → β) → List α → β
foldL′ f Nil = f Nothing
foldL′ f (Cons x xs) = f (Just (x, foldL′ f xs))

These primed versions make the duality between the fold and the unfold very
clear, although they may sometimes be less convenient for programming with.

Exercise 3.8 Define foldL′ in terms of foldL, and vice versa. �

Exercise 3.9 The adaptation of the single-argument fold and unfold to the
multi-argument interface is simplified by functions of the following types:

46 The Fun of Programming

foldLargs :: (α→ β → β) → β → (Maybe (α,β)→ β)
unfoldLargs :: (β→ Bool) → (β → α) → (β→ β) → (β→ Maybe (α,β))

Implement these two functions. �

One sorting algorithm expressible as a list unfold is selection sort [80,
§5.2.3], which operates by at each step removing the minimum element of the
list to be sorted, but leaving the other elements in the same order. We first
define the function delmin to do this removal:

delmin :: Ord α ⇒ List α → Maybe (α, List α)
delmin Nil = Nothing
delmin xs = Just (y, deleteL y xs)

where
y = minimumL xs

Here, minimumL and deleteL are List equivalents of the standard library func-
tions minimum and delete:

minimumL :: Ord α ⇒ List α → α
minimumL (Cons x xs) = foldL min x xs

deleteL :: Eq α ⇒ α → List α → List α
deleteL y Nil = Nil
deleteL y (Cons x xs)

| y x = xs
| otherwise = Cons x (deleteL y xs)

Then selection sort is straightforward to define:

ssort :: Ord α ⇒ List α → List α
ssort = unfoldL′ delmin

Exercise 3.10 The case deleteL y (Cons x xs) requires both the tail xs and the
result deleteL y xs on that tail, so this function is another paramorphism. Re-
define deleteL using paraL. �

Exercise 3.11 In fact, delmin itself is a paramorphism. Redefine delmin using
paraL as the only form of recursion, taking care to retain the order of the
remainder of the list. �

There is another sorting algorithm with a very similar form, known as
bubble sort [80, §5.2.2]. The overall structure is the same — an unfold to lists —
but the body is slightly different. The function bubble has (of course) the same
type as delmin, but it does not preserve the relative order of remaining list
elements. This relaxation means that it is possible to define bubble as a fold:

3 Origami programming 47

bubble :: Ord α ⇒ List α → Maybe (α, List α)
bubble = foldL step Nothing

where
step x Nothing = Just (x, Nil)
step x (Just (y,ys))

| x < y = Just (x, Cons y ys)
| otherwise = Just (y, Cons x ys)

Exercise 3.12 Of course, the type Maybe (α, List α) is equivalent to simply
List α. Use this fact to define bubble to return a list instead, with the mini-
mum element bubbled to the top; one would deconstruct this list as a final
step. This definition might seem more natural to the imperative programmer
handicapped by an impoverished type system. �

Given bubble, bubble sort is very simple to define:

bsort :: Ord α ⇒ List α → List α
bsort = unfoldL′ bubble

Exercise 3.13 In fact, the function insert above can be defined as an unfold.
The idea is that the ‘state’ of the unfold consists of a pair: the list into which
to insert, and Maybe an element to be inserted. Initially there is an element
to insert; once it has been inserted, the remainder of the list is merely copied.
Complete the definition, using unfoldL′. �

Exercise 3.14 The characterisation of insert as an unfold is a bit unsatisfac-
tory, because once the correct position is found at which to insert the element,
the remainder of the list must still be copied item by item. The directly recur-
sive definition did not have this problem: one branch shares the remainder of
the original list without making a recursive call. This general pattern can be
captured as another recursion operator, known as an apomorphism [133, 132]:

apoL′ :: (β → Maybe (α, Either β (List α))) → β → List α
apoL′ f u = case f u of

Nothing →Nil
Just (x, Left v) →Cons x (apoL′ f v)
Just (x, Right xs)→Cons x xs

For non-empty lists, the generating function f yields Either a new seed, on
which a recursive call is made, or a complete list, which is used directly:

data Either α β = Left α | Right β

Define insert as an instance of apoL′. �

48 The Fun of Programming

Hylomorphisms

Unfolds generate data structures, and folds consume them; it is natural to
compose these two operations. The pattern of computation consisting of
an unfold followed by a fold is a fairly common one; for somewhat obscure
reasons, such compositions have been called hylomorphisms [93]. A simple
example of a hylomorphism is given by the factorial function: the factorial of
n is the product of the predecessors [n, n − 1, . . . ,1] of n, and so

fact = foldL (×) 1 · unfoldL (0) id pred

More elaborate examples of hylomorphisms (on trees) are provided by tradi-
tional compilers, which may be thought of as constructing an abstract syntax
tree (unfolding to the tree type) from which to generate code (folding the ab-
stract syntax tree).

