
Proving Compiler Correctness with Dependent
Types

João Paulo Pizani Flor <j.p.pizaniflor@students.uu.nl>
Wout Elsinghorst <w.l.elsinghorst@students.uu.nl>

Tuesday 22nd April, 2014

1 Introduction
In this report we describe our work for the final project of the master course ”Theory of
Programming and Types” at Utrecht University. Our research involves the question of
compiler correctness, i.e, giving a specification for a language (a semantics), and proving
that a compiler for that language respects the given semantics.

Concretely, our notion of correctness depends on two semantics, respectively for the
source and object languages of the compiler. We define a denotational semantics (eval)
for the source language, as well as an operational semantics (exec) for the target machine.
Correctness states that evaluation is equal to compilation composed with execution.

More specifically, we were interested in having machine-checked proofs of correctness,
i.e, proofs written in the language of an interactive proof assistant. Some initiatives in this
direction are already being taken, most famously CompCert, a formally verified compiler
for the C language, which had its proof written in the Coq proof assistant.

Dependent types allow us to embed, as indices to the language definitions and in the
type of the “compile” function, constraints which make these definitions correct.

The rest of the report is organized as follows: on section 2 we present the related papers
which served as the basis for our research, and state precisely which were our contributions.
In section 3 we present the definitions for our source and object languages and give the im-
plementation of the compiler itself. In section 4 we define a notion of compiler correctness
and prove that our compiler is correct according to this definition. Section sec:lifting in-
troduces a smarter version of the object language, in which sharing is captured, together
with a compiler which produces code in this new language. We then proceed to describe
how, given a correctness proof for a “naı̈ve” compiler, a proof of correctness for the smarter
version can be obtained.

Acknowledgments: We are pleased to thank Wouter Swierstra for his help and valuable
insights.

2 Related work/Goals
On researching the topic of compiler correctness in the context of dependent types, we first
encountered the paper “A type-correct, stack-safe, provably correct expression compiler in
Epigram” [2]. In this paper, a very simple (but typed) expression language is presented,
along with a typed bytecode definition. The correctness of this compiler is then formulated
and proven.

Both language definitions, the semantics for each of them, the compiler and its cor-
rectness proof were all written in Epigram, a dependently-typed programming language.
Therefore, even though the authors admit that the paper carries no real novelty value re-
lated to compiler construction, we still felt this paper could serve well as the “basis” for

1

our project, as they treat compilation of typed source to typed bytecode, and also use a
dependently-typed implementation language.

So our work started with trying to extend the source language from [2], and add con-
structs to it that made it more powerful. Then we came across the paper “Proving Cor-
rectness of Compilers using Structured Graphs”[1]. In this paper, the author discusses the
issue of sharing of bytecode, that is, that some high-level language constructs (typically
control flow related constructs, such as exception handling of conditional branching) map
into low-level code which has shared blocks of code among different execution paths.

One way to compile these control flow constructs would be to extend the bytecode
language with explicit jumps and labels, a solution which is often taken in “real-world”
compilers, but which makes analyzing bytecode and proving compiler correctness much
more complex. A simpler way to handle these situations is to just replicate the shared code
when compiling constructs which generate different execution paths.

A compiler which works by using a jump-and-label-free bytecode and replicates shared
code is easier to analyze, but the practically desirable behaviour is, off course, to represent
the sharing. The main contribution of [1] is a systematic way in which a proof of correctness
for a “naı̈ve” (code-duplicating) compiler can be used to construct the correctness proof for
a “sharing optimized” version of that compiler; a rather elegant approach.

The overall goal of our project was, therefore, to integrate the solutions given both in
[2] and [1]. To achieve this goal we needed to make some adjustments to the definitions
and proofs of the reference papers. These adjustments are what we perceive as our main
contributions with this project:

• The solution in [1] used Haskell as implementation language (along with some proofs
given in Coq).

– We needed, therefore, to adapt definitions such as fixed point operators and
generic maps/folds to the total setting of Agda.

• The example bytecode language used in [1] to illustrate the method is untyped.

– To make the proof derivation scheme work for typed bytecode, we needed to
also adapt most of the generic data structures presented to become indexed.

• The example control flow construct used in [1] to introduce sharing (exceptions) was
also not immediately applicable to being modeled in a total setting.

– Specifically, the way in which it was implemented (by using Higher-Order Ab-
stract Syntax) clashed with Agda’s requirement of strict positivity1 Exceptions
required the Stack datatype to contain handlers of the form Stack → Stack,
violating the positivity requirement.

