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Abstract

We give a necessary and sufficient condition for when a set-theoretic function can
be written using the recursion operator fold, and a dual condition for the recursion
operator unfold. The conditions are simple, practically useful, and generic in the
underlying datatype.

1 Introduction

The recursion operator fold encapsulates a common pattern for defining pro-
grams that consume values of a least fixpoint type such as finite lists. Dually,
the recursion operator unfold encapsulates a common pattern for defining pro-
grams that produce values of a greatest fixpoint type such as streams (infinite
lists) . Theory and applications of fold abound —s ee [11,4] for recent sur-
veys — while in recent years it has become increasingly clear that the less



well-known concept of unfold is j ust as useful [5,6,10, 13, 15] .
Given the interest in fold and unfold, it is natural to ask when a program

can be written using one of these operators. Surprisingly little is known about
this question. This article gives a complete answer for the special case in w hich
programs are total functions between sets. In particular, we give a necessary
and sufficient condition for when a set-theoretic function can be written using
fold, and a dual condition for unfold. The conditions are simple, practically
useful, and generic in the underlying datatype. However, our proofs are set-
theoretic, and make essential use of classical logic and the Axiom of Choice;
hence our results do not generalize to categories of constructive functions 1.

1 Such as the effective topos or the category of ω-sets.
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2 Fold and unfold

In this section we review the categorical treatment of fold and unfold in terms
of initial algebras and final coalgebras; for further details see [18,20, 14,1] .

Suppose that we fix a category C and a functor F : C → C . An algebra
is pair p(Aos,e eft) comprising an object CAa nadnd a an arrow Ff: : F→ →AC .→A An, lagnedb a
ihsom paoimro( rAp,hfis)mc hm : r(iAsin, fg) →n o(Bbj,e cg)t fAroam n one su archro algebra tAo a→ not Ahe,r nisd an
arrow mho : pAh i→sm mBh su :c (hA t,fha)t →the( following square uccohmma lguetbersa:

F AFh ??FB

f?? ??g
Ah??B

An initial algebra is an initial object in the category w ith algebras as
objects and homomorphisms as arrows. We write (µF, in) for an initial algebra,
and fold f for the unique homomorphism h : (µF, in) → (A, f) from the initial
algebra tfo any oetu henri algebra (A, f) . sTmha ht is, fFo,lidn f →is d(Aef,infe)df as t thhe unique
arrow that makes the following square commute:



F( µF)F( foldf)??FA

in?? ??f
µF foldf ??A

The dual notions of coalgebra, cohomomorphism, and terminal coalgebra
are defined similarly. We write (νF, out) for a terminal coalgebra, and unfold f
for the unique cohomomorphism h : (A, f) → (νF, out) from any coalgebra
(A, f) etuo ntihqeu etec romhoinmalo coalgebra. hT :h(a At is, u→ nfo (ldν f oisu td)e ffirnoemd as ythc eo unique
arrow that makes the following square commute:

A unfoldf ??νF

InFf th?? Ael iteFra( utunfroeld,f f)ol??Fdf (ν? a?oFnut)du nfoldfa res ometimesw rittena s( | f) |a ndb d ( f)c e ,
andI nca tlhleedl catamorphisms aanndd anamorphisms respectively.

2.1 Example: f inite lists

Suppose that we define a functor L : SET → SET by L A = 1+ (?×A) and
SLu f = iedt1+(id? ×f), nweh aefr ue n?c tiso rthL e :sS etE EoTf n →atu SraElT Tnu bmybL erAs. =Th1 en+ an algebra ids
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a pair (A, f) comprising a set A and a function f : 1+(?×A) → A. Functions
of this type can always be uniquely decomposed into th×e fAo)rm → →fA .=F [g, h] ofnors
some other functions g : 1→ A and h : ? ×A → A. A homomorphism
f : (A, [g, h] f) → (ioBn, [i, j] :) 1is a fu Anc atinodn f : A → AB →sucA h .thA at f · g = pih aisnmd
ff ·: (hA ,=[ j h·] )(i→ d? (×B f,)[ .

