
An Embedded Hardware Description
Language using Dependent Types

João Paulo Pizani Flor <j.p.pizaniflor@students.uu.nl>
Wouter Swierstra <w.s.swierstra@uu.nl>

Department of Information and Computing Sciences
Utrecht University - The Netherlands

Sunday 14th December, 2014

Extended abstract
Computer hardware has experienced a steady exponential increase in complexity in the
last decades. As we approach the physical limits of the chip manufacturing process, the
performance of computing systems cannot be increased anymore just by making CPUs
have higher frequency or more parallelism. There is an increased demand for application-
specific integrated circuits that avoid the proverbial von Neumann bottleneck [1], and
ever more algorithms enjoy hardware acceleration (such as 3D/2D renderers, video/audio
codecs, cryptographic primitives and network protocols).

This demand puts pressure on the industry to make hardware design quicker and
more efficient. At the same time, hardware design also requires very strong correctness
guarantees: it is much harder to recall a batch of mass-produced circuits than to push
a software update. These strong correctness requirements for hardware are commonly
met using (exhaustive) testing and model checking, making the design-verify-fix loop
also more costly than in the software world.

There is a long tradition [3, 4] of modeling hardware using functional programming to
pursue higher productivity and strong correctness assurance. A particular trend in this
direction is to use functional programming languages to host Embedded Domain Specific
Languages (EDSLs) aimed at hardware description. One popular example is Lava [2], a
hardware EDSL hosted by Haskell. Circuits modeled in Lava can be simulated, compiled
to VHDL netlists, and verified for safety properties by calling an external SAT-solver.

We believe that the advantages brought to hardware design by FP-inspired techniques
can be even greater if we use dependent types. Our project defines a Hardware Descrip-
tion Language (HDL) embedded in the dependently-typed general-purpose programming
language Agda.

1



With the additional expressiveness provided by a dependent type system, we can have
more static guarantees about circuit behaviour specified in the circuit’s type. There-
fore, certain classes of design mistakes (mismatching sizes, short-circuits, etc.) can be
eliminated by construction, i.e, “wrong” circuits simply cannot be built. Additionally,
in a dependently-typed setting, we can interactively prove properties of circuits, which
provides some advantages over the fully-automated verification approach used widely in
industry. For example, in Agda, we can prove (using induction) properties over whole
circuit generators.

More specifically, with an HDL embedded in Agda, we can write functional specifica-
tions of circuit behaviour and prove that a certain circuit implements that specification.
For instance, we could define the functional specification of adders to be a certain Agda
function called add (which operates over machine integers). Then we can proceed to
prove that different versions of adder circuits all implement the behaviour specified by
add. Hardware designers often start with a simple (but inefficient) design, and suc-
cessively add optimizations to achieve better performance. Using our embedded HDL,
a designer can be provably sure that, at each optimization step, the architecture (and
maybe performance) of the circuit changes, but the functional behaviour remains the
same.

We use a deep-embedded representation for circuits, and the modelings is done at
architectural level. Therefore, besides simulation, we also aim to able to extract netlists
(in VHDL) from the our internal circuit representation. This extracted VHDL can
be used as “entry point” for other tasks in the design chain, such as timing analysis,
synthesis, etc.

References
[1] John Backus. Can programming be liberated from the von neumann style?: a func-

tional style and its algebra of programs. Communications of the ACM, 21(8):613–641,
1978.

[2] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: hardware design
in Haskell. SIGPLAN Not., 34(1):174–184, September 1998.

[3] Peter Gammie. Synchronous digital circuits as functional programs. ACM Computing
Surveys (CSUR), 46(2):21, 2013.

[4] Mary Sheeran. Hardware design and functional programming: a perfect match. J.
UCS, 11(7):1135–1158, 2005.

2