We define

hyloL f e p g h = foldL f e · unfoldL p g h

and so we have

fact = hyloL (×) 1 (0) id pred

Now, hylomorphisms may be fused — the intermediate list argument need
never actually be constructed. This technique has been called deforesta-
tion [137], and may be performed automatically [46, 103] by a compiler. In
general, this gives

hyloL f e p g h b = if p b then e else f (g b) (hyloL f e p g h (h b))

and for factorial

fact n = if n 0 then 1 else n × fact (pred n)

as expected.

The converse pattern, of an unfold after a fold, does not seem to have re-
ceived much attention. One possible application is for dealing with structure
clashes [69], or more precisely for translation between data formats modelled
as recursive datatypes. The input data structure is folded into some encap-
sulated form, which is then unfolded out to the output data structure. Some
data compression algorithms can be expressed in terms of a fold, encoding a
structured message as unstructured data, followed by an unfold, decoding the
unstructured data to retrieve the message [16].

Exercise 3.15 Show how to convert from decimal (as a String) to binary (as a
List Bool) with a program in the form of an unfold after a fold. �

3 Origami programming 49

3.3 Origami by numbers: loops

If lists are the most familiar of recursive datatypes, then natural numbers are
the simplest:

data Nat = Zero | Succ Nat

Folds for naturals

Naturals, of course, have a corresponding fold:

foldN :: α → (α → α) → Nat → α
foldN z s Zero = z
foldN z s (Succ n) = s (foldN z s n)

This may not look very familiar to the working functional programmer, but if
we reverse the order of the three arguments we see that foldN is in fact an old
friend, the higher-order function that applies a given function of type α → α
a given number of times:

iter :: Nat → (α → α) → (α→ α)
iter n f x = foldN x f n

The function iter n is sometimes (IFPH §3.7) called the Church numeral of n.

Exercise 3.16 What is the single-argument version foldN ′ of foldN? Express
each in terms of the other. �

Exercise 3.17 What is the universal property of foldN , and what is the fusion
law? �

Exercise 3.18 Express addN , mulN and powN — binary operators for addi-
tion, multiplication and exponentiation on Nat — using foldN . �

Exercise 3.19 The function predN :: Nat → Maybe Nat, which returns the
predecessor of a number (or Nothing as the predecessor of Zero) is easily
expressed by pattern matching:

predN :: Nat → Maybe Nat
predN Zero = Nothing
predN (Succ n) = Just n

Express it instead as an instance of foldN . In fact, this result can be generalised
considerably; how? �

Exercise 3.20 Using the previous exercise, define

50 The Fun of Programming

subN :: Nat → Nat → Maybe Nat

as an instance of foldN , and hence define

eqN , lessN :: Nat → Nat → Bool

�

Unfolds for naturals

The dual function again may look unfamiliar:

unfoldN ′ :: (α → Maybeα) → α → Nat
unfoldN ′ f x = case f x of

Nothing →Zero
Just y →Succ (unfoldN ′ f y)

However, we can do the same here as we did for list unfolds, splitting the
single argument into simpler components:

unfoldN :: (α → Bool) → (α → α) → α → Nat
unfoldN p f x = if p x then Zero else Succ (unfoldN p f (f x))

Then we find another old friend: this is the minimisation function from re-
cursive function theory, which takes a predicate p, a function f , and a value x,
and computes the least number n such that p (iter n f x) holds.

