The Power of Pi

Nicolas Oury Wouter Swicrstra

University of Nottingham
{npo,wss}®@cs.nott.ac.uk

Abstract

This paper exhibits the power of programming with dependent
types by dint of embedding three domain-specific languages: Cryp-
tol, a language for cryptographic protocols; a small data description
language; and relational algebra. Each example demonstrates par-
ticular design patterns inherent to dependently-typed programming.
Documenting these techniques paves the way for further research
in domain-specific embedded type systems.

Categories and Subject Descriptors D.1.1 [Programming Tech-
nigues]: Functional Programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages, Theory

1. Introduction

Dependent types matter. And not just for program verification and
proof assistants: dependent types matter to programmers. Whether
you want to interface to a database, write a webserver, or manipu-
late binary data, dependent types can make a difference.

This paper demonstrates how to program with dependent types.
In particular, we present three case studies. Each case study de-

scribes a domain-specific language that is difficult to embed in
conventional functional languages such as Haskell (Peyton Jones
2003):

e Wadler (1987) has recognised the importance of defining cus-
tom pattern matching principles for inductive data types. Such
views, when implemented in a language with dependent types,
carefully maintain the relation between the data being elimi-
nated and the custom patterns. We illustrate these techniques by
showing how to embed Cryptol (Galois, Inc. 2002), a high-level
specification language for low-level cryptographic algorithms,
in a dependently typed language (Section 2}. In particular, we
will write a domain-specific library for Cryptol’s most charac-
teristic feature: bitvectors of a fixed length equipped with a spe-
cial pattern matching principle.

* To facilitate processing data written in custom file formats,
there has been a great deal of research on data description
languages (Back 2002; McCann and Chandra 2000; Fisher and
Gruber 2005). Given a file format description, these languages
generate data types that represent the data stored in such custom
formats, together with a parser. Using dependent types, we will

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission andfor a fee.

ICFP'08, September 22-24, 2008, Victoria, BC, Canada.

Copyright © 2008 ACM 978-1-59593-919-7/08/09. .. $5.00

39

write a universe capturing a large collection of file formats,'
together with a generic parser and pretty printer for any file
format that can be described in this universe (Section 3).

® Despite numerous efforts (Leijen and Meijer 1999; Bringert
et al. 2004), Haskell does not have an elegant, strongly-typed
database interface. Existing libraries strike an awkward balance
between encoding static invariants using type classes and re-
sorting to dynamic type checking. We will write a type-safe
combinator library for database queries using dependent types
that does not require any kind of preprocessor or external tool
(Section 4).

We will not try to give a complete embedding of each of
these three domain-specific languages. Each of the above exam-
ples serves to introduce new concepts: the embedding itself is a
means, not an end. Despite this limitation, we make several novel
contributions:

o These examples document some of the emerging design pat-
terns of dependently-typed programming. This is an incipient
field of research with only a handful of recognised specialists.
Some of the design patterns, such as views and universes, have
been part of the community’s folklore for some time. This is the
first time they have been presented in a single, uniform fashion
with concrete, real-world examples that illustrate their impor-
tance.

® Our case studies show how domain-specific languages are an
important application domain of dependently-typed program-
ming. Besides embedding the ferms of a domain-specific lan-
guage, we show how to enforce invariants statically. Indeed, we

show how to write domain-specific embedded type systems. By
embedding such type systems we inherit all the meta-theoretical
properties, such as decidable type checking or subject reduc-
tion, of the host language. We believe this is a particularly ex-
citing new field of research, that enables the rapid prototyping
of type systems.

e Finally, we have tried to identify the key benefits that program-
ming with dependent types afford (Section 5). Our examples al-
ready illustrate some of the advantages that dependently-typed
programming languages hold over mainstream functional lan-
guages. We hope that making these advantages explicit will not
only help direct today’s research in the design of tomorrow’s
functional languages, but also enable programmers to use de-
pendent types to greater effect.

Throughout this paper, we will use the latest installment of the
dependently-typed programming language Agda (Norell 2007; The
Agda Team 2008) as a vehicle of explanation. The code we present
has been type-checked and can be executed on the computer sitting
on your desktop.

2. Domain-specific Embedded Cryptol

Cryptol (Galois, Inc. 2002) is a domain-specific language for cryp-
tographic protocols developed by Galois, Inc. in consultation with
cryptographers from the National Security Agency. It provides de-
velopers with a high-level, declarative specification language for
low-level cryptographic algorithms. Such cryptographic algorithms
perform various manipulations on sequences of bits. From a pro-
gramming language designer’s perspective, Cryptol has two distin-
guishing characteristics to facilitate these manipulations:

¢ The length of a sequence of bits is recorded in its rype. This

makes it impossible to mistake a 32-bit word for a 64-bit word,
for example. Such sequences may be written using binary, dec-
imal, octal, or hexadecimal constants. In Cryptol, we could de-
fine a number x as follows:

z:[8];
T = 42;

The constant % is an 8-bit word, written [8], defined to be equal
to (the binary representation of) 42,

Crypto-algorithms often split a word into pieces, manipulate the
pieces, and then join them together again. Cryptol has special
pattern-matching support that makes it easier to write such
functions. For example, the swab function in Cryptol swaps the
first and second byte of a 32-bit word:

swab : [32] — [32];
swab [a b ed]=[bacd]

Note that the length of the pattern [a & ¢ d] determines the
size of its constituent variables. We could also have written the
pattern [a b], and both @ and b would be 16-bit words.

These are Cryptol’s two most distinguishing characteristics. Apart
from these features, Cryptol consists of a simple, pure, first-order
functional language with various kinds of syntactic sugar, such as
list comprehensions and a special notation for polynomials.

It is important to emphasise that Cryptol is nor a domain-
specific embedded language. Galois, Inc. have specifically devel-
oped a Cryptol interpreter and compiler—a task that certainly en-
tails considerable development effort. To embed Cryptol in any
other language, the principal challenge we must face is facilitating
Cryptol’s pattern matching on bit vectors. Before we tackle this
problem, we need to describe the syntax of Agda.

2.1 Introducing Agda

In Agda, new data types can be defined using a syntax similar
to Haskell's syntax for GADTs (Peyton Jones et al. 2006). For
example, we could define the natural numbers as follows:

data Nat : Set where
Zero : Nat
Succ : Nat — Nat

The Nat data type has two constructors: Zere and Succ. Note
that we must explicitly give the type of the Nat data type. In this
instance, Nat : Set means that Nat is a base type. Programmers
familiar with Haskell may want to think of the Agda type Set as *,
the kind of all base types. Agda allows us to use integer literals to
write these numbers.

We can define functions over natural numbers using pattern
matching and recursion. For instance, we could define addition as
follows:

—+ —: Nat — Nat — Nat
Zero +n=n

(Succ k) 4+ n = Suce (kK + n)

Agda uses underscores to denote the positions of arguments when
defining new operators. Using this notation, it is possible to define

infix, postfix, or even mixfix operators.

Polymorphic lists are a little bit more interesting than natural

numbers.
data List (A : Set) : Set where
Nil: List A
Cons: A — List A — List A

We can parameterise a data type by listing its arguments immedi-
ately after the data types name. In this example, we have parame-
terised the type of lists by a type variable A of type Set.

Just as we added natural numbers, we can append two lists:

append : (A: Set) — List A — List A — List A

append A Nil ys = ys

append A (Cons z zs) ys = Cons z (append A zs ys)
Note that the type of append uses the dependent function space, or
TI-type, written (x :) — 7, where the variable z may occur in the
type 7. The crucial difference from the usual function space, as is
present in Haskell, is its elimination rule:

F'Fer:(z:0)—=7 I'Fea:o
T'keres: 7|z eg)

The resulting fype of the application e; ez now depends on the
value of the argument eo. The use of the dependent function space
in the append function is not very interesting: it corresponds to
parametric polymorphism.

