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6. Research Proposal

6.a Description of the proposed research

Computer hardware is becoming increasingly complex. Nowadays most personal
computers are furnished with several cores sharing gigabytes of memory behind
multi-level caches.

As a result of this increasing complexity, the cost of the formal verification of
new designs is rapidly rising. Verification now consumes more than two thirds
of all development resources associated with new hardware designs. Skimping
on verification is not an option: the notorious error in the floating point unit of a
Pentium processor is estimated to have cost 500,000,000 dollars [18].

Traditionally, most hardware designs are checked through simulation. Once a
circuit successfully passes a modest number of test cases and produces the correct
result, it is simulated for an extensive period of time—passing different inputs
to the circuit to check that it satisfies its specification. It is not uncommon for
such simulations to run for several months on mainframe computers. When such
simulations do uncover a bug, the design team must fix the problem and start
another round of simulation to validate the fix.

The cost of simulation has motivated research into techniques to find design
errors more quickly—model checking [5, 17] and symbolic simulation [11, 12] be-
ing two popular approaches. Yet even using such advanced techniques, there is
still a clear divide between the design and verification process. Verification engi-
neers are often still required to reconstruct the designers’ intent. To make matters
worse, uncovering an error may require a complete new series of simulations. To
reduce the overall cost of verification, it is essential to tightly couple the design
and verification process [31, 50].

Aims and objectives: This proposal aims to develop a domain-specific language
both to describe and to verify formally circuit designs, thereby integrating the de-
sign and verification process. To do so, we will explore how to raise the level of
abstraction available in the current generation of hardware description languages
by applying ideas from the programming language research community: higher-
order functional programs written in a constructive higher-order logic.

To this end, this proposal sets the following specific objectives:

1. To explore the use of a general purpose dependently-typed programming
language to host a domain-specific language for the description of hardware.
The circuits written in the proposed language will be executable as well as
generate VHDL designs.

2. To enforce static invariants of circuits using dependent types, thereby already
precluding certain errors during the design process;

3. To prove that circuit designs meet their specification and to identify the proof
combinators that facilitate the construction of reusable proofs;

4. To develop a notion of refinement between specifications and low-level cir-
cuit descriptions, enabling the incremental development of formally verified
circuits.

Upon its completion, this project will provide hardware designers with a means
to catch errors early in the development cycle and to convert verification effort
into reusable proofs. This research we propose is not a silver bullet to solve all
the problems associated with hardware verification, but rather a new and exciting
answer to an important problem.
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Background and motivation

Functional programming and hardware design The current generation of hard-
ware description languages, such as Verilog and VHDL, has been designed to sim-
ulate circuit descriptions. Unfortunately, verification based exclusively on sim-
ulation is no longer viable. Rather than adapt existing languages, this proposal
seeks to exploit exciting developments in program language design. In particular,
we will draw from ideas relating hardware design and functional programming
languages [52]. Languages such as Intel’s Forte [25] demonstrate that functional
languages are already influencing existing hardware description languages.

One promising approach to designing a new hardware description language
is Lava [7], a domain-specific language for hardware, embedded in the general-
purpose functional language Haskell [46]. Instead of implementing a new hard-
ware description language from scratch, Lava consists of a library of Haskell func-
tions to define circuits. This approach, embedding a domain-specific language
within a general purpose functional language, has been applied to many different
domains including financial contracts [47], parsing [33], pretty-printing [30], ran-
domised testing [14], music descriptions [29], and animation [21]. Lava itself has
been used in industry with great success at Xilinx by Singh [34, 54].

At the lowest level, Lava provides several functions to describe individual
gates. More interesting, are Lava’s circuit combinators—functions that assemble
large circuits from several smaller components. For instance, you might want to
compose two circuits sequentially or in parallel. Besides such simple composi-
tions, Lava provides other combinators that describe rich circuit designs, such as
tree-shaped circuits and butterfly circuits. Furthermore, circuit designers can use
Haskell’s abstractions to define their own combinators to express any new patterns
as they emerge in their design.

A Lava circuit design may serve different purposes. Besides extracting a VHDL
description of the circuit, there are several verification techniques Lava supports.
As the description is executable, you can test Lava circuits with QuickCheck [14],
providing a light-weight correctness check. Secondly, it is possible to symbolically
evaluate Lava circuits. Finally, Lava circuits may generate proof obligations for
automatic theorem provers.

All these verification techniques are fully automated and require no user in-
teraction. While this may seem appealing, the class of properties for which an
automatic decision procedures exist is restricted and randomised testing can pro-
vide only limited guarantees. Therefore other approaches to hardware verification
use theorem provers [8, 24, 38], most notably Isabelle/HOL [43] and ACL2 [10, 32],
to establish formal properties of a circuit’s specification. Such interactive theorem
provers are already being used to great effect by the hardware verification com-
munity, as witnessed by Fox’s verification of the ARM6 microprocessor [22] or
Harrison’s work on floating point verification at Intel [27].