Exercise 3.21 Express unfoldN in terms of unfoldN ′, and vice versa. �

Exercise 3.22 What is the universal property of unfoldN , and what is the fu-
sion law? �

Exercise 3.23 Define divN :: Nat → Nat → Nat as an instance of unfoldN , or
if you prefer, of unfoldN ′. �

Exercise 3.24 Hence define logN :: Nat → Nat as an instance of unfoldN .
(Hint: define it to round down). �

Beyond primitive recursion

Apparently, therefore, in the presence of higher-order functions, simple folds
and unfolds on natural numbers provide a power beyond primitive recursion
(which cannot express minimisation). Indeed, using only folds and unfolds on
naturals, we can capture the full power of iterative imperative programs. The
standard prelude function until repeatedly applies a given function of type
α → α until the result satisfies a given predicate, and so is the functional
equivalent of the while loop of imperative programming; it is well-known
that repetition, alternation and composition of suitable primitive statements

3 Origami programming 51

makes a complete programming language. We might define an equivalent as
follows:

untilN :: (α → Bool) → (α → α) → α → α
untilN p f x = foldN x f (unfoldN p f x)

At first sight, this appears somewhat different from the prelude’s definition:

until :: (α → Bool) → (α → α) → α → α
until p f x = if p x then x else until p f (f x)

Our definition first computes the number of iterations that will be required,
and then iterates the loop body that many times; the prelude’s definition uses
but a single loop. Nevertheless, as the following series of exercises shows, the
prelude’s definition arises by deforesting the number of iterations — at least,
for strict f .

Exercise 3.25 Give the deforested version of the number hylomorphism

hyloN ′ :: (Maybeα → α) → (α → Maybeα) → α → α
hyloN ′ f g = foldN ′ f · unfoldN ′ g

�

Exercise 3.26 The function untilN is not in quite the right form for deforesta-
tion, because the argument x is duplicated. We define a version that separates
the two copies of the argument:

untilN2 :: (α → Bool) → (α→ α) → α → α → α
untilN2 p f x y = foldN x f (unfoldN p f y)

so that

untilN p f x = untilN2 p f x x

Use fusion to prove that

untilN2 p f x y = if p y then x else untilN2 p f (f x) (f y)

and hence deduce that

untilN p f x = if p x then x else untilN p f (f x)

�

Exercise 3.27 How do until p f and untilN p f differ for non-strict f ? �

Exercise 3.28 Meijer and Hutton [94] provide another explanation of compu-
tational adequacy. The fixpoint fix f of a recursive function is the infinite
application f (f (. . .)). Show how to compute this as a list hylomorphism. �

52 The Fun of Programming

3.4 Origami with trees: traversals

Let us now turn our attention to trees, and in particular, rose trees, in which
every node has a list of children. We call a list of rose trees a forest, so the
types Rose and Forest are mutually recursive:

data Roseα = Nodeα (Forest α)
type Forest α = List (Roseα)

(This is essentially identical to the type Rose in IFPH §6.4, except that we have
also provided a name for forests.)

Folds for trees and forests

Since the types of trees and forests are mutually recursive, it seems ‘sweetly
reasonable’ that the folds too should be mutually recursive:

foldR :: (α → γ → β) → (List β → γ) → Roseα → β
foldR f g (Node a ts) = f a (foldF f g ts)

foldF :: (α → γ → β) → (List β → γ) → Forest α → γ
foldF f g ts = g (mapL (foldR f g) ts)

Because of the mutual recursion, as well as the function each uses to make
progress, it must also be given the function it must pass to its partner; there-
fore, both take the same pair of functions.

Exercise 3.29 IFPH §6.4 defines instead a function

foldRose :: (α → List β → β) → Roseα → β
foldRose f (Node a ts) = f a (mapL (foldRose f) ts)

Show that this is equivalent to what we have defined: that is, define foldRose
in terms of foldR and foldF , and vice versa. �

Exercise 3.30 Give the universal properties for foldR and foldF , and state and
prove the corresponding fusion laws. �

Unfolds for trees and forests

Similarly, there is a mutually recursive pair of unfold functions, both taking
the same functional arguments. In this case, the arguments generate from a
seed a root label and a list of new seeds; the two unfolds grow from a seed a
tree and a forest respectively.

unfoldR :: (β→ α) → (β → List β) → β → Roseα
unfoldR f g x = Node (f x) (unfoldF f g x)

3 Origami programming 53

unfoldF :: (β → α) → (β→ List β) → β → Forest α
unfoldF f g x = mapL (unfoldR f g) (g x)

For convenience in what follows, we define separate destructors for the root
and the list of children of a tree.

root :: Roseα → α
root (Node a ts) = a

kids :: Roseα → Forest α
kids (Node a ts) = ts

Depth-first traversal

Because folds on trees and on forests are mutually recursive with the same
functions as arguments, a common idiom when using them is to define the
two simultaneously as a pair of functions. For example, consider performing
the depth-first traversal of a tree or a forest. The traversal of a tree is one item
longer than the traversal of its children; the traversal of a forest is obtained
by concatenating the traversals of its trees.