T hh e= fuj n ·ct( oidr L× ×haf s) an initial algebra (µL, in) = (List(?) , [nil , cons] ) , where



List(A) is the set of all finite lists with elements drawn from A, and nil : 1→

LLiisstt((?A)) iasn dth cons : f?a ×ll Lf iinstit (e?l )i →ts wLiistth(?e l)e are tcso ndrsatrwunctf orrosm mfoA r ,tha ins dsen ti.l G :1 iv→ en
any other set A and t×woL ifsutn(ct)io→ ns Li : t1( → A and j : ?×A → A, the function
faonldy [ oi,t hj]e : sL eisttA (? a) →d Aw oisf uniquely id: e1f in→ ed by nthde j f :ollow×inAg→ →twA o equations:

fold [i, j] · nil = i

fold [i, j] · cons = j · (id? ×fold [i, j])

That is, fold [i, j] processes a list by replacing the nil constructor at the end
of the list by the function i, and each cons constructor within the list by the
function j . For example, the function sum : List(?) → ? that sums a list of
naturals can be defined by sum = fold [zero, plus] , )w→ here zero : 1→ ? and
plus : a?ls ×a?n → be ?d are given by zero () d=[ 0e aon,dp plus (x, y) = ze x + y.

We w×ill use this datatype in examples later. For notational simplicity, we
will write ‘ [ ] ’ for nil () , and ‘x : xs’ for cons (x, xs) . Thus, we might have
written the above definition of fold more perspicuously as:

(fold [i, j]) [ ] = i

(fold [i, j] ) (x : xs) = j (x, (fold [i,j]) xs)

2.2 Example: streams

Suppose that we define a functor S : SET → SET by SA = ? ×A and
SSufp p=o eidt ?h a×t f w. T dehfeinn a aco fuanlgcteborraS Sis: a pair →(AS, fE) comprising a se×t AA aanndd
a function f : A. T→h ?n ×Aco.a Fgeubnrcatii osnas o pfa itrhi (sA type can always abes uniquely
adefc uonmctpioosnedf in :t Ao →t he fo×rmA f. F=u hcgt,i hi sfo orf some yoptehec ra fnuna clwtioaynss g : An q→ue l?y
adnecdo hm : oAs →d iAnt. oAt cohomomorphism fi : (A, hg, hi) h→e (B, hi, ji) sisg a f Aun →ction
afn : dAh → : A AB→ →suA ch. tA ha cto ih o· mfo m= g ahnisdm j f· :f( A=, hfg ·h ih).

TAh→ e fB un scutochr tSh ahta si a fte= rmg ina anl coalgebra (νS, out) = (Stream(?) , hhead ,
taili ), where Stream(A) is the set of all streams w ith elements drawn )f,rhohmea Ad,,
taanidli )h,e awdh : Stream(?) → s?t ahned s etati ol : Stream(?) →wit hStr eelaemme(n?ts) are wdenstf rroumctoA rs,
for this set. Given any →other set A and two fun)ct →ionS st g : mA( → ? and h : A →

Afor, tthhies sfuent.ctG ioinve nuna fonyld hotg,h ehri : tAA → an dSt trweoamf u(n?c)t oisn sung iq: u Ae→ ly defainndedh b :y A t h→e
following tnwctoi equations:

head · unfold hg, hi = g



tail · unfold hg, hi = unfold hg, hi · h

That is, unfold hg, hi produces a stream by using the function g to produce
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the head of the stream, and the function h to generate another value that
is then itself unfolded in the same way to produce the tail of the stream.
For example, the function f rom : ?→ Stream(?) , which produces a stream of
naturals ascending in steps of one, can bSter edaemfin(ed by f rom = unfold hid?, succi
wnahteurrea succ : n?d →ing g?i n niss given by succ x =e x +in e1d .