It can be quite tedious to instantiate type variables, such as A
in the append function, by hand. Agda allows you to mark certain
arguments as implicit by enclosing them in curly braces. Agda will
automatically instantiate these arguments, much in the same way
a Haskell compiler automatically instantiates type variables. Using
implicit arguments, our append function becomes:

append : {A: Set} — List A— List A — List A
append Nil ys =ys
append (Cons z zs) ys = Cons = (append xs ys)

Besides parameterising data types, we can also index data types

'by values. The classic example of an indexed family is the type of '
vectors:

data Vec (A : Set) : Nat — Set where
Nil: Vec A Zero
—u_:{n:Nat} - A — Vec An — Vec A (Succ n)

The Vec type takes two arguments: a type and a number. The Vec
type is indexed by this number, but parameterised by the type A.
Like GADTs in Haskell, the codomains of the constructors of Vec
are different. Unlike GADTSs, however, Agda’s indexed families
cannot only be indexed by fypes but may also be indexed by values.

Just as we declared infix operators, we can declare infix con-
structors by writing underscores to denote the positions of argu-
ments. Note that Agda allows us to use the same constructor name,
Nil, for different data types. We will be asked to add an explicit
type signature if there is any ambiguity.

Once again, we can define an operation to append two vectors:

—H_:forall {Amn}—

Vec Am — Vec An— Vec A (m+n)
Nil H ys = ys
(z::z5) H# ys =z :: (zs H ys)

Here we use the keyword forall to group together several implicit
arguments and omit their types. We will occasionally use the forall-
notation to make our type signatures easier to read. Note that there
is no restriction on the type of implicit arguments: we have made n

and m implicit arguments, despite being numbers and not types.

‘When programming with dependent types the type checker
sometimes needs to perform evaluation: it would be rather unfortu-
nate if Vec A 3and Vec A (1 + 2) were distinct types. To ensure
type checking remains decidable, Agda requires you to write to-
tal functions, that is, your function definitions must be obviously

'structura]ly recursive and cover all case alternatives. If you fail to
do so, Agda warmns you that your definition is dubious and may
cause the type checker to loop.

2.2 Embedding Cryptol’s Types

‘We can now begin to embed Cryptol in Agda. A binary word is
simply a vector of bits:

data Bit : Set where
O: Bit
I : Bit
Word : Nat — Set
Word n = Vec Bit n

Introducing Cryptol’s pattern matching principle on a Word re-
quires a bit more effort. Before we define such a view, we need to
understand how pattern matching works in the presence of depen-
dent types.

2.3 Pattern matching in the presence of dependent types

With the introduction of GADTS, pattern matching in Haskell has
become more subtle. Consider the following Haskell data type:

data Fzpr o where
B : Bool — Expr Bool
I :Int — Ezpr Int

We can write a simple evaluation function for this mini-language:

eval :: Ezpr a — «
eval ¢ = case € of
Bb—b
Iz —=x

The two case branches have different types. This is quite surprising:
pattern matching may suddenly introduce equations between fypes.

In the presence of dependent types, pattern matching may introduce
equations between values, as we will show next.
Suppose we define the following data type:

data _=_ {A:S5et}: A — A — Set where
Refl:{z: A} —wz=1z

A value of type (z = y) corresponds to a proof that z and y
are equal. The =-type is parameterised by an implicit type A and
indexed by two values of that type. It has a single constructor, Refl,
that corresponds to a proof that any x is equal to itself. This type
plays a fundamental role in type theory (Nordstrom et al. 1990).

Whenever we pattern match on such a proof, we learn how
two values are related. For example, suppose we want to write the
following function:

fi(z:Nat) — (y: Nat) — (p:2=y) — Nat

What patterns should we write for z, y and p? Clearly, p must
be Refl. As soon as we match on p, however, we learn something
about x and y, i.e., they must be the same. Throughout this paper,
we will write this as follows:

fz|z] Refl=..

The pattern |z] means ‘the value of this argument can only be
equal to ." In Agda you must currently write out how the different

41
patterns relate by hand; Epigram (McBride and McKinna 2004),
on the other hand, demonstrated that this process can be automated.
Occasionally, we may not be interested in the information we learn,
in which case we will use the underscore as a wildcard pattern:

fz_Refl=..

While not strictly necessary, we believe that writing out patterns
such as |z explicitly serves as important, machine-checked docu-
mentation of what we learn from pattern matching.

2.4 Views

As the last section shows, dependent types change the way we must
think about pattern matching. Unfortunately, we are still no closer
to defining Cryptol’s special pattern matching principle on vectors.
Before we do so, we will cover a simpler example. The techniques
we present are not new (McBride and McKinna 2004), although
their application is.

The traditional definition of lists that we gave in Section 2.1
is biased: it’s easy to recurse over the list starting from the front.
Recursing in the other direction, back to front, is a bit awkward.
Let us address this imbalance by defining a ‘snoc-view’ that allows
programmers to recurse over a list, starting with the last element.

We begin by defining the Snoc View data type:

data SnocView {A: Set}: List A — Set where
Nil : SnocView Nil
Snoc: (zs: List A) — (z: A) —
SnocView (append zs (Cons x Nil))

This SnocView type is indexed by a list. The constructors corre-
spond to the patterns, Snoc and Nil, that we want to pattern match.
The index itself relates these patterns to a ‘regular list.” The pattern
Nil corresponds to the empty list; the pattern Snoc zs T corre-
sponds to the list append zs (Cons = Nil).

Next, we need to define a function wiew that takes any list zs
and produces a value of type SnocView xs.

view: {A: Set} — (zs: List A) — SnocView zs

view Nil = Nil

view {Cons z zs) with view s
view (Cons z | Nil]) | Nil
= Snoc Nil z

view {Cons z |append ys (Cons y Nil)|) | Snoc ys y
= Snoc (Cons z ys) y

The case for the empty list is easy. If the list is non-empty, we need
to pattern maich on a recursive call to view xs. Agda’s notation for
case-expressions will probably look a bit unfamiliar.

In the previous section, we saw how pattern matching can intro-
duce equalities between a function’s arguments. Suppose we were
to write case-expressions using the syntax of Haskell or ML:

view (Cons = xs) =

case (view xs5) of
(Vi) — ..
(Snoc ys y) — ...

When we pattern match on the call to view zs, however, we learn
sormething about zs: in the first branch we know that xs is empty;
in the second branch, zs is constructed by adding an element y to
the end of a list ys. In the case expression above, however, this
new information is not made apparent in the pattern Cons z zs.
Therefore, it makes sense to repeat all a function’s arguments for
every branch of a case-expression. Agda’s with-rule (McBride and
McKinna 2004; Norell 2007) does precisely this.

After the left-hand side of a function definition, the keyword
with marks the beginning of another expression on which you
want to pattern match. The subsequent clauses defining the func-
tion repeat the entire left-hand side of the function, followed by
a vertical bar that marks the beginning of the new pattern. In
the view function, for example, we pattern match on the recur-

sive call view xs with the patterns Né and Snoc ys y. In
both cases, we learn what zs must be: if view zs is Nil, then
zs is empty; if view zs is Snoc ys y, then 2s is equal to
append ys (Cons y Nil).

Once you understand the syntax of the with-rule, the definition
of the wiew function should be straightforward. In the non-empty
case, Cons z xs, we check whether or not z is the last element. If
z is the last element, we return Snoc Nil z; if the rest of the list zs
is not empty, we know it is built by adding an element y to the end
of the prefix ys, and return Snoc (Cons © ys) y accordingly.