dft :: Roseα → List α
dff :: Forest α → List α
(dft,dff) = (foldR f g, foldF f g)

where
f = Cons
g = concatL

Exercise 3.31 Depth-first traversal expressed in this way is inefficient; why?
A more efficient version can be calculated via fusion; how? �

Breadth-first traversal

Depth-first traversal is in a sense the natural traversal on trees; in contrast,
breadth-first traversal goes ‘against the grain’. We cannot define breadth-first
traversal as a fold in the same way as we did for depth-first traversal, because
it is not compositional — it is not possible to construct the traversal of a forest
from the traversals of its trees.

The usual implementation of breadth-first traversal in an imperative lan-
guage involves queues. Queuing does not come naturally to functional pro-
grammers, although Okasaki [100] has done a lot towards rectifying that sit-
uation. In contrast, depth-first traversal is based on a stack, and stacks come
for free with recursive programs.

54 The Fun of Programming

Level-order traversal

However, one can make some progress: one can compute the level-order traver-
sal [41, 42] compositionally. This yields not just a list, but a list of lists of
elements, with one list for each level of the tree (see IFPH §6.4.2).

levelt :: Roseα → List (List α)
levelf :: Forest α → List (List α)
(levelt, levelf) = (foldR f g, foldF f g)

where
f x xss = Cons (wrap x) xss
g = foldL (lzw appendL)Nil

The level-order traversal of a forest is obtained by gluing together the traver-
sals of its trees; two lists of lists may be glued appropriately by concatenat-
ing corresponding elements. This gluing is performed above by the function
lzw appendL (called ‘combine’ in IFPH §6.4.2). The identifier lzw here stands
for ‘long zip with’; it is like the zipWith function from the standard prelude, but
returns a list whose length is the length of the longer argument, as opposed
to that of the shorter one.

lzw :: (α → α → α) → List α → List α → List α
lzw f Nil ys = ys
lzw f xs Nil = xs
lzw f (Cons x xs) (Cons y ys) = Cons (f x y) (lzw f xs ys)

Exercise 3.32 Write lzw as an unfold. �

Exercise 3.33 While the characterisation of lzw as an unfold is extensionally
equivalent to the directly recursive definition, it takes longer to execute — in
fact, time proportional to the length of the longer argument, since it must copy
the tail of the longer list. Redefine lzw in terms of apoL′, so that it takes time
proportional to the length of the shorter argument instead. �

Of course, having obtained the level-order traversal of a tree or a forest,
it is straightforward to obtain the breadth-first traversal: simply concatenate
the levels.

bft :: Roseα → List α
bft = concatL · levelt

bff :: Forest α → List α
bff = concatL · levelf

Accumulating parameters

The naive definitions above of levelt and levelf are inefficient, because of the
repeated list concatenations.

3 Origami programming 55

Exercise 3.34 What is the time complexity of these naive definitions of levelt
and levelf ? �

The standard accumulating parameter technique [14] can be used here. In
each case, the accumulating parameter is a list of lists; the specifications of
the two new functions are

levelt′ :: Roseα → List (List α) → List (List α)
levelt′ t = lzw appendL (levelt t)

levelf ′ :: Forest α → List (List α) → List (List α)
levelf ′ ts = lzw appendL (levelf ts)

Exercise 3.35 Derive, using the fusion laws for folds on lists and trees, effi-
cient accumulating-parameter programs for levelt′ and levelf ′. �

Exercise 3.36 The programs derived in the previous exercise take linear time,
provided that the efficient version of lzw is used, rather than the inefficient
one defined as an unfold. What is the time complexity of levelt′ and levelf ′

when the inefficient definition of lzw as an unfold is used? �

Exercise 3.37 In effect, the accumulating parameter optimisation above is
a data refinement, using lzw appendL xss :: List (List α) → List (List α) as a
‘novel representation’ [65] of a lists of lists xss. As an alternative, use Hughes’
representation of lists as list transformers directly, deriving programs of type

levelt′′ :: Roseα → List (List α → List α)
levelf ′′ :: Forest α → List (List α → List α)

What is the abstraction function for the result type List (List α → List α)? That
is, how does one turn something of this type back into a list of lists? �

Level-order traversal as an unfold

We’ve seen that levelt and levelf can be expressed as folds over trees and
forests in a variety of ways. In fact, they can also be expressed as unfolds to
lists.