– We chose a simpler sharing-inducing extension to the language of [2] (sequenc-
ing and conditional branching). This extension is explained in more detail in
section 3

3 Source and Target Language
Our source language (Src) is based upon, and therefore very similar, to the one defined
in [2]. It is a typed expression language, in which the types are naturals and booleans.
There are no binding or application constructs in this language, therefore no arrow type
constructor. First, we show the type language for Src:

When naming constructs of the languages which are our ”object of study”, we give sub-
scripts to distinguish them from similarly named definitions in Agda (the metalanguage).

2

data Tys : Set where
Ns : Tys
Bs : Tys

Figure 1: Types for our source language.

data Src : (t : Tys)→ (z : Sizes)→ Set where
vs : ∀ {t} → (v : [[t]])→ Src t 1
+s : (e1 e2 : Src Ns 1)→ Src Ns 1

ifs thens elses : ∀ {t n} → (c : Src Bs 1)
→ (et ee : Src t (suc n))→ Src t (suc n)
〉〉s : ∀ {t m n} → Src t (suc m)→ Src t (suc n)→ Src t (suc n + suc m)

Figure 2: The Src datatype definition.

In the case of the source language, the names are subscripted by a small-case “s”.
The definition of Src makes clear what is the main difference between our source

language and the used defined in [2]: we have an additional sequencing construct. Even
though the datatype definition is increased by only one constructor, this change has several
subtleties:

• All subexpressions in a sequence are required to be of the same base type

• No arithmetic or boolean operators over sequences

– This is enforced by making expressions have a size

As important as defining the constraints on well-formed expressions is also defining a
semantics for Src. We follow the same idea as in [2] and provide a denotational semantics
for Src, written as a function eval which maps terms of Src to values.

J K : {t : Tys} {z : Sizes} → (e : Src t z)→ Vec [[t]] z
J vs v K = [v]
J e1 +s e2 K = [J e1 K’ + J e2 K’]
J ifs thens elses c e1 e2 K = if J c K’ then J e1 K else J e2 K
J e1 〉〉s e2 K = J e2 K +++ J e1 K

J K’ : {t : Tys} {z’ : Sizes} → (e : Src t (suc z’))→ [[t]]
J e K’ = head J e K

Figure 3: Semantics for the Src language.

Because of the sequencing construct, we chose our values to be vectors of naturals
or booleans. The usage of vectors as values matches the requirement we imposed that
sequences of expressions have to be uniformly-typed. Also, the size of the vector resulting
from evaluation matches the size of the Src expression.

1Strict positivity implies that fields of a datatype can’t be of function type with the respective datatype as its
domain (’in negative position’). So constructors of the form mkFoo : Foo→ · · · → Foo are not allowed.

3

A last interesting remark about eval is that the type signature of eval expresses type
preservation. This phenomenon, of having proven a meta-theoretical property “for free”, is
allowed by the use of dependent types on the definitions of the language and the evaluator.
On a non-dependent setting, such a property would have to be proven separately, in an
“offline” proof.

Having defined Src and its semantics (eval), we now move on to defining the target
language (Bytecode) and its corresponding semantics (exec). This target language is a
typed stack bytecode, and therefore it operates on typed stacks:

StackType : Set
StackType = List Tys

Figure 4: The type of a Stack.

data Stack : StackType→ Set where
E : Stack []
O : ∀ {t s’} → [[t]]→ Stack s’→ Stack (t :: s’)

Figure 5: Definition of a typed stack.

The Stack type is indexed by StackType. The same StackType indices come
into play in the definition of the Bytecode datatype: Each bytecode instruction performs
a certain stack manipulation, and therefore each instruction is a value of type Bytecode
s1 s2, where s1 is the input StackType and s2 is the output StackType.

data Bytecode : StackType→ StackType→ Set where
SKIP : ∀ {s} → Bytecode s s
PUSH : ∀ {t s} → (x : [[t]])→ Bytecode s (t :: s)
ADD : ∀ {s} → Bytecode (Ns :: Ns :: s) (Ns :: s)
IF : ∀ {s s′} → (t : Bytecode s s′)→ (e : Bytecode s s′)→ Bytecode (Bs :: s) s′

〉〉 : ∀ {s0 s1 s2} → (c1 : Bytecode s0 s1)→ (c2 : Bytecode s1 s2)→ Bytecode s0 s2

Figure 6: Typed bytecode instructions.