To view a list backwards, we simply call the view function and
pattern match on the result. For example, we may want to rotate a
list one step to the right, removing the last element and adding it to
the front;

rotateRight : { A: Set} — List A — List A
rotateRight xs with view xs

rotate Right | Nil] | Vil
= Nil

rotateRight | append ys (Cons y Nil)| | Snoc ys y
= Cons y ys

It is important to emphasise that the patterns | Nil| and | append
ys (Cons y Nil}] can be inferred automatically. Alternatively, we
could have replaced them by underscores; the only part the user is
responsible for writing is view zs and the right-hand sides of the
equations. Using the Agda interpreter, we can now check that our
function behaves as we would expect:

Main> rotateRight (Cons 1 (Cons 2 (Cons 3 Nil)))
Cons 3 (Cons 1 (Cons 2 Nil))

This example shows how to write a custom pattern matching
principle, or view, in a dependently-typed language. Wadler (1987)
has presented numerous examples of views that can all be imple-
mented in this fashion.

2.5 Cryptol’s view

The code in Figure 1 implements Cryptol’s special view on bitvec-
tors. Before we define the view itself, we need a few simple auxil-
iary functions: teke, drop, split, and concat. As before, defining
the view entails two steps: defining a data type Split View indexed
by a vector; and defining a function view that takes any vector xs
to a value of type Split View xs.

The Split View data type is indexed by a vector of length n. x m.
It has a single constructor corresponding to the pattern we wish to
match, i.e., a vector of vectors. We try to mimic Cryptol’s syntax
by defining this constructor as a pair of square brackets surrounding
the pattern.

Defining the view function is a bit tricky. We would like to split
the argument vector into m pieces of size n, and pass these pieces
to the [—] constructor:

view n m zs = [split n m z3]

There is a problem with this simple definition. It will return a value
of type SplitView m (concat (split n m xs)) and not one of type
SplitView m zs. How can we be so sure that concat (split xs)
is the same as the original vector xs? How can we convince the
type-checker of this fact?

The solution is simple. We need to prove a lemma:

splitConcatLemma : forall {An m} —
(zs: Vec A (m x n)) — concat (split n m z3) = zs

42

As we showed in Section 2.3, when we pattern match on a proof,
we introduce equations between values. In the same way that a
Haskell type checker uses equations between types to check the

branches of the eval function in Section 2.3, Agda’s type checker
uses the equations between two values during type checking. The
code in Figure 1 therefore matches on concat (split n m @s), the
proof that this is equal to s, and the right-hand side we would like
to write, [split n m zs]. When we then return [split n m zs],
we can be sure that it has the right type. The syntax for pattern
matching on more than one intermediate value separates the values
and patterns that you wish to match on by vertical bars, both after
the with and on the left-hand side of the function definition.

The proof of splitConcatLemma is not terribly interesting. We
perform induction on m and require a lemma about {ake and drop.
The entire proof is about ten lines long, but may be quite hard
to understand for readers unfamiliar with type theory. We refer to
existing literature for a more thorough treatment of how to write
such proofs (Nordstrém et al. 1990).

It is quite important to emphasise that such proofs are only ever
visible to the view’s implementor. Any user who wants to call the
view function never, ever writes a proof. We have just done all the
hard work for them. In fact, we can even avoid proving this lemma
altogether by defining an intermediate view:

data TakeView (A : Set) (m : Nat) (n: Nat)
: Vec A (m + n) — Set where
Take : (ws: Vec A m) — (ys: Vec A n)
— TakeView A m n (zs H ys)

We can iteratively apply this view to split a vector into its con-
stituent parts.

Finally, we can use the view function to write Cryptol’s swab
function in Agda:

swab: Word 32 — Word 32
swab rs with view 8 4 25

swab || | [a b ¢ d: Nil]
= concal (b a:cudi Nil)

2.6 Discussion

There are many other features of the Cryptol toolkiz, such as compi-
lation to C or FPGAs, that we have not discussed. Providing a full
implementation of all the technical features that Galois’s Cryptol
compiler supports will still require a lot of work. We feel, however,
that we have managed to capture the essence of the Cryptol lan-
guage. The embedding we have presented here opens the door for
several new exciting directions for further research, in particular,
the formal verification of Cryptol algorithms using Agda.

One difference between our view and Cryptol’s pattern match-
ing principle is that we must explicitly pass natural numbers to our
view function. Although we have managed to reduce this overhead
slightly and have a single number suffice, this significantly com-
plicates the code. The underlying problem is that Agda does not
use information about the patterns we write to instantiate implicit
arguments.

Could we have written this in Haskell? One might be tempted
to write the snoc-view as follows:

data SnocView a = Nil | Snoc (SnocView a) a

view :: [a] — SnocView a
Yet there are two important limitations of this version. First of
all, when we view a list zs backwards, the connection between
view s and the original list is lost. In the dependently-typed view

we presented previously, we are explicit about what we learn about
the original list when pattern matching on the view.

take : Forall { A m} — (n: Nath — Vez A (r +) — Ve Au

take Zero ! = Nil

take (Suce k) (zw2s) = 2 = beke k25

drap : forall {A m} — (n: Nat) — Vec A (n+m) — Ve Am

ilrap Zere 5 =3

dvop [Swce k) (2 25) = drop ks

split: forall{A} — (n: Nat} — (m: Nat) — Veo A (e % n) — Vee (Vec A n) m
split n Zero N =Nl

split o (Suee k) xs = (lake n avh s (split 0k (drop 0 as))
concat : forall {4 nm) — Vec (Vee A n) m = Vee d (m x n)
concat Nil = Nil

comcat (s 5 @ss) = z5 H- concat Tas

data SplitView {A: Set}: {n: Nat} — {m: Nat) — Vec A (m % n) — Set where
|=] : forall {m n} — (zes: Vec (Ve A n) m) — SplitView m [concat zer)

wiew : {A: et} — (n: Nat) — (m: Nat) — (25: Vec A (i x n)) — Spit View m 25

wieur n a8 With coneat (split nom 2s) | [split nom 2] | splitConentLemma tm 25

wiew n o 7 | [2s] | v | Refl = »

Fignre 1. Cryptol’s view

The second problem is that the type of the view function in
Haskell is too general. For example, the view function could be
the constant function that always returns Nil. Originally, Wadler
suggested that such view functions should always form one part
of an isomorphism. Clearly the type of the Haskell view function
provides no such guarantee.

The type of the view function we defined on Agda, on the other
hand gives us much more information:

view: {A:Set} — (zs: List A) — SnocView zs

In general, we can always define a left-inverse for any view defined
in this style by induction over the data type that the view returns.
This is a more liberal condition on views than the isomorphism
proposed by Wadler that more accurately reflects what views are
about: you can view data any way you want, provided you never
throw information away.

Epigram takes these ideas one step further and implements a
clever elaboration mechanism that provides special programming
support for using complex views.

3. Embedded data description languages

Programs manipulate data, Unfortunately, not all data conforms to a
standard format. Crash reports, webserver logs, financial statistics,
student marksheets, or billing information are all examples of the
kind of data that may be represented by non-standard in-house
formats. As a result, there are not always off-the-shelf libraries
available to manipulate such data. Developers must waste time
writing parsers or data conversion scripts.

To combat this problem, there is ongoing research into data
description languages such as PADS (Fisher and Gruber 2005;
Fisher et al. 2006), Packet Types (McCann and Chandra 2000),
and Data Script (Back 2002). Essentially, such systems provide
a domain-specific language that can be used to give a precise
description of a data format. A separate tool then takes a data
description file and produces a parser for that data format, together
with a data type that represents the values inhabiting the data
format.