Exercise 3.38 Use the universal property of unfoldL to derive the characteri-
sation

levelf = unfoldL nil (mapL root) (concatL · mapL kids)

of levelf as an unfold. How can levelt be expressed using unfolds? �

Exercise 3.39 We now have that bff is a fold (concatL) after an unfold (levelf).
Using these facts, define bff as an instance of hyloL, and deforest the interme-
diate list of lists. �

56 The Fun of Programming

Exercise 3.40 IFPH Exercise 6.4.5 sets as a ‘difficult exercise in synthesis’ the
problem of deriving the standard queue-based traversal algorithm:

bff = unfoldL nil first rest
where

first (Cons t ts) =root t
rest (Cons t ts) =appendL ts (kids t)

In fact, it is a simple consequence of the universal property of unfoldL, given
the crucial property of lzw that, for associative f ,

foldL f e (lzw f (Cons x xs) ys) = f x (foldL f e (lzw f ys xs))

Prove this crucial property (by induction on the combined length of xs and ys),
and complete the derivation. �

3.5 Other sorts of origami

We conclude this chapter with two other sorting algorithms with interesting
algorithmic structure, shell sort and radix sort.

Shell sort

Insertion sort is a very simple and elegant sorting algorithm, but it is rather
inefficient. When implemented in terms of arrays, the actual insertion is per-
formed by repeated exchanges between adjacent elements; many exchanges
are required to move an element a long distance. Shell sort [117] improves on
insertion sort by allowing exchanges initially between distant elements.

Shell sort is based on h-sorting the list, for various values of h. A list
is h-sorted if, for each value of i, the subsequence of elements at positions
i, i + h, i + 2h, . . . is sorted. By h-sorting initially for some large values of
h, it becomes easier to h-sort for smaller values of h, because out-of-order
elements have a shorter distance to move. Shell sort consists of h-sorting for
a decreasing sequence of increments h, ending with 1: a 1-sorted list is sorted.
Good increment sequences are known, but the problem of determining an
optimal increment sequence is still open [112].

In a functional setting, the simplest way to describe h-sorting a list is as
unravelling the list into h sublists, sorting each, then ravelling the sublists
together again.

Exercise 3.41 Ravelling and unravelling is essentially a matter of transposition
of a list of lists. Define the function

trans :: List (List α) → List (List α)

twice, once as an instance of foldL and once of unfoldL. �

3 Origami programming 57

Given trans, ravelling is simple:

ravel :: List (List α) → List α
ravel = concatL · trans

Unravelling is a bit trickier, as it requires a pre-inverse to concat to split a
list into consecutive sublists of a given length (the last sublist possibly being
shorter).

Exercise 3.42 Define functions

takeL, dropL :: Nat → List α → List α

as analogues of the Haskell prelude functions take and drop. (Hint: write takeL
as a List unfold, and dropL as a Nat fold.) Hence define

unravel :: Nat → List α → List (List α)

�

Exercise 3.43 Using unravel and ravel, define a function

hsort :: Ord α ⇒ Nat → List α → List α

to perform a single h-sort, and a function

shell :: Ord α ⇒ List Nat → List α → List α

to compose the h-sorts for each of a sequence of increments. �

Exercise 3.44 Can the ravel of one hsort and the unravel of the next be fused
as a hylomorphism? �

Exercise 3.45 All that remains is to choose a sequence of increments. The
asymptotically best known increment sequence, due to Pratt [108], consists of
all increments of the form 2p 3q less than the list length N ; for this sequence,
Shell sort takes Θ(N(log N)2) time. Define using unfoldL a function

incs :: Nat → List Nat

yielding this sequence of increments, given the length of the list to be sorted.
You might want to use Integer rather than Nat for the arithmetic. (Hint: it is
similar to the so-called Hamming Problem (IFPH §9.4.3).) �

Exercise 3.46 Although asymptotically optimal, Pratt’s sequence is not com-
petitive in practice because of constant factors. For N < 1000, Knuth [80,
§5.2.1] recommends the sequence h0,h1, . . . with h0 = 1, hi+1 = 3hi + 1, stop-
ping with the first ht−1 for which 3ht � N . Redefine incs, again using unfoldL,
to yield this sequence instead. �

58 The Fun of Programming

Now we can complete the definition of Shell sort:

shellsort :: Ord α ⇒ List α → List α
shellsort xs = shell (incs (lengthL xs)) xs

where
lengthL =foldL (const Succ) Zero

Radix sort

In this section, we consider a different kind of sorting algorithm: one that is not
based on comparisons at all. Rather, the algorithm is based on the assumption
that the elements to be sorted are records, distinguished on the basis of a
collection of fields, and each field is of a type that is ordered, enumerable and
bounded. For simplicity, we stick to the special case that all the fields have
the same type, but that is not strictly necessary. This section is based on [43].