The semantics of the bytecode are defined in by the function exec, whose type signa-
ture can be read (due to currying) as mapping a value of Bytecode into a function which
relates the initial pre-execution Stack to the final post-execution Stack.

exec : ∀ {s s′} → Bytecode s s′→ Stack s→ Stack s′

exec SKIP s = s
exec (PUSH v) s = v O s
exec ADD (n O m O s) = (n + m) O s
exec (IF t e) (true O s) = exec t s
exec (IF t e) (false O s) = exec e s
exec (c1 〉〉 c2) s = exec c2 (exec c1 s)

4

4 Compiler Correctness
With both source and target languages of our compiler in place, the compiler itself is now
easily defined:

compile : ∀ {t z s} → Src t z→ Bytecode s (replicate z t ++l s)
compile (vs x) = PUSH x
compile (e1 +s e2) = compile e2 〉〉 compile e1 〉〉 ADD
compile (ifs c thens t elses e) = compile c 〉〉 IF (compile t) (compile e)
compile ((ifs c thens t elses e) 〉〉s e2) = ◦ (compile c 〉〉 IF (compile t 〉〉 compile e2) (compile e 〉〉 compile e2))
compile (e1 〉〉s e2) = ◦ (compile e1 〉〉 compile e2)

Correctness of the compiler is defined as stating that compile should respect both
evaluation and execution semantics: executing the code directly with the eval function
should result in the same value as first compiling to Bytecode and then executing the
Bytecode on an empty initial stack. Formally we need to proof the following:

correct : {t : Tys} {z : Sizes} {s’ : StackType} (e : Src t z) (s : Stack s’)
→ prepend J e K s ≡ exec (compile e) s

The proof follows by induction on the source language expression. The value case is
proven using only beta reduction (and reflexivity). For the cases of addition and simple
conditional (no suffix) we prove correctness by rewriting with the induction hypothesis and
matching on the operands (in the case of addition) or the condition (in the conditional case).

The most complex case of the correctness proof is the sequencing case: here we use,
besides the induction hypotheses over the operands, also a lemma involving prepending
lists to vectors:

lemmaPrepend : ∀ {m n t st}
→ (v1 : Vec [[t]] m) (v2 : Vec [[t]] n) (l : Stack st)
→ prepend (v1 +++ v2) l ∼= prepend v1 (prepend v2 l)

Figure 7: Prepending a concatenation equals prepending the first list then the second.

Unfortunately, this lemma doesn’t get us quite as far as we would want. What’s left is
a seemingly-not-so-difficult proof involving heterogeneous equality that doesn’t lend itself
to closure that easily. Although we’re not really sure how to finish the proof, we’ve reduced
it to two self contained holes that can be attacked independently.

5 Graph Representation

5.1 Introduction
The compiler in the version currently given generates bytecode where common substruc-
tures aren’t explicitly shared. A piece of code sequenced after an if-then-else branching
statement gets copied to both the true and the false branch. This gives the generated code a
tree like structure which (allegedly) makes it easy to reason about. Unfortunately, the du-
plication results in exponential memory usage: for every branching statement appearing in
the code, two copies of the code below it must be kept in memory. The following example
shows this behaviour:

dupSource : Src Ns 3

5

dupSource = ifs vs true thens vs 2 elses vs 3 〉〉s (vs 5 〉〉s vs 7)

The following code is generated:

dupTarget : ∀ {s} → Bytecode s (Ns :: Ns :: Ns :: s)
dupTarget = PUSH true 〉〉 IF (PUSH 2 〉〉 PUSH 5 〉〉 PUSH 7) (PUSH 3 〉〉 PUSH 5 〉〉 PUSH 7)

One can see that the code the expression vs 5 〉〉s vs 7 is generated twice.
A solution to this problem is given in [1], where instead of as a tree, the bytecode is

now represented as an acyclic graph. In this representation, structures can be given names
which can be used to refer to the substructure. Only one copy of the structure is kept
in memory, independent of the number of times this structure is referred to. This more
efficient representation is nice if performance is a concern, but it arguably makes to harder
to reason about. Ideally, one would like to write proofs using the tree represenation while
making use of the graph representation when actually using the compiler. Luckily, [1] also
describes how correctness proofs from the tree repesentation can be transferred (’lifted’) to
the graph representation. To make this lifting machinery work we first have to make the
tree structure explicit.