3 When is an arrow a fold or an unfold?

The fold operator encapsulates a common pattern for defining an arrow of
type µF→ A. It is natural then to ask when an arrow of this type can be
twyrpiteteµ nF using f.olI dt. sM norate uprraelcit sheelny, twoh aesnk can an anrba irtrroawry arrow t hy : µF →n bAe
wber wttreintteu nsi ning tf oheld .foM rmo rhe p=r fcoislde lfy ,fw orh some ont ahnera arrow rfy : FrrAow w→h A :? µ

wAr technically complete, =bf uotl dnofnf eotrh esloemsse unsatisfactory, answer to t?his ques-
tion is provided by the universal property of the fold operator [18] , which can
be stated as the following equivalence:

h = fold f ⇔ h · in = f · F h

The ⇒ direction of this equivalence states that fold f is a homomorphism from
tThhee i ⇒nit idailr algebra (µF, in) itvoa aenncoeths etra algebra (A, f) , wah hiolem tomheo ⇐ idsimrecf trioomn
tsthaetei sn tthiaalt any roath (eµr Fh,oimn)o mtooa rpnhoithsmer ha lbgeetbwraee (nA t,hfe)s,e wtwhiole algebras dmiruecstt obne
equal to fold f. Taken as a whole, the universal property expresses the fact
that fold f is the unique homomorphism from (µF, in) to (A, f).

The universal property provides a complete answer to our question —h
can be written in the form fold f precisely when h · in = f · Fh —  but is less
hcaenlpb fuel wthriatnte int mnt ighhet borem mbef ocaldufsep rite requires tehna ht we a =lref ad· y F kh n o—w bfu. Gi sivl eesns
a specific h, however, the universal property can often be used to guide the
construction of an appropriate f [11] , but we do not consider this a completely
satisfactory answer either, because this approach is only a heuristic, and it is
sometimes difficult to apply in practice.



The problem with the universal property is that it concerns an intensional
aspect of h, namely the function f that forms part of its implementation.
Often a condition based on purely extensional aspects is more useful. A
partial answer to our question with purely extensional concerns is that every
left invertible arrow h : µF→ A can be written using fold [20] . Formally, if
we assume tlhea atr rtohwereh e :x µisFts an arrow g : Ari →te µF snugc hfo ltdh a[2t g .· ho m=a idµF,
twheen a stshuem equation he =e fxoisldt sf can rbroe wsogl ve: dA Afo→ r →fµ as fsoullcohwt sh:

h = fold f

⇔ { universal property }

h · in = f · Fh

⇔ { identities }

h · in · idF( µF) = f · Fh
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⇔ { functors }

h · in · F (idµF) = f · F h

⇔ { assumption }

h · in · F (g · h) = f · Fh

⇔ { functors }

h · in · Fg · F h = f · Fh

⇐ { substitutivity }

f = h · in · Fg

In summary, we have derived the following implication:

g · h = idµF ⇒ h = fold (h · in · Fg)

As an example, the function rev : List(?) → List(?) that reverses a list is
its own inverse, and hence it is immediate) )t→h at rev can be written using fold



by the above implication. Note, however, that this implication only provides
a partial answer to our question, because the converse is not true in general.
That is, not every arrow h : µF → A that can be written using fold is left
Tinhvaertti isb,len . tFoe rv eexryama rprloew, t hhe : fµ uFnct→ ionA sum : List(?) → t?e was wngri tftoeldn using
fold in the previous section, but is not left invertible).

Dually, the unfold operator also satisfies a universal property, which can
be used to show that every right invertible arrow of type A → νF can be
wberi tutseend using uownfo tlhda [20] . rFyor r example, ttibhele fu anrrcotwion o evenpos : Stream(?) b→e

Stream(?) that removes every other element from a stream has a right inv)er→ se
(any function that inserts an element between each adjacent pair in a stream) ,
and hence it is immediate that evenpos can be written using unfold. However,
not every arrow h : A → νF that can be written using unfold is right invertible.
Fnoort eevxearmypa lrer,o twhhe f: u Anc→ tio nνF F frt ohma : c?an → Stream(?) was wnfroitldtei ns using uvnefrotlidb lien.
the previous section, but is not right in Svterretaimble(.