Yet these are external tools that generate certain parts of your
program from your data description file. Before programmers can
use such tools, however, they must learn a separate language. Fur-

43
thermore, the domain-specific data description language may not
support all the abstractions of a general purpose programming lan-
guage.

In this section we will implement a tiny data description com-
binator library in Agda, inspired by the Data Description Calcu-
lus (Fisher et al. 2006). There is no preprocessor or external tool
involved: programmers may specify a file format using all the ab-
stractions Agda has to offer.

3.1 Universes
Before we develop our combinator library, however, we need an-

other type theoretic intermezzo. Universes are a fundamental con-
cept in type theory. We explain what a universe is using a concrete
example that should be familiar to Haskell programmers.

Agda does not have type classes. Yet our years of experience
with Haskell has underlined the importance of ad hoc polymor-
phism. How might we achieve the same in a dependently-typed
programming language?

Type classes are used to describe the collection of types that
support certain operations, such as a decidable equality. The same
issue also arises in type theory, where you may be interested in a
certain collection of types that share some property, such as having
a finite number of inhabitants. It is unsurprising that the techniques
from type theory for describing such collections of types can be
used to implement type classes.

Consider the following type U:

data U : Set where
BIT: U
CHAR:U
NAT . U
VEC : U — Nat — U

The data type U contains ‘codes’ for types: every data constructor
of U corresponds to a type. In a dependently-typed language, we
can define the decoding function el as follows:

el: U — Set

el BIT = Bit
el CHAR = Char
el NAT = Nat

el (VEC uwn)= Vec (el u)n
The pair of a type U and a function el : U — Set is called a
universe. We can now define operations on the types in this universe

'by induction on U. For example, every type represented by U can
be rendered as a String:

show: {u: U} — el u — String

show {BIT} O = "g"

show {BIT} I ="

show {CHAR} ¢ = charToString ¢
show { NAT} Zero = "Zero"

show { NAT} (Suce k) "Succ " H parens (show k)
show { VEC u Zero} Nil = "Nil"
show { VEC u (Succ k)} (z = as)

= parens (show z) H " :: "+ parens (show zs)

parens : String — String
parens str ="(" H str H")"

Note that we can pattern match on an implicit argument by enclos-
ing a pattern in curly brackets. For any pattern p that matches an
explicit argument, the corresponding pattern { p } will match on its
implicit counterpart.

This definition overloads the show function. When we call
show, Agda will fill in the implicit argument of type U/ for us,
allowing us to call show on arguments with different types:

Main> show I ++ " is binary for " ++ show 1
"I is binary for Succ (Zero)"

Note that, in contrast to Haskell’s type classes, the data type U is
closed. We cannot add new types to the universe without extending
the data type U/ and the function el.

Clearly, show is not the only operation that the types repre-
sented by U have in common. In particular, we will later need a
function that tries to parse a value of type U given a list of bits:

read : (u: U) — List Bit — Maybe (el u, List Bit)

‘We have omitted the definition of read as it is unremarkable.

3.2 The file format universe

The heart of our combinator library is formed by the Format data
type below. Every value of type Format specifies a data file format.
The Bad and End constructors correspond to failure and success
respectively. The format Base u describes a data file consisting
exclusively of a single value of type el u. The Plus constructor
introduces left-biased choice. A parser for Plus fi fo will try to
parse the format determined by f;. Only when that fails, will it try
to parse fa.

Finally, there are two ways to sequence formats: Skip and
Read. The Skip constructor sequences two formats, discarding any
information stored in the first format. The Read constructor, on
the other hand, sequences two formats, recording the information
stored in both its arguments.

Many data file formats consist of a header, describing the con-
tents of the file, followed by the actual data. The header often con-
tains information about the type of the rest of the data stored in
the file. Therefore, it is not enough for the Read constructor to
construct a new Format from two arguments of type Format: the
type of the second format may depend on the result of reading in
the header. To capture this dependency, we need to parameterise
the second argument of the Read constructor by the data type cor-
responding to the first argument.

This motivates the following mutually recursive definition of the
Format data type together with the function [_] : Formai — Set,
that calculates the data type resulting from parsing a given file
format.

data Format : Set where
Bad : Format
End : Format
Base : U — Format
Plus : Format — Format — Format
Skip : Format — Format — Format
Read : (f : Format) — ([f] — Format) — Format

[-] : Format — Set

[Bad] = Empty

[End] = Unit

[Base u] =-celu

[Plus fi f2] = Either[fi] [f2]

[Read fi f2] = Sigma [A] Az — [f2 z])

[Skip —f] =[]

data Sigma (A : Set) (B : A — Set): Set where
Pair:(z:A) —» Bz — Sigme A B

data Fither (A: Set) (B : Set) : Set where
Inl: A — Rither A B
Inr: B — Fither A B

The Empty and Unit types in the definition above correspond to
data types with zero and one inhabitant respectively. The result of
Read fi fa is not simply a pair of [fi] and [f2]]. To reflect the
potential dependency between fi and fo we need a dependent pair,
or X-type, where the type of the second component may depend on
the value of the first.

The Format data type and [_] function form another universe:
the universe of file formats.

3.3 Format combinators

We can now define several file format combinators, much in the
style of the monadic parser combinators (Hutton and Meijer 1998).
The simplest combinator consists of a file containing a single char-
acter:

char : Char — Format
char ¢ = Read (Base CHAR)
(Ac’ — if ¢ = ¢’ then End else Bad)

Of course, we can be a bit more general and introduce a combinator
that abstracts over which predicate must be satisfied:

satisfy : (f : Format) — ([f] — Bool) — Format
satisfy [pred =
Read f (Ax — if (pred z) then End else Bad)

There are two combinators to sequence formats, corresponding
directly to Skip and Read. We have chosen to give them suggestive
names:

- _: Format — Format — Format

1> fo = Skip f1 fo

3=:(f: Format) — ([f] — Format) — Format
z3=f=Read z f

Using these combinators, we can already define a simple file
format. NETPBM is a collection of graphics programs and bitmap
file formats. The simplest file format in the NETPBM family is the
portable bitmap format, or PBM. For example, the following string
is a prefix of a PBM file that represents an image that is 100 pixels
wide and 60 pixels high:

P4 100 60
0I0OO0000000ITIOITIIOOITIIIIITIIO00. ..

A valid PBM file starts with the magic number “P4”, followed
by two integers 7 and m that specify the width and height of the
bitmap. The magic number and digits are separated by whitespace.
Finally, a single newline marks the beginning of the n X m bits
that constitute the black-and-white bitmap image. A zero-bit corre-
sponds to a white pixel; a one-bit corresponds to a black pixel.

Using our combinators, it is straightforward to define the PBM
file format:

pbm : Format
pbm = char P >
char 4’ >
char * ' >
Base NAT = An —
char ’ ’ >
Base NAT = Am —
char ’\n’ >
Base (VEC (VEC BIT m) n) 3= Abs —
End

Note the dependency between the header data and the body of the
bitmap: we only know how many bits to expect after having parsed
the header.

This description of the PBM file format is not quite complete.
We have assumed that a single space separates the magic number,
width, and height. We will come back to this point, but defer any
discussion for the moment.

34 Generic parsers

A file format is not of much use by itself. We can define a parser
for any file format by induction on the Format data type.

parse : (f : Format) — List Bit — Maybe ([f], List Bit)

parse Bad bs = Nothing

parse End bs = Just (unit, bs)
parse (Buse 1) bs = read u bs

parse (Plus fi f2) bs with parse fi bs
| Just (z,c8) = Just (Inl z, cs)
... | Nothing with parse fo bs

o | Just (y,ds) = Just (Inry,ds)

... | Nothing = Nothing

parse (Skip fi f2) bs with parse fi bs
... | Nathing = Nothing

o | Just (—,e8) = parse fa cs
parse (Read fi f2) bs with parse fi bs
... | Nothing = Nothing

<o | Just (z, cs) with parse (f2 =) cs
... | Nothing = Nothing

o | Just (y,ds) = Just (Pair z y, ds)

Most of the code should not require explanation. The wnit con-
structor is the sole inhabitant of the Unit type. The base cases are
trivial.