5.2 Explicit Tree Structure
An explicit tree description of the Bytecode datatype is obtained by representing it as
the fixed point of some functor. This makes the recursive positions explicit and will later
allow us to label them. Because Bytecode is an indexed datatype, we represent it using
an indexed functor. Fixed points of indexed functors are obtained by instantiating them
using the following datatype:

record HTree {Ip Iq : Set} (F : (Ip→ Iq→ Set)→ (Ip→ Iq→ Set)) (ixp : Ip) (ixq : Iq) : Set where
constructor HTreeIn
field

treeOut : F (HTree F) ixp ixq

One should notice that that this datatype doesn’t actually meet the no-positivity require-
ment 2. We’ve locally disabled the no-positivity check as to allow us to continue work in
this direction. We reasoned that instantiating HTree with a stricly positive functor would
not allow any inconsistencies to leak out of the module. Unfortunately, disabling this check
resulted in a number of compiler bugs (or maybe expected behaviour? we don’t know)
which resulted in stack overflows when querying types and memory exhaustion compiling
certain functions. The compromises that had to be made to work around these problems
will be addressed in the end of this section.

Using HTree, one can use the following functor

data BytecodeF (r : StackType→ StackType→ Set)
: (StackType→ StackType→ Set) where
SKIP’ : ∀ {s} → BytecodeF r s s
PUSH’ : ∀ {t s} → (x : [[t]])→ BytecodeF r s (t :: s)
ADD’ : ∀ {s} → BytecodeF r (Ns :: Ns :: s) (Ns :: s)
IF’ : ∀ {s s′} → (t : r s s′)→ (e : r s s′)→ BytecodeF r (Bs :: s) s′

to obtain an datatype isomorphic to the original: ∀ s s’ . Bytecode s s’
HTree BytecodeF s s’

The isomorphism is witnessed by the following two functions:

treeIsoTo : {ixp ixq : StackType} → (code : Bytecode ixp ixq)→ fromTree (toTree code) ≡ code

6

treeIsoFrom : {ixp ixq : StackType} → (tree : HTree BytecodeF ixp ixq)→ toTree (fromTree tree) ≡ tree

The functions compile and exec have counterparts defined on this fixed point rep-
resentation which are called compileT and execT respectively. Correctness for the tree
representation can now be stated as follows:

correctT : ∀ {s t z} → (e : Src t z)→ execT {s} (compileT e) ≡ prepend J e K

One final word about trees: by defining trees we had to disable the positivity check.
This resulted in bugs in agda that were triggered whenever a proof involved the fold func-
tion that accompanies HTree. To workout these issues, we had to omit the implementation
of fold and postulate the relevant properties so that the typechecker would never actually
have to inspect the HTree datatype. Proving things using these postulates is straightfor-
ward, albeit cumbersome.

5.3 Graph Structure
Our goal now is to define a graph structure which allows for automatic lifting of proofs
from the tree structure. In the end we’d like a proof lifting function so that the correctness
proof for graphs can be obtained as

correctG = lift correctT

Let us first start with the basics. A graph representation is obtained by the following
modification of the HTree datatype:

data HGraph’ {Ip Iq : Set} (F : (Ip→ Iq→ Set)→ (Ip→ Iq→ Set)) (v : Ip→ Iq→ Set) (ixp : Ip) (ixq : Iq) : Set where
HGraphIn : F (HGraph’ F v) ixp ixq→ HGraph’ F v ixp ixq
HGraphLet : (HGraph’ F v ixp ixq)→ (v ixp ixq→ HGraph’ F v ixp ixq)→ HGraph’ F v ixp ixq
HGraphVar : v ixp ixq→ HGraph’ F v ixp ixq

In addition to constructors representing the recursive positions, there are two construc-
tors for representing and using shared substructures. The HGraphLet constructor is used
to give tag a given substructure, which can then be referred to by the HGraphVar con-
structor.

The observant reader will notice that the indices of the HGraphLet constructor aren’t
scoped correctly. This is a minor oversight which we only found out about last minute.

Bytecodes which use shared substructures can now be represented as values of the
type HGraph BytecodeF. Every HTree BytecodeF can trivially be embedded in
HGraph BytecodeF by ignoring the extra constructors. For graphs there are of course
also the execG and compileG functions which define how to execute graph bytecode or
compile to graph bytecode, respectively. Converting in the other direction however loses
sharing information. Executing either the unraveled graph or the original will still gave
the same result.

Unfortunately, at this moment the previous example which was used to show code
duplication cannot be rewritten in the more efficient graph representation because the graph
representation has some of it’s indices mixed up.

Correctness for graphs amounts to the following statement:

correctG : ∀ {s t z}
→ (e : Src t z)→ execG {s} (compileG e) ≡ prepend J e K

7

To prove this, we provide a framework which is generic over the base functor chosen,
which in our case is BytecodeF.