As far as we are aware, the invertibility results above are the only known
results that state when arbitrary arrows of the correct type can be written
using fold or unfold. We conclude this section by noting that much more
progress has been made concerning specific kinds of arrows. For example, the
fusion law states that the composition of a homomorphism and a fold can
always be written as a fold , while the banana split law states that two folds
applied to the same argument can always be written as a single fold [20] .

4 When is a function a fold?

In this section we give a necessary and sufficient condition for when an arrow
can be written using fold, for the special case of the category SET in which
tcahen arrows are t uostainl gfu foncldt,iof onrs bthetews epeenc isaelts c.a sWee o fdtu haleizc ea tthegeo rreysu SltE tTo iunnf wolhdi cinh
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the following section.
The result depends on the following definition:

Definition 4.1The kernel [17] of a function f : A → B is the set of pairs of
Deleemfiennittsi otnha 4t are ihdeen kteirfnieedl b [1y7 ]fo:



ker f = { (a, a0) ∈ A ×A | fa = f a0 }

The main result of this section is a necessary and sufficient condition for
when an arbitrary arrow h : µF → A in SET can be written in the form
hw h=e nfoa ldn nfa frobri some aotrrhoewr arrow Ff : →F AA → in A S.E

Theorem 4.2 Suppose that h : µF→ A. Then

(∃g : FA → A. h = fold g) ⇔ ker (Fh) ⊆ ker (h · in)

(Another way of saying this is that h is a fold iff ker h is a congruence under
in; that is, writing Rel(F) (R) for the relational lifting to a relation on FA of
relation R on A [12] , iff (x, y) ∈ Rel(F) (ker h) implies (in x, in y) ∈ ker h.)

Ttiohen crux noAf Ath[ e1 proof is t,yhe) ∈weR lle-lk(nFow)(nke orbhs)e rimvaptiloiens t (hinaxt ,ininclyu)s∈ ionk eorf hk.e)rnels
is equivalent to the existence of ‘postfactors’:

Lemma 4.3 Suppose that f : A → B and h : A → C. Then

(∃g : B → C. h = g · f) ⇔ (ker f ⊆ ker h ∧ B → C = ∅)

Proof. The proof is straightforward. For the ⇒ direction, assume that g :
BP →oo fC. a Tnhde hp r=o g f· fs; tthraenig clearly rBd .→F oCr = th ∅e, ⇒andd moreover,

(a, a0) ∈ ker f

⇔ { kernels }

f a = f a0

⇒ { substitutivity }

g (f a) = g (f a0)
⇔ { h = g · f }

ha = ha0

⇔ { kernels }

(a, a0) ∈ ker h

Conversely, assume that ker f ⊆ ker h and B → C = ∅, so that either B = ∅
or nCv e=r e∅.l ,W ahsseunm Be t=h a∅t, lkeetr g b⊆e tehreh unique f→ uncC tio=6 n ∅in, Bo t→ha tCe; tnhoeter tBha= t g



oisr t Che =6 ‘empty feunnc Btio= n’ ∅, ,a lnetd so g · hfe ius empty utoncot. oMno irneo Bve→ r, CA ;=n o∅t ebet chaautse g
iosf tthhee type toyf ffu, so iho ni’s, aa lnsod empty fani ds ehmenpctey et qouo.al Mtoo g · fv.e rW,A he= n C∅ b=e c∅a, we
odeff tinhee g bp feoo r fbf i,ns othh e range eomf fp by g bd h=e nhc a f eoqru some a wfi.t hW fh a n=C Cb6=; th∅ ,isw ise
a proper definition, because if there are two choices a, a0 with f a = f a0 = b,

6
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then ha = ha0 also by assumption. For b outside the range of f, we define g b
arbitrarily. By construction, this gives ha = g (f a) for every a. 2

We also use the following simple fact concerning initial algebras:

Lemma 4.4

µF→ A = ∅ ⇒ FA → A = ∅

Proof. We note that FA → A = ∅ is equivalent to A = ∅ ⇒ FA = ∅, which
implication can ett hhenat b Fe Ave→ rifieA d as fi oslle oqwusi:v

A = ∅

⇒ { µF→ A = ∅ }

µF= ∅

⇒ { in : F (µF) → µF }

F (µF) = ∅

⇒ { µF= ∅ = A }

FA = ∅
2

Proof of Theorem 4.2 Given the two lemmata above, the proof of the
theorem is almost embarrassingly simple:

∃g : FA → A. h= fold g

⇔ { universal property }



∃g : FA → A. h · in = g · F h

⇔ { Lemma 4.3 }

ker (F h) ⊆ ker (h · in) ∧ FA → A = ∅

⇔ { Lemma 4.4, h : µF→ A }

ker (F h) ⊆ ker (h · in)
2

Remark 4.5 For the type List (A) of finite lists with elements drawn from
A, with constructors nil : 1→ List(A) and cons : A ×List(A) → List(A) ,
ATh,e woritehmc 4on.2s rreudcutcoerss tnoil stating Lthisatt( an arbitrary f: u Anc× tio Lni ht : L)i→s t(AL )i →t(A B),
can boree mwri4 t.t2enr directly as a tfoinldg precisely awrbhietnra trhye ulisntcst itohnath are iidsetn(Atif)ie →d by
h are closed under cons, in the sense that for all x, xs, ys,

hxs = hys ⇒ h(x : xs) = h (x : ys)

7
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Example 4.6 If we define sum : List(?) → ? by the equations

sum [ ] = 0

sum (x : xs) = x + sum xs

then it is easy to show that the lists identified by sum are closed under cons:

sum (x : xs) = sum (x : ys)

⇔ { definition of sum }

x + sum xs = x + sum ys

⇐ { substitutivity }

sum xs = sum ys

Hence, sum can be written directly using fold.



Example 4.7 In contrast, if we define a function stail : List(?) → List(?)
(for ‘safe tail’) by the equations

stail [] = []

stail (x : xs) = xs

then a simple counterexample verifies that the lists identified by stail are
not closed under cons: for example, with xs = [ ] and ys = 0 : [ ] , we have
stail xs = [ ] = stail ys, but stail (1 : xs) = [ ] = 0 : [ ] = stail (1 : ys) .
Tsthaeilrx efsor= e st[ ]ail= =cas ntaniolty sb,e bwurtitts etnai ld( i1rec: tl xys as a f [o]ld=6 .

Example 4.8 For the type List(?) of finite lists of reals, consider the problem
of computing floorsum = f loor · rsum, where rsum : List(?) → ? sums a list
ooff creomalsp uatnidng gf  lfolooorr : ?m →= l?oo rro· ur nsdusm a wrehaelr r dsuowmn t Loi tth(e )la→ rgest integer at
most r. Because the res→ult is an integer, one might wonder whether floorsum
can be carried out as a fold to integers, thereby avoiding the computationally
more expensive real arithmetic. It cannot: we have floorsum (0.3 : [ ]) =
floorsum (0.6 : [ ] ), but floorsum (0.5 : 0.3 : [ ] ) = floorsum (0.5 : 0.6 : [ ] ) .

Orsnu mth( e0 o.6th :e[ r] hand, ltohoer reverse composition sum · map f loor, w6: hi[ c])h. floors
every nele thmeeo ntth hoefr rth hea nlidst, btheefor reev summing, can iboen ws ruimtte· n m as a floooldr: an argument
similar to Example 4.6 applies. This is an instance of deforestation [24] ,
an optimisation whereby two computations are combined into one and the
intermediate data structure (here of type List(?)) is eliminated.

