
Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

1

Proving Compiler Correctness with Dependent
Types

João Paulo Pizani Flor
Wout Elsinghorst

Department of Information and Computing Sciences
Utrecht University

Wednesday 16th April, 2014

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

2

Table of Contents

Introduction
Context/Terminology
Compiler correctness
Sharing
Goals

Implementation (code)
Basic correctness
Lifting to sharing setting

Conclusions

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

3

Table of contents

Introduction
Context/Terminology
Compiler correctness
Sharing
Goals

Implementation (code)
Basic correctness
Lifting to sharing setting

Conclusions

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

4

Source language, Target language

I Example source code (expression language):

Add (Val 1) (Add (Val 1) (Val 3))

I Example target code (for a stack machine):

PUSH 1 >> PUSH 1 >> PUSH 3 >> ADD >> ADD

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

5

Evaluation, execution

I An eval function gives the semantics for the source
language

� Denotational semantics
� Maps terms to values

I An exec function gives the semantics for the “machine”
language

� For each instruction, an operation to perform on the
machine state (stack)

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

6

Table of contents

Introduction
Context/Terminology
Compiler correctness
Sharing
Goals

Implementation (code)
Basic correctness
Lifting to sharing setting

Conclusions

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

7

What does ”correct” mean?

I Both semantics (before and after compilation) should be
“equivalent”

I Compiling then executing must give the same result as
direct evaluation

Exp

Code

Value

Stack → Stack

eval

pushcompile

exec

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

8

Reference paper

I ”A type-correct, stack-safe, provably correct expression
compiler in Epigram”

� James McKinna, Joel Wright

I Basic ideas and proofs, which we extended. . .

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

9

Table of contents

Introduction
Context/Terminology
Compiler correctness
Sharing
Goals

Implementation (code)
Basic correctness
Lifting to sharing setting

Conclusions

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

10

Extending the source language

I More ”realistic” languages have sharing constructs

I We wanted the ”simplest possible” extension with sharing
behaviour.

I Chosen extension: if then else + sequencing

if c then t else e >> common-suffix

I The ”näıve” compile function will duplicate the suffix
I Having Bytecode defined as graph (structured graph)

instead of tree would solve this problem
� But proofs would be more complex

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

11

Table of contents

Introduction
Context/Terminology
Compiler correctness
Sharing
Goals

Implementation (code)
Basic correctness
Lifting to sharing setting

Conclusions

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

12

What we ideally want

I Have a ”smart” graph-based compiler, generating code
which uses sharing

I Write the correctness proof only for the ”dumb” compiler,
have correctness derived for the smart version.

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

13

Reference paper

I ”Proving Correctness of Compilers using Structured
Graphs”

� Patrick Bahr (visiting researcher)

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

14

Our project’s goals

I Integrating the best of both “reference” papers
I Our contributions:

� (Simplest possible) language extension showing sharing
behaviour.

� Proof of correctness for the stack-safe “näıve” compiler
� The one that just duplicates code.

� A way to to lift this stack-safe ”näıve” correctness proof
� Into a proof concerning the more efficient compiler.

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

15

Table of contents

Introduction
Context/Terminology
Compiler correctness
Sharing
Goals

Implementation (code)
Basic correctness
Lifting to sharing setting

Conclusions

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

16

Source

I Source types:
data Tys : Set where

Ns : Tys
Bs : Tys

I Source terms (snippet):

data Src : (t : Tys) → (z : Sizes) → Set where
vs : ∀ {t} → (v : t ¡) → Src t 1
+s : (e1 e2 : Src Ns 1) → Src Ns 1

I Denotational semantics (snippet):

J K : {t : Tys} {z : Sizes} → (e : Src t z) → Vec t ¡ z
J vs v K = [v]
J e1 +s e2 K = [J e1 K’ + J e2 K’]

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

17

Bytecode

I Typed stack:
StackType : Set
StackType = List Tys

data Stack : StackType → Set where
E : Stack []
O : ∀ {t s’} → t ¡ → Stack s’ → Stack (t :: s’)

I Typed bytecode (snippet):

data Bytecode : StackType → StackType → Set where
SKIP : ∀ {s} → Bytecode s s
PUSH : ∀ {t s} → (x : t ¡) → Bytecode s (t :: s)
ADD : ∀ {s} → Bytecode (Ns :: Ns :: s) (Ns :: s)