To be more precise, we will look at two algorithms for permuting a list so
that it is lexically ordered with respect to a list of field-extracting functions.
The function lexle performs the comparison, given such a list and two records:

lexle :: Ord β ⇒ List (α → β) → α → α → Bool
lexle = foldL step (const (const True))

where
step d f x y =(d x < d y) ∨ ((d x d y) ∧ f x y)

A canonical example is where, say, the elements to be sorted are three-digit
numbers, and the three fields are the three digits, most significant first.

The obvious algorithm for sorting a list of records in this way might be
called bucket sort. It proceeds by partitioning the given list into buckets ac-
cording to the first field, with one bucket for each possible value of the field.
Each bucket is recursively sorted on the remaining fields, and the resulting
lists are concatenated. Thus, we are effectively growing a tree of more and
more refined lists, and then flattening the tree.

We will use the following type of tree:

data Treeα = Leaf α | Branch (List (Treeα))

Here, the internal nodes are unlabelled, and all the elements are at the leaves.
The intention is that each list of children should be non-empty, but we haven’t
gone to the bother here of defining a separate type of non-empty lists.

Exercise 3.47 Give definitions of the fold foldT and unfold unfoldT for this
type of tree. What are the fusion laws and the hylomorphism? �

The crucial ingredient in bucket sort is the function ptn, which takes a
discriminator of type α → β (for some bounded, enumerable type β) and a list
of αs, and partitions the list into a list of lists, one for each value in β:

3 Origami programming 59

ptn :: (Bounded β, Enum β) ⇒ (α → β) → List α → List (List α)
ptn d xs = mapL (pick d xs) rng

where
pick :: Enum β ⇒ (α → β) → List α → β → List α
pick d xs m =filterL ((fromEnum m) · fromEnum · d) xs

where rng and filterL are defined below.

Exercise 3.48 Define as an instance of unfoldL the polymorphic constant

rng :: (Bounded α, Enumα) ⇒ List α

consisting of all the values between the lower and upper bound, inclusive. (Be
careful: maxBound will typically not have a successor!) �

Exercise 3.49 Define as an instance of foldL a List analogue filterL of the stan-
dard prelude function filter . �

Exercise 3.50 Using ptn, define as an instance of unfoldT the function that
builds a tree by repeatedly partitioning a list of records, as described above.

mktree :: (Bounded β, Enum β) ⇒ List (α → β) → List α → Tree (List α)

�

We can now complete the definition of bucketsort:

bucketsort :: (Bounded β, Enum β) ⇒ List (α → β)→ List α → List α
bucketsort ds xs = flatten (mktree ds xs)

where
flatten =foldT id concatL

Exercise 3.51 Since flatten is a tree fold and mktree a tree unfold, bucketsort
is a hylomorphism. Use this observation to deduce that

bucketsort = foldL step id
where

step d f =concatL · mapL f · ptn d

�

The crucial step that gets us from here to radix sort is that ptn is stable,
preserving the relative order of elements in each bucket:

Exercise 3.52 Prove that

mapL (bucketsort ds) · ptn d = ptn d · bucketsort ds

(This is not easy, but if you get stuck you can refer to [43].) Hence deduce that

60 The Fun of Programming

bucketsort = foldL step id
where

step d f =concatL · ptn d · f

�

This is the classic radix sort algorithm: only a single list of values need be
maintained. In contrast, the original characterisation of bucketsort requires a
tree (or equivalently, a stack) of lists.

Exercise 3.53 An alternative, more complicated, route to the same destination
is taken in [43]. First, give an alternative definition of mktree as an instance
of foldL over the list of field-extracting functions. Now use foldL fusion to
promote the flatten into the fold. �

3.6 Chapter notes

Credit is owed to various colleagues for many of the examples used in this
chapter: Section 3.3 arose from conversations with Graham Hutton, Section 3.4
is joint work with Geraint Jones, and Section 3.5 was inspired by a program
written by Jeremy Jacob.