Remark 4.9 For the type Tree (A) of binary trees with constructors leaf :
A → Tree (A) and node : Tree (A) ×Tree (A) → Tree (A) , Theorem 4.2 reduces
tAo stating (tAh)ata an narobdietr: a rTyr feu(nAct)i×onT rhe : (TAr)ee→ →(AT) →ree (BA can hbeeo wrermitt4 e.n2 r deirdeucctleys
as a afotilndg precisely wrbhitenra trhye f tnrceteiso nthh at: are i(dAe)nt→ ifieB d by hb are ictltoesnedd urencdtleyr
node, in the sense that for all t,u,

ht = ht0 ∧ hu = h u0 ⇒ h (node (t, u)) = h (node (t0, u0))

8
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Example 4.10 For another deforestation example, consider flatsum = sum ·

Eflaxtatemn,p lweh 4er.1e 0 fla Fttoerna : oTtrheeer r(Ad )e o→r Lstisatt(ioAn) generates a lsisidt orf ltahtes uemlem= ens tusm mo·f



a attrteeen. T whhee rient felarmtteednia: tT e leiset( Ain) →flats Luismt( can been eerlaitmesin aatel isdt, obefc tahuese e

flatsum (node (t, u))

= { definition of flatsum }

sum (flatten (node (t, u)))

= { definition of flatten }

sum (flatten t ++ flatten u)

= { sum distributes over ++ }

sum (flatten t) + sum (flatten u)

= { definition of flatsum }

flatsum t + flatsum u

from which we conclude that trees identified under flatsum are closed under
node. (Here, ‘+ +’ concatenates two lists.)

Example 4.11 The predicate bal : Tree (A) → ? that holds of tree iff it is bal-
aEnxcaedm (all th4 .e1 l1eaT vehs eapt rtehdei same depth) eis( Ano)t a fold: with tree t being balanced
and of depth 1, and tree u being balanced and of depth 2, both t and u are
identified by bal (both yielding true) , yet bal (node (t, t)) = bal (node (t, u)) .

Example 4.12 However, the function dbal : Tree (A) → ?×? that computes
a pair, ptlhee depth oofw wthevee trr,e teh eanf udn wcthieotnhd erba ilt :iTs breaela(Anc)e →d, is a fold. Because

depth (node (t, u)) = 1+ max (depth t, depth u)

bal (node (t, u)) = bal t ∧ bal u ∧ depth t = depth u

trees identified by dbal are closed under node. This is an example of a mu-
tumorphism [7] or almost homomorphism [3,8] ; transforming a function into
such a form is an important step towards constructing an efficient data-parallel
algorithm for computing it.

5 When is a function an unfold?



Dualising Theorem 4.2 to unfold is straightforward. The appropriate dual to
the notion of the kernel of a function is simply its image:

Definition 5.1 The image of a function f : A → B is the set of elements
Dthaefti are produced by f:

img f = { b ∈ B | ∃a ∈ A. f a = b }

9
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The duality between kernels and images is perhaps not immediately evi-
dent, but is revealed by thinking relationally. In particular, if functions are
viewed as relations in the obvious way, then the relational composition f◦ · f
of a function f with its converse f◦ is precisely the kernel of f, while the du·af l
composition f · f◦ is (the identity relation on) the image of f.

We can now present our result for unfold, which gives a necessary and
sufficient condition for when an arbitrary arrow h : A → νF in SET can be
swurfiftitceienn itnc tohned iftoiromn fho r=w uhnefnolda g faorrb some o atrhreorw arrow g : Aν F→i nF SAE.

Theorem 5.2 Suppose that h : A → νF. Then

(∃g : A → F A. h = unfold g) ⇔ img (F h) ⊇ img (out · h)

(Another way of saying this is that h is an unfold iff img h is an invariant of
out; that is, writing Pred(F) (P) for the predicate lifting to a predicate on FA
of predicate P on A [12] , iff Pred(F) (∈ img h) (out x) follows from (∈ img h) x.)