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

18

Compiler correctness

compile : ∀ {t z s} → Src t z → Bytecode s (replicate z t ++ s)
compile (vs x) = PUSH x
compile (e1 +s e2) = compile e2 〉〉 compile e1 〉〉 ADD

correct : {t : Tys} {z : Sizes} (e : Src t z)

→ exec (compile e) ≡ J e K

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

19

Table of contents

Introduction
Context/Terminology
Compiler correctness
Sharing
Goals

Implementation (code)
Basic correctness
Lifting to sharing setting

Conclusions

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

20

Tree fixpoints

I Fixed Point for standard Functors

data Tree (f : Set → Set) : Set where
In : f (Tree f) → Tree f

I Fixed Point for indexed Functors

data HTree
(f : (StackType → StackType → Set)

→ (StackType → StackType → Set))
(ixp : StackType) (ixq : StackType) : Set where

HTreeIn : f (HTree f) ixp ixq → HTree f ixp ixq

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

21

Bytecode Tree Representation

data Bytecode : StackType → StackType → Set where
SKIP : ∀ {s} → Bytecode s s
PUSH : ∀ {t s} → (x : t ¡) → Bytecode s (t :: s)
ADD : ∀ {s} → Bytecode (Ns :: Ns :: s) (Ns :: s)

data BytecodeF (r : StackType → StackType → Set) :
(StackType → StackType → Set) where
SKIP’ : ∀ {s} → BytecodeF r s s
PUSH’ : ∀ {a s} → (x : a ¡) → BytecodeF r s (a :: s)
ADD’ : ∀ {s} → BytecodeF r (Ns :: Ns :: s) (Ns :: s)

I Bytecode is isomorphic to HTree BytecodeF
� fromTree ◦ toTree ≡ id
� toTree ◦ fromTree ≡ id

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

22

Correctness on Trees

compileT : ∀ {t z s} → Src t z
→ HTree BytecodeF s (replicate z t ++ s)

execT : ∀ {s s’} → HTree BytecodeF s s’
→ Stack s → Stack s’

correctT : ∀ {t z s’} → (e : Src t z)

→ execT (compileT e) ≡ J e K

I Proof of correctT can be derived from correct
� Because ‘Bytecode‘ is structurally the same as ‘HTree

BytecodeF‘

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

23

Graphs

data HGraph .. : ... -> Set where ...

I HGraph is similar (“includes”) HTree
� But with extra constructors to represent shared subgraphs

I Bytecode is not exactly isomorphic to HGraph
BytecodeF:

� We have: fromGraph ◦ toGraph ≡ id
� But: toGraph ◦ fromGraph 6= id
� HGraph → Bytecode → HGraph loses sharing

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

24

Bytecode Graph Representation

compileG : {s : StackType} → ∀ {z t} → Src t z
→ HGraph BytecodeF s (replicate z t ++ s)

execG : ∀ {s s’} → HGraph BytecodeF s s’
→ Stack s → Stack s’

correctG : ∀ {t z} → (e : Src t z)

→ execG (compileG e) ≡ J e K

Using machinery, we get this proof derived from ‘correctT‘

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

25

Achieved

I Agda “framework” for deriving compiler correctness proofs
� Compilers with typed source and typed target
� Given correctness of a “näıve” compiler, derive correctness

of “optimized” version

I Correctness proof for an expression language (with
sequencing)

� As “instance” of this framework

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

26

Agda limitations we faced

I Strict positivity requirement
� When defining fixed point type operators

I Totality checker
� When defining folds

I Type checking with positivity check disabled made
debugging hard

� Stack overflow, memory consumption

Introduction

Context/Terminology

Compiler
correctness

Sharing

Goals

Implementation
(code)

Basic correctness

Lifting to sharing
setting

Conclusions

27

Yet to be done

I Sequence clause of “basic” (non-lifted) correctness proof

I Prove a final lemma to complete the lifting (fusion law)

Thank you!

Questions?

	Introduction
	Context/Terminology
	Compiler correctness
	Sharing
	Goals

	Implementation (code)
	Basic correctness
	Lifting to sharing setting

	Conclusions