Agda has some syntactic sugar to avoid too much repetition
when using the with-rule. If we do not want to repeat the entire
left-hand side of a function definition, we can replace it with an
ellipsis. This is particularly useful when we use non-dependent
pattern matching, i.e., when we do not introduce any equalities
between values.

The case for the Plus constructor attempts to parse the format
fi; it will only try to parse f» if this fails. The case for the Skip
and Read constructors resemble one another: both start by parsing
their first argument, but treat the result differently. Where the Skip
constructor discards the result of parsing fi, the Read passes it on
to the second parser. In both cases, we continue parsing with any
remaining bits. If the first parser fails, even in the Skip case, the

input does not adhere to the specified format.

45

Clearly this code could profit tremendously from simple ab-

stractions, such as the Maybe monad. For the sake of presentation,

however, we felt that we would rather suffer this obvious repetition
than introduce too many abstractions.

3.5 Generic printers

Using the same file format universe, we can also define a generic
print function:

print : (f : Format) — [f] — List Bit

print Bad ()

print End _ = Nil

print (Base u) = toBits (show)
print (Plus fi f2) (Inl z) = print fi x

print (Plus fi f2) (Inr z) =print fo x

print (Read fi f2) (Pair x y) =
append (print fi z) (print (f2 z) y)

The pattern () in the first line expresses that [Bad] is not inhabited:
correspondingly we do not need to write the right-hand side of the
function. In the case for the Base constructor, we have assumed
there is a function, foBits, to convert a string to a list of bits.
The cases for the Plus and Read constructors should be fairly
unremarkable.

The case for the Skip constructor, however, is problematic.
Printing Skip fi fz should print a value of type [f1] and one of
type [fz]; unfortunately, the type [Skip fi fo] only provides us
with a value of type [fz]). To successfully print both these values,

we need to get our hands on a value of type [f1].
The solution is to change the type of the Skip constructor as
follows:

Skip : (f : Format) — [f] — Format — Format

The Skip constructor is typically used to avoid separators,
magic numbers, checksums and so forth, Somehow, the parts of
a file format that we skip should contain no new information. This
version of the Skip constructor reflects this: the value of type [f]
included in the file format is the value to output when you print
the data structure. It does not need to be a constant, but may de-
pend from the data that has been parsed so far, as is the case for a
checksum.

The corresponding case for the print function now becomes
straightforward to define:

print (Skip fi v f2) z =
append (print f v) (print fz x)

To print a value x in the interpretation of a file format Skip fi v fz,
you print the default value v of type [f1], followed by the result of
printing z of type [f2]. Of course, we also need to update our parse
function to deal with this new definition of Skip.

3.6 Discussion

We have deliberately chosen a fairly minimal set of constructors
that illustrate the viability of our approach. Although we have not
modelled all the constructs of the data description calculus (Fisher
et al. 2006), it should be clear how to extend the code we have pre-
sented here to deal with most of the constructors we have omitted.
Most notably, our Format data type does not have any form of
recursion. We could define a many combinator as follows:

many : Format — Format
many f = Plus (Read f (A— — many f)) End

This definition, however, uses general recursion. The Agda com-
piler warns us that it may fail to terminate; the Agda type checker
may diverge when trying to type check file formats that use many.
For example, evaluating [many (Base CHAR)] corresponds to
constructing the following infinite type:

Either
(Sigma Char (Ax —
(Bither (Sigma Char (Ay — ...)))
Unit)
Unit

As we saw in our specification of the PBM file format, however, we
really want to parse a sequence of whitespace characters.

The simplest solution is to extend the Formao# data type with a
new constructor Many : Format — Format that greedily parses
as many subsequent occurrences of its argument as possible.

The more general solution, however, would be to extend our uni-
verse with variables and a least-fixed point operation. This would
enable us to describe not only lists, but a much wider class of data
types. We have refrained from doing so as the resulting universe
must deal with variable binding. Although the solution is not ter-
ribly complex (Morris et al. 2004), we felt the technical overhead
would distract from the bigger picture.

Readers familiar with generic programming may not be sur-
prised by our results. Systems such as Generic Haskell (Hinze and
Jeuring 2003) have already shown how to write generic read and
show functions for a universe closed under sums and products. In
contrast to Generic Haskell, however, our universe is closed under
dependent pairs, not simple products. This dependency is very im-
portant when parsing binary data, as our pbm example illustrates.

Furthermore, we show how dependently-typed programming lan-
guages support generic programming without resorting to prepro-
cessors, in contrast to Generic Haskell.

These parsers are, of course, closely related to monadic parser
combinator libraries such as Parsec (Leijen and Meijer 2001). In
Parsec, for example, you can also parse a number 7, followed by n
bits:

parseVee = do n — parselni
x8 « count n parseBit
return (1, Ts)

This parser will return a value of type (Int, [Bit]); the relationship
between the second and first element of the pair is irretrievably
lost. Our parsers, on the other hand, return a dependent pair that
preserves this information.

The data type [f] associated with a format [will always be a
nested tuple of values. Manipulating such data types may become
rather tiresome. Fortunately, as the previous section illustrates, it is
straightforward to define a view on the generated data. For example,
we may want to view [pbm] as a record with meaningful labels,
width, height, and bitmap, and associated projection functions.

Many data description languages support various error report-
ing and error recovery features. PADS (Fisher and Gruber 2005),
for example, has two different functions of type Formal — Set:
one corresponds to our [] function; the other decorates the re-
sulting data type with diagnostic information about errors encoun-
tered during parsing. Defining this second interpretation of file for-
mats, and updating our parsers accordingly would improve the error
messages significantly. We can, of course, also use existing tech-
niques to improve our parse function’s error messages (Swierstra
and Duponcheel 1996).

‘We would like to emphasise that this domain-specific language
enforces several important properties. The type of the parse func-

tion, for example, ensures that the parser for a file format f will
return a value of type [f] upon success. In the existing work on
the data description calculus (Fisher et al. 2006), this is an impor-
tant meta-theoretical result that requires some effort to prove. We

46

know this important property holds by construction: our types give
us meta-theory for free!

This section shows how important it is to compute zypes from
data when writing generic programs. As we shall see, however, the
same problem also appears in a much more mundane setting.

4. Relational algebra

Databases are everywhere. When you book a flight, order a book,
or rent a movie online, all you are really doing under the hood is
querying and updating a database.

For this reason, a programming language must be able to inter-
face with a database. Most of the time such an interface consists of
a pair of functions to send a request—as a simple string containing
an SQL query—and to receive a response—usually in the form of
a string or some dynamic type. While this approach is simple to
implement, it has numerous drawbacks:

¢ This interface is unsafe: there are no static checks on the
queries. It is all too easy to formulate a syntactically incor-
rect or semantically incoherent query; an unexpected response
from the database server results in a runtime error.

® Programmers need to learn another language. Moreover, they

need to switch from one language to another in the body of a
same function.

To address these issues, there have been several proposals
to embed a domain-specific language for database queries in
Haskell (Leijen and Meijer 1999; Bringert et al. 2004). Each of
these proposals provides a set of combinators to construct queries.
These queries in Haskell can be ‘compiled’ to a string, correspond-
ing to an SQL query that can be sent to a database server.

Unfortunately, all the typed database bindings to Haskell have
one or more of the following drawbacks:

* They struggle to express all the concepts of relational algebra.
For example, the join and cartesian product of two tables is
notoriously hard to type.