While verification with such interactive proof assistants requires more work by
hand than fully automatic provers, there are no restrictions on the properties that
can be formalised thusly. This approach does have its drawbacks. Most notably,
there is still a large gap between the hardware design and verification effort. The
verification is usually done on a mathematical model of the circuit, and not on
the circuit description itself. It does not necessarily guarantee that the actual cir-
cuit has been implemented in accordance with the verified mathematical model—a
limitation we will strive to overcome.

Since the design of Lava, there have been new developments in the design of
functional programming languages with dependent types—which may be used to
integrate Lava with interactive theorem provers.
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Dependent types Computer programs manipulate data. A type system prevents
a program from using data in the wrong way. A program fragment such as

isItSaturdayToday ÷ "Hello"

does not make sense. Division is only defined on numbers. Trying to divide any-
thing by a piece of text indicates a program error. A program that is type-correct is
guaranteed not to make such errors.

Now consider the following two deduction rules:

isEven : Int ! Bool 5 : Int
isEven (5) : Bool

p ! q p
q

The deduction on the left may be part of the type checking performed before a
program is executed; on the right, is the logical modus ponens rule. Note that, when
you only consider the types to the right of the colon, these two rules have exactly
the same structure. This correspondence, known as the Curry-Howard isomor-
phism [55], states that every type system may be viewed as a system of formal
logic and vice versa.

The type system of most conventional programming languages corresponds to
(some variation of) propositional logic. Hence, types cannot carry a great deal of
information about the values that inhabit them. It is impossible to write down the
type of all non-zero binary words of width n; or the type of an n by m matrix; or the
type of a 16-bit address greater than 0x8hc2. All these examples constitute types
depending on values, or so called dependent types.

Dependent types were originally developed by Martin-Löf as a formal foun-
dation of constructive mathematics. Many proof assistants based on dependent
types, such as Automath [20] or Coq [6], have already been used to formalise sig-
nificant parts of mathematics.

Starting with Augustsson’s Cayenne [3] language eleven years ago, there has
been an increased interest in dependently typed programming languages. In partic-
ular, McBride and McKinna’s work on Epigram [36, 37] has shown how to imple-
ment a programming language on top of a consistent type theory. Many of the
ideas underlying the Epigram prototype have made their way into Agda [44], a
programming language developed by Norell with a more scalable implementa-
tion. Coq is gradually supporting more programming facilities [56]. These sys-
tems have been used to implement verified parsers [13], data structures [42], and
database servers [60].

Research programme

The key idea underlying this proposal is to embed a domain-specific language for hardware
description in a functional language with dependent types. This idea has been proposed
before [9, 26], but it only recently that implementations of programming languages
with dependent types have matured enough to explore the full potential of this
approach[44, 57, 56]. This is the perfect time to undertake this research.

Note that the aim is not to replace existing hardware description languages,
such as VHDL or Verilog, but rather to leverage new programming language tech-
nology to address existing problems in this domain. To ensure the research can
be used together with existing circuit designs, it will be possible to extract VHDL
descriptions and execute circuit designs.

More specifically, this proposal will investigate how dependent types can catch
design errors before verification has even started; examine how complex correctness proofs
can be assembled modularly from a handful of proof combinators; and finally, de-
velop a notion of refinement between circuit specifications and their complete im-
plementations.
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1 Static invariants Dependent types afford programmers with the opportunity
to express a function’s invariants in its type. For example, you may want to ensure
that the insertion and deletion operators of an AVL tree respect the balancing factor
appropriately. By encoding such invariants in the types of your functions, the type
system will guarantee that they are never violated.

In the context of hardware description languages, there are several invariants
that simple type systems cannot express. For example, Bluespec, Inc. have de-
signed a propriety high-level hardware description language [41]. One of the key
differences between their type system and Haskell is their use of numeric types to
enforce bit-width and size constraints. Similarly, you may want to bound a se-
quential circuit’s delay—ensuring it produces a value within at most k clock cy-
cles. Such invariants are much harder to enforce in languages or proof assistants
without dependent types.

The proposed research project aims to identify light-weight invariants important
to hardware designers and to enforce these invariants statically using the type system. As
a result of this work, circuit designers will be confronted with errors earlier on in the
design process, before verification has even started. This has the potential to reduce
drastically the number of simulation cycles necessary.

2 Proof combinators A language with dependent types provides a unified frame-
work for proofs