Trehdei crux Poof nthA e proof is trheed dFu)a(l∈ o ifm Lgemh)m(oau 4.3, namely rtohmat( ∈inci mlugsiho)nx o.)f
images is equivalent to the existence of ‘prefactors’:

Lemma 5.3 Suppose that f : B → C and h : A → C. Then

(∃g : A → B. h= f · g) ⇔ (img f ⊇ img h ∧ A → B = ∅)

Proof. For the ⇒ direction, assume that g : A → B and h = f · g; then
clearly .AF o→r tBh e=⇒ ⇒∅, adnirde moreover,



c ∈ img h

⇔ { images }

∃a. ha = c

⇔ { h = f · g }

∃a. f (g a) = c

⇒ { g : A → B }

∃b. f b = c

⇔ { images }

c ∈ img f

Conversely, assume that img f ⊇ img h and A → B = ∅, so that either A = ∅
or nBv e=rs e∅ly. Wa sshuemn eAt h=a t∅i ,m tghefn ⊇ ⊇h misg thhea empty fu Bnc =6tio∅ n,; olett g tbe ei tthheer empty
ofurn Bctio6 =n too, so nf ·A g =is ∅a,ls toh empty a tnhde ehmenpctey e fquunaclt itoon h;.l tWg hbe ne B th e= ∅m, we
dfuenficntei g a ofoor, a ∈ A· g as fa ollsloowe sm. Ltyet a c d=h hen a; ebe yq assumption, c ∈ img =f∅ too,
so itnheereg aex fiosrtsa ab ∈ AB awsi fthol lfo wb =. c, atnc d we dae;f ibnye g a tmo pbtieo snu,c hc a ibm. gIff ftht oeroe,
siso more t ehxaisnt one sB uc hw tb,h i ft bd=o esc n,’t a mda wtteerd ewfinheichg one bt heast we achb o.oI sfet. Berye
construction, this gives ha = f (g a) for every a. 2
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We also use the dual of Lemma 4.4:

Lemma 5.4

A → νF = ∅ ⇒ A → FA = ∅

Proof. We note that A → FA = ∅ is equivalent to A = ∅ ⇒ FA = ∅, which
iPmrpoloicfa.t iWone can ett hhenat tbA e v→ er iFfieA d =by∅ ci osm eqbuiniivnagle tnhte t otwA o =ca ∅lc⇒u laF tioA ns=6 :

A = ∅

⇒ { A → νF = ∅ }

νF = ∅



⇒ { out : νF → F (νF) }

F (νF) = ∅

and

A = ∅

⇒ { functions }

νF → A = ∅

⇒ { functors }

F (νF) → FA = ∅

That is, A = ∅ implies that F (νF) = ∅ and F (νF) → FA = ∅, which
conjunction =in t∅u rimn pimliepslie tsh athta Ft (Fν AF )=6= =∅, as rnedquF ir( eνdF. 2h

Proof of Theorem 5.2 Again, the proof is simple:

∃g : A → FA. h= unfold g

⇔ { universal property }

∃g : A → FA. out · h = F h · g

⇔ { Lemma 5.3 }

img (Fh) ⊇ img (out · h) ∧ A → FA = ∅

⇔ { Lemma 5.4, h : A → νF }

img (Fh) ⊇ img (out · h)
2

Remark 5.5 For the type Stream(A) of streams w ith elements drawn from A,
with destructors head : Stream(A) → A and tail : Stream(A) → Stream(A) ,
wThitehord eemst 5ru.2c roerdsuh ceeas dto: stating (tAha)t an Aarba nitdrat rayi lfu: nS cttrieoanm h( : )B→ → Stream(A)
can boree wmr5i t.t2enr e directly as an nungf othlda precisely wrahryenf tuhnec ttaioinl o hf every s Strteraemam pro-
ducible by h is itself producible by h, in the sense that: img (tail · h) ⊆ img h.
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Example 5.6 Consider the function f rom : ? → Stream(?) defined in Sec-
tion 2.2. Then (tail · f rom) n is the stream [n + 1, n + 2, . . .] , and in general,
img (t2 a.i2l. · Tf rhoemn) tisa tlh· ef osemt )ofn si tsret ahmess { [n + n1,n + 2, . . .] | n ∈a n?d }, wg ehnicehr ils,
iinm gin(ctlauild e·df r oinm i)m igsft rhomes , ttho ef s settr eoafm mstsr {eam[ ns+ +{ [,nn, n +2 ,1. , . . ].|] |n n ∈ ?} }, . Hhiecnhcei s,
ifrno minc can bdei nwr iimttgefnr odmir,ect thlye using ustnrfeoalmd.