Embedding the type system of the query language in Haskell is
not easy. Existing bindings must either rely on unsupported fea-
tures, such as extensible records, or type-level programs written
using multi-parameter type classes with functional dependen-
cies.

Safe bindings rely on static knowledge of the database a pro-
gram will query. This usually manifests itself in form of a
preprocessor that connects to the database and generates the
Haskell type declarations that represent the values stored in the
database.

As a result, there is no widely adopted set of typed database bind-
ings for Haskell. Many popular bindings, such as HDBC and
Takusen, resort to some form of dynamic typing by using a sin-
gle Haskell data type to represent all SQL’s types. Any type errors
a programmer makes, will only be detected dynamically.

All these limitations share the same origin: to embed a domain-

specific language, you need to embed a domain-specific type sys-
tem in the type system of your host language. Haskell’s type sys-
tem, however, is fundamentally different from that of a database
query language. Shoehorning a query language’s type system into
Haskell requires significant amounts of type hackery.

In this section, we sketch how to write a domain-specific embed-
ded language for relational algebra in Agda. In contrast to all the
existing Haskell implementations, our combinator library is both
safe and totally embedded, that is, it does not rely on any form of
preprocessor. The resulting code provides similar guarantees to the
type-safe Haskell bindings, vet the code significantly shorter and
easier to understand.

4.1 Schemas, Tables, and Rows

A relational database consists of a collection of tables. For exam-
ple, the makers of the British television program TopGear time how
long it takes them to drive various cars around their test track. A
database storing their results could contain the following table:

Model Time Wet

Ascari A10 1:17.3 False
Koenigsegg CCX 1:17.6 True
Pagani Zonda C12F 1:184 False
Maserati MC12 1:18.9 False

This table stores the best lap time of several different kinds of
car. Besides storing the lap time itself, it also records if the track
was wet when the time was recorded, as this may influence the
lap time. As this example illustrates, a table may contain different
types of information: a string corresponding to the car’s make and
model; a time written in minutes, seconds, and deciseconds; the
track conditions is represented by a boolean.

A schema describes the type of a table. It consists of a set of
pairs of column names and types:

Attribute : Set
Attribute = (String, U)

Schema : Set
Schema = List Attribute

‘We do not allow any type to occur in a Schema, but restrict ourself
to the universe (U, el) from the previous section. Most database
servers only support a small number of types, such as booleans,
integers, times, dates, and (fixed-width) strings. It should be clear
how to define a universe to capture the types supported by any
particular database server.

One choice of schema for our example table would be:

Cars : Schema

Cars = Cons ("Model", VEC CHAR 20)
(Cons ("Time", VEC CHAR 6)
(Cons ("Wet", BOOL) Nil))

Here we have chosen the car’s make and time as fixed-width strings
of a certain length. This is, of course, a rather questionable choice
of schema: would it not be better to use a triple of integers, for
example, to represent the time? We will come back to this point at
the end of this section.

We can now define a table to consist of a list of rows. A row
is a sequence of values, in accordance with the types dictated by
the table’s schema. The EmptyRow constructor is corresponds to
a row with an empty schema; to create a row in a schema of the
form Cons (name,u) 8), you need to provide an element of type
el u, together with a row adhering to the schema s.

data Row : Schema — Set where
EmptyRow : Row Nil
ConsRow : forall { name u s} —
el w — Row s — Row (Cons (name, u) 3)

Table : Schema — Set
Table s = List (Row s)

For example, the third row in the table above could be written:

zonda : Row Cars

zonda = ConsRow "Pagani Zonda C12 F "
(ConsRow "1:18.4"
(ConsRow False EmptyRow))

47
Here we have taken the syntactic liberty of writing string literals
instead of vectors containing characters—this is not valid Agda as
it stands.

Dealing with such heterogencous lists is the first stumbling
block for many Haskell database bindings. The corresponding
Haskell code is much more difficult to comprehend than this simple
definition (Kiselyov et al. 2004).

4.2 Setting up a database connection

Before you can actually query the database, you will need to set up
a connection with a database server. Many database interfaces for
Haskell provide a function of the following type:

connect : ServerName — 10 Connection

Here ServerName is simply a type alias for String. The construc-
tors of the Connection type are not visible to the library’s users.
Instead, it can be used to send a string corresponding to some SQL
query to a particular database:

guery : String — Connection — 10 String

Once you have set up a connection, however, your types carry

no information whatsoever about the database to which you are
connected. As a result, you have no static checks on how you
choose to interpret a database’s response to your query.

Using dependent types, we can be much more precise about the
data stored in a table. A much better choice for the connect function
that is exposed to the library’s users is:

Handle : Schema — Set
connect : ServerName — TableName —
(s: Schema) — IO (Handle s)

Instead of returning a connection to some unknown database, the
user sets up a connection to a particular table of the database.
He also states the expected Schema of this particular table. The
connect function then returns a Handle to that particular table,
with a type ensuring that this table respects the schema s. In
practice, a user will always want to set up a connection to several
tables in one step. We have chosen this simplification for the sake
of presentation: it is by no means a limitation of our approach.

This connect function does more work than its simply-typed
counterpart we mentioned previously. In addition to setting up the
connection with the database server, it asks for a description of
its table argument. Database servers, when prompted to describe
a table, respond with a string such as:

Name Type
MODEL CHAR(20)
TIME CHAR.(6)
WET BOOL

It should be clear how to parse this response and build a value of
type Schema. This value is then compared to the Scherna provided
by the user. If the two schemas are the same, a Handle to the table

is returned. If the two schemas are different, connect will result
in a runtime exception in the IO monad. This exception occurs
when the database the programmer attempted to connect to does not
have the schema he expected. This kind of exception is inherent to
working with /(: the real world can always behave unexpectedly.

However, there are two key guarantees that the type system
provides:

e The only point where this Schema mismatch can occur is
during a call to connect. Any subsequent gueries using the
Handle are safe.

e In particular, if the Schema passed to the connect function
is the same as the Schema of the table we connect to, the
program cannot go wrong, provided the data base schema does
not change in the meantime, the connection is not lost, etc.

4.3 Constructing queries

Once we have set up a connection, we want to query the database.
Rather than model any particular flavour of SQL, we will show
how to embed relational algebra operators in Agda. For the sake of
simplicity, we have chosen only to model five operations: selection,
projection, cartesian product, set union, and set difference.

To introduce these operations, we define the following type RA.
An expression of type RA s corresponds to a query that will return
a table with schema s—that is, we know statically exactly what
kind of table to expect when we execute any given query.

data RA: Schema — Set where
Read :forall {s} — Handle s — RA s
Union :forall {s} -+ RAs— RAs— RAs
Diff :forall{s} - RAs— RAs— RAs
Product : forall {s s'} — {Se (disjoint s s')}
— RAs— RA s’ — RA (append s 5')

Project : forall {s} — (s’ : Schema)
— {S0 (subs’"s)} - RAs— RA S

Select :forall {s} — Fzpr s BOOL
— RAs— RAs

Besides the five primitive operations we mentioned above, we have
one constructor, Read, that simply reads the table associated with
a Handle. The Union and Diff constructors correspond to the set
union and set difference of two tables. The Product, Project, and
Select constructors are more interesting.