5.4 Lifting Proofs
We’ve implemented a module called ’Lifting’ which is parametrised by a correctness proof
for trees and a proof that relates compileG to compileT via the unravel function.
Concretely, to obtain a proof for correctG, one needs to open the module Lifting and
supply it with correctT and following (only non-trivial) additional parameter:

unravelLemma : ∀ {s t z} unravelLemma : ∀ {s t z}
unravelLemma : ∀ {s t z}
→ (src : Src t z)→ compileT {s} src ≡ unravel (compileG {s} src)

The implementation of the Liftingmodule itself uses a generalization of the Shortcut
Fusion Theorem which is mentioned but not proven in [1]. The generalization, al-
though not in contradiction with our intuition, is not proven, and is thus one of the weak
spots of our system.

To actually instantiate the Liftingmodule, one needs to supply a proof of the unravelLemma
tailored for the specific functor at hand. Unfortunately, we didn’t manage to supply a full
proof of this lemma for our BytecodeF functor. There is only tiny hole left open, but
unfortunately this hole asks us to construct an infinite type. The requested value must have
type:

BytecodeF (HTree BytecodeF) ixp ixq → HTree BytecodeF ixp ix

The HTreeIn constructor has this type:

HTreeIn : ∀ {F} → F (HTree F) ixp ixq → HTree F ixp ix

But unfortunately we’re not allowed to use it. The problem seems to be that normally
such an infinite type cannot escape a datatype declaration: it is only allowed on the right
hand side the declaration. Somehow, due to the our way of approaching the proof, this has
leaked to the outside world. We think it is possible that a different approach would avoid
exposing this type and thus allow for a full proof of this lemma.

6 Conclusions
In this project, we developed a provably correct expression compiler using dependent types
in the Agda programming language. Also, we implemented a systematic transformation
that, given the correctness proof for a “basic” compiler, can produce the correctness proof
for a compiler based on the first but generating “optimized” (sharing-preserving) target
code.

We believe that, even with such small languages as the ones we chose as examples,
this methodology of systematically “extending” correctness proofs when adding compiler
optimizations is an important area of research, and that using proof assistants based on
dependent types is a promising approach.

To conclude the report, we would like to explain what are the points in which we do
not consider our work to be finished. These are lemmas which we believe are true, but due
to some technicality or sheer time limitations we were not able to prove completely:

1. The sequence clause (〉〉 constructor) of the basic (non-optimized) compiler is de-
pending on a lemma that was left still to be proven.

8

• This lemma (lemmaPrepend) involves vector concatenation and a “prepend-
ing” operation, but can only be stated (apparently) using heterogeneous equal-
ity, which hindered our attempts.

2. Whether the Shortcut Fusion Law for folds also holds over indexed functors is still a
topic for further research. It is very plausible for this law to be true, but there is no
proof, and any proof would most certainly be non-trivial. It is a very large gap in our
framework which needs our first attention should this project be continued further.

3. The remaining part of the proof of the Unravel Lemma probably needs a different
appoach. We don’t think this will pose a serious problem.

4. HGraph still needs some generalization to allow for more general (read: non-useless)
let bindings. At the moment they are not sufficient to allow us to implement the pro-
vided examples in their efficient graph form. This is a minor oversight which should
require only a few (but technical) local changes to fix.

Finally, we would like to comment on some of the main difficulties we ran into during
the development of this project. First of all, as already mentioned, we had to model in Agda
concepts which do not fit easily the total setting, such as type-level fixpoint operators (vio-
late the strict positivity requirement of Agda) and generic folds over functors (which do not
pass the totality checker). To be able to use these definitions we had to enable compilation
flags and pragmas which made programming in Agda less “secure”. Enabling these flags
exposed some agda bugs/expected behaviour which made our development experience less
than pleasant. We had stack overflows when querying holes for their type and memory
exhaustion when compiling programs. Pinpointing these problems and working around
them took quite a bit of our time and we hope that future versions of agda will be more
accommodating.

References
[1] Patrick Bahr. Proving correctness of compilers using structured graphs. FLOPS ’14,

to appear, February 2014.

[2] James Mckinna and Joel Wright. A type-correct, stack-safe, provably correct, expres-
sion compiler. In in Epigram. Submitted to the Journal of Functional Programming,
2006.

9

	Introduction
	Related work/Goals
	Source and Target Language
	Compiler Correctness
	Graph Representation
	Introduction
	Explicit Tree Structure
	Graph Structure
	Lifting Proofs

	Conclusions