Example 5.7 In contrast, if we define a function mults : ? → Stream(?)
such that mults n produces the stream of multiples [0, n, n ×2, n ×3, . . .m] o(f a
snuactuhrt ahl n, mthuelnts s(n tap ilr·omduultcse)s n hise t shter esatmreao mf m[nu, n×p2, . . 0.], , na,nnd× so i,mng × ×(t3a ,i.l·.m.]uo ltfsa )
nisa tnuorta lin nc,lut hdeend tina img mults, sw thhiecsh t only [inn,cnlu×d2es, .st.]r,ea anmds owi hmosge( haeila·dm uisl s0).
Therefore mults cannot be written directly as an unfold.

Remark 5.8 For the type Co Tree (A) of infinite binary trees with elements
drawn from A, with destructors root : Co Tree (A) → A and left, right :
Cdroa Twrene (A) → C,ow T Titrhee(d Ae)s , Tuhcteoorrsem ro o5t.2 :re CduoTcerse t(oA stating th aantd an arbitrary

CfuonTctrieoen(A Ah) : →B → Creoe eT(rAee)(,AT )h can bme 5w.2ritr etednu as an u stnafotlind precisely wa rhbeintr tarhye
lfuefnt atniodn r hig h:Bt Bo→f every rtereee(A Ap)roc danuc ibbelew briyt the are st hanemu nseflovldes pprerocidsueclyibwl eh beyn ht h:

img (left · h) ⊆ img h

img (right · h) ⊆ img h

Example 5.9 Consider the infinite binary tree with every node labelled by
its path, a finite list of booleans recording the left and right turns from the root
in order to reach that node. The function paths : 1→ CoT Tree (List(?)) that
ipnro odrudecerst othr ise atcrheet hisa tnon to an .u nTfholed,f ubnecctaiuonsep img s(l: e1f t →· pa CtohTs)r aen(dL img (right ·

paths) ecosn tthaiisnt trreeeei ss wn iotht singleton l bisetcsa uats ethi meirg roots, pwahthicsh) are dno imt gin(crliugdhted·
in img paths, which contains a tree with the empty list at its root.

Example 5.10 In contrast, the more general function pathsfrom : List(?) →

Co Tree (List(?)) that generates the tree of paths starting from a given path
is an unfold, because (left · pathsfrom) bs = pathsfrom (false : bs) implies that
img (left · pathsfrom) lise tinc ·lp uadtehds rino img spa= thp safrtohmsfr, amnd( asilmseil: a rbsly) fimorp rliigehstt .h

6 Conclusion

We have given the first complete results for when an arbitrary arrow can be



written directly as a fold or unfold, for the special case of the category SET. In
wfurtiutrtee nwd oirrke we w asilla investigate wldh,ef othret rh eths ep reecsiualltc sa can fbt eh generalised StoE Tot.h eInr
categories, and to other patterns of recursion, such as primitive (co-)recursion
[19,22] and course-of-value (co-)iteration [23] .

As well as being interesting from a theoretical point of view, we also ex-
pect the results to have practical applications in program optimisation. A
well-structured program is typically factored into several phases, each phase
generating a data structure that is consumed by the subsequent phase; defor-
estation [9,16,21] fuses adjacent phases and eliminates the intermediate data
structures. When performed as a compiler optimisation, it yields efficient ob-
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ject code without sacrificing the structure and clarity of the source code. Our
results can be used to determine when two phases cannot be fused to a fold
or an unfold. It might be possible to use an automatic testing system such as
QuickCheck [2] to find counterexamples to the appropriate inclusions.
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