The Product constructor takes the cartesian product of two
tables. For any two tables ¢t and {2, the cartesian product of #{
and £2 can be specified as follows in Haskell:

do r1 «— i1
72 «— t2
return (appendRow 71 72)

Here we use the list monad to select any pair of rows from ¢1
and t2; the appendBRow function appends two rows in the obvious
manner. In order to take the cartesian product of two tables, how-
ever, their schemas must be disjoint. It is easy to write a function
that checks if two schemas are disjoint:

disjoint : Schema — Schema — Bool

But how should we enforce that disjoint s s' must be True? The
solution is to require a proof of So (disjoint s s'), where So is
defined as follows:

So : Bool — Set
So True = Unit
So False = Emply

If p is true, the proof So p is trivial; if not, there is no way to pass
an argument of the right type.
Note that the proof argument of type So (disjoint s s')

to the Product constructor is implicit. Agda is clever enough to
automatically fill in implicit arguments of type Unit. If the schemas
are known at compile time, disjoint s s’ will compute to either
True or False. Consequently, So (disjoint s s') will evaluate to
Unit or Empty. As aresult, a programmer will never have to worry
about such proofs for closed schemas. When no such proof exists,
Agda will complain that it cannot fill in implicit arguments—the
programmer is then responsible for fixing this.

The Project constructor projects out some sub-schema of a
given table. For example, if we want to know the model of all the
cars TopGear has tested, we can formulate this query as follows:

Models : Schema
Models = Cons ("Model", VEC CHAR 20) Nil

models : Handle Cars — RA Models
models h = Project Models (Read k)

48

Just as the Product constructor required its two schema arguments
to be disjoint, the Project constructor requires its second schema
argument to be a subset of its first schema argument. For the sake
of simplicity, we use a value s’ of type Schema to describe the
projected fields, but we could replace it by a list of the names of
the fields. The type of these field could then be recovered from the

schema from which we project.

Finally, the Select constructor filters the result of a query. Leijen
and Meijer (1999) have already shown how to use phantom types

to safely embed the operators of SQL in Haskell:

data Fzpr: Schema — U — Set where
equal : forall {v s} — Expr s u — Expr s u
— Expr s BOOL

lessThan : forall {u s} — Ezpr s u — Expr su
— Expr s BOOL

—!_:(s: Schema) — (nm : String)
— {So (occurs nm s)}
— FExpr s (lookup nm s p)

We follow their lead and index the data type for SQL expressions,
Expr, by their return type, represented by a value of type U. We
also index these expressions by a Schema describing the attributes
to which the expression may refer. SQL supports a small number
of primitive operations for comparing values for equality, boolean
conjunction, and so forth.

The only particularly interesting operation, —! _, looks up an
attribute in the schema. Once again, we require an implicit proof
that the name of the atiribute does indeed occur in the schema.
As we saw previously, this proof is automatically discharged by
Agda if the s and nm are known at compile time. Using the _! _
constructor returns a value of type Ezpr s (lookup nm s p),
where the lookup function finds the U associated with the name
nm. In order for this function to be total we need the implicit proof
p. Without p, we do not know whether or not the name occurs in
the schema.

For instance, we may want to query the database for all the
models of cars that have been tested under wet conditions:

wet : Handle Cars — RA Models
wet h = Project Models (Select (Cars ! "Wet") (Read h))

This expression does not require any proofs. Even though the con-
structors Project and Select have implicit proof arguments, we
compute the proof using the sub and occurs functions; the proof
itself turns out to be so trivial that Agda can be fill it in automati-

cally. This antomation of trivial proofs is a key point in the design
of user-friendly embedded type systems.

As we mentioned previously, we have taken a very minimal set
of relational algebra operators. It should be fairly straightforward
to add operators for the many other operators in relational algebra,
such as the natural join, 8-join, equijoin, renaming, or division,
using the same techniques. Alternatively, you can define many of
these operations in terms of the operations we have implemented in
the RA data type.

4.4 Executing queries

Once we have formulated a query, we would like to pass it to the
database server. We could define a function that generates the SQL
query associated with every relational algebra expression:

toSQL : forall {s} — RA s — String
We can pass this Siring to the database server and wait for the
result. However, this function throws away precious type informa-
tion! We can do much better. The function our library should export
to execute a query should really have the following type:

query : {s: Schema} — RA s — IO (List (Row s))

The query function uses {0S@QL to produce a query, and passes
this to the database server, When the server replies, however, we
know exactly how to parse the response: we know the schema of
the table resulting from our query, and can use this to parse the
database server’s response in a type-safe manner. The type checker
can then statically check that the program uses the returned list in
a way consistent with its type.

4.5 Discussion

There arc many, many aspects of this proposal that can be im-
proved. Some attributes of a schema contain NULL-values; we

should close our universe under Maybe accordingly. Some data-
base servers silently truncate strings longer than 255 characters.
We would do well to ensure statically that this never happens. Our
goal, however, was not to provide a complete model of all of SQL’s
quirks and idiosyncrasies: we want to show how a language with
dependent types can shine where Haskell struggles.

Our choice of Schema data type suffers from the usual disad-
vantages of using a list to represent a set: our Schema data type
may contain duplicates and the order of the elements matters. The
first problem is easy to solve. Using an implicit proof argument in
the Clons case, we can define a data type for lists that do not contain
duplicates. The type of C'ons then becomes:

Cons : (nm : String) — (u: U) — (s : Schema)
— {So (- (elem nm 3))}
— Schema

The second point is a bit trickier. The real solution would involve
quotient types to make the order of the elements unobservable. As
Agda does not support quotient types, however, the best we can do
is parameterise our constructors by an additional proof argument,
when necessary. For example, the Union constructor could be
defined as follows:

Union : forall {5 5’} — {So (permute s s")}
—~RAs > RAs —RAs

Instead of requiring that both arguments of Union are indexed by
the same schema, we should only require that the two schemas are
equal up to a permutation of the elements. Altemmatively, we could
represent the Schema using a data structure that fixes the order in
which its constituent elements occur, such as a trie or sorted list.
Finally, we would like to return to our example table. We chose
to model the lap time as a fixed-length string—clearly, a triple
of integers would be a better representation. Unfortunately, most
database servers only support a handful of built-in types, such

as strings, numbers, bits. There is no way to extend these prim-
itive types. This problem is sometimes referred to as the object-
relational impedance mismatch. We believe the generic program-
ming techniques and views from the previous sections can be used
to marshall data between a low-level representation in the database
and the high-level representation in our programming language.

5. Conclusions and Related work

Related work There are several other type systems that enrich
simply typed languages with more indexing information (Freeman
and Pfenning 1991; Sheard 2005; Peyton Jones et al. 2006). Using
GADTs in Haskell, for example, programmers can write a data type
of vectors. However, many of the examples from this paper revolve

49
around computing new types from data. In a dependently-typed

language we can, for example, download a file format description
from the web and compute the type of its associated parser; or we
can connect to a data base and compute the type of its tables. The
static index information other systems provide cannot easily cope
such examples that freely mix types, values, and computation.

Programming with dependent types is subject to active research.
Although we have chosen to use Agda throughout this paper, there
are many alternatives, such as Epigram or Coq, especially aug-
mented with the Program tactic (Sozeau 2007). The programs in
this paper could have been written in any of these systems; each
system has its own particular strengths and weaknesses.

There are several other papers about programming with de-
pendent types. The Epigram lecture notes by McBride (2004)
are essential reading. There are a few other studies of domain-
specific languages in the context of dependent types, including

stack machines (McKinna and Wright), locality-aware multi-core
programs (Swierstra and Altenkirch 2008), and interpreters (Au-
gustsson and Carlsson).

Conclusions What is the Power of Pi? We believe that many of
the advantages of programming with dependent types are covered
by the following three points:

Precise data types A good program never crashes. Programmers
should be as accurate as possible when defining data types and
avoid writing partial functions. Haskell data types can contain
junk values: what is the head of an empty list? Precise depen-
dent data types liberate programmers from worrying what to do
when ‘the impossible occurs.’

Views Such precise data types are of little value if working with
them becomes tedious. Most functional languages allow the
designers of domain-specific embedded languages to carefully
engineer the constructors of their domain. Various combina-
tors and functions can then help build larger programs. There
is, however, no uniform way to abstract over patterns that de-
struct domain-specific data. As Epigram demonstrates, lan-
guages with dependent types can be used to define composi-
tional domain-specific views.

Universes Statically typed functional languages have started to
exploit types when writing programs. This is illustrated by
advances in generic programming or the many applications of
Haskell’s type classes. Many of the examples in this paper
revolve around universe constructions that enable us to program
with types.

It has been more than ten years since the first work about

domain-specific embedded languages (Elliott and Hudak 1997)
sparked off a new field of research. Functional programming found
new applications in randomised testing (Claessen and Hughes
2000), financial markets (Peyton Jones et al. 2000), server side
webscripting (Thiemann 2004), hardware design (Bjesse et al.
1998), and reactive programming (Nilsson et al. 2002). More re-
cently, this avenue of research seems to have dried up. In its place,
there are more and more papers about type systems designed to
solve a very specific problem.

This paper proposes to drastically break with this trend. The
techniques we have presented enable us to embed such domain-
specific type systems in a dependently-typed host language. This
does not require writing a new compiler and we inherit the meta-
theory of our host language for free. Furthermore, this provides us
with a single semantic framework for exploring the design space.
Most importantly, however, it revives what functional programming
is really about: writing programs, not designing typing rules. For
that reason, if nothing else, dependent types matter.

Acknowledgments

We would like to express our sincerest gratitude to Thorsten Al-
tenkirch for his encouragement; Lennart Augustsson for his com-
ments about relational algebra; James Chapman for our discussions
about file formats and Erlang; Peter Hancock for teaching us ev-
erything we know about universes; Ulf Norell for his fantastic new
incarnation of Agda and his tireless tech-support; Conor McBride
for his inspirational tutelage; and last but not least, we would like to
thank Bjorn Bringert, Nils Anders Danielsson, Isaac Dupree, Chris
Eidhof, Andy Gill, Michael Greenberg, Eelco Lempsink, Mads
Lindstrgm, Andres Léh, Matthew Naylor, Henrik Nilsson, Bernie
Pope, Matthien Sozeau, Stephanie Weirich, Brent Yorgey, and our
anonymous reviewers for their invaluable feedback.

References

Lennart Augustsson and Magnus Carlsson. An exercise in depen-
dent types: a well-typed interpreter. Unpublished manuscript.

Godmar Back. Datascript - a specification and scripting language
for binary data. In GPCE ’'02: Proceedings of the Ist ACM
SIGPLAN/SIGSOFT Conference on Generative Programming
and Component Engineering, 2002,

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh.
Lava: Hardware design in Haskell. In ICFP '98. Proceedings
of the Third ACM SIGPLAN International Conference on Func-
tional Programming, 1998,

Bjorn Bringert, Anders Hockersten, Conny Andersson, Martin An-
dersson, Mary Bergman, Victor Blomgvist, and Torbjérn Martin.
Student paper: HaskellDB improved. In Haskell '04: Proceed-
ings of the 2004 ACM SIGPLAN Workshop on Haskell, 2004,

Koen Claessen and John Hughes. Quickcheck: a lightweight tool
for random testing of Haskell programs. In ICFP '00: Proceed-
ings of the Fifth ACM SIGPLAN International Conference on
Functional Programming, 2000.

Conal Elliott and Paul Hudak. Functional reactive animation. In
ICFP '97: Proceedings of the Second ACM SIGPLAN Interna-
tional Conference on Functional Programming, 1997.

Kathleen Fisher and Robert Gruber. PADS: a domain-specific
language for processing ad hoc data. SIGPLAN Conference on
Programming Language Design and Implementation, 2005.

Kathleen Fisher, Yitzhak Mandelbaum, and David Walker. The

next 700 data description languages. In POPL '06: Conference
record of the 33rd ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, 2000,

Tim Freeman and Frank Pfenning. Refinement types for ML.
In Proceedings of the SIGPLAN 91 Symposium on Language
Design and Implementation, 1991,

Galois, Inc. Cryptol Reference Manuai, 2002,

Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and
theory. In Generic Programming, volume 2793 of Lecture Notes
in Computer Science. Springer-Verlag, 2003,

Graham Hutton and Erik Meijer. Monadic parsing in Haskell.
Journal of Functional Programming, 8(4), 1998.

Oleg Kiselyov, Ralf Limmel, and Keean Schupke. Strongly typed
heterogeneous collections. In Haskell '04: Proceedings of the
2004 ACM SIGPLAN Workshop on Haskell, 2004,

Daan Leijen and Erik Meijer. Domain specific embedded compil-

ers. In 2nd USENIX Conference on Domain Specific Languages
(DSL’98), October 1999.

50

Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser

combinators for the real world. Technical Report UU-CS-2001-
27, Universiteit Utrecht, 2001,

Conor McBride. Epigram: Practical programming with dependent
types. In Advanced Functional Programming, volume 3622 of
LNCS-Tutorial, pages 130-170. Springer-Verlag, 2004,

Conor McBride and James McKinna. The view from the left.
Journal of Functional Programming, 14(1), 2004,

Peter J. McCann and Satish Chandra. Packet types: abstract speci-
fication of network protocol messages. In SIGCOMM '00: Pro-

ceedings of the Conference on Applications, Technologies, Ar- .
chitectures, and Protocols for Computer Communication, 2000.

James McKinna and Joel Wright. A type-correct, stack-safe, prov-
ably correct expression compiler in Epigram. Accepted for pub-
lication in the Journal of Functional Programming.

Peter Morris, Thorsten Altenkirch, and Conor McBride. Exploring
the regular tree types. In Types for Proofs and Programs, volume
3839 of LNCS. Springer-Verlag, 2004,

Henrik Nilsson, Antony Courtney, and John Peterson. Functional
reactive programming, continued. In Haskell '02: Proceedings
of the 2002 ACM SIGPLAN Haskell Workshop, 2002.

Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming
in Martin-LJf’s Type Theory. Oxford University Press, 1990.

Ulf Norell. Towards a practical programming language based
on dependent type theory. PhD thesis, Chalmers University of
Technology, 2007,

Simon Peyton Jones, editor. Haskell 98 Language and Libraries:
The Revised Report. Cambridge University Press, 2003.

Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Com-
posing contracts: an adventure in financial engineering. In ICFP
"00. Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming, 2000.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for
GADTs. In ICFP '06: Proceedings of the eleventh ACM SIG-

PLAN International Conference on Functional Programming,
2006.

Tim Sheard. Putting Curry-Howard to work. In Haskell '05:

Proceedings of the 2005 ACM SIGPLAN Workshop on Haskell, .
2005.

Matthien Sozeau. Subset coercions in Coq. In Types for Proofs and
Programs, volume 4502 of LNCS. Springer-Verlag, 2007.

S. Doaitse Swierstra and Luc Duponcheel. Deterministic, error-
correcting combinator parsers. In Advenced Functional Pro-
gramming, volume 1129 of LNCS-Tutorial, 1996.

Wouter Swierstra and Thorsten Altenkirch. Dependent types for
distributed arrays. In Proceedings of the Ninth Symposium on
Trends in Functional Programming, 2008.

The Agda Team. Agda homepage. http://www.cs.chalmers.
se/~ulfn/Agda, 2008.

Peter Thiemann. Server-side web programming in WASH. In
Advanced Functional Programming, volume 3622 of LNCS-
Tutorial. Springer-Verlag, 2004.

Philip Wadler. Views: A way for pattern matching to cohabit
with data abstraction. In I4th Symposium on Principles of
Programming Languages, 1987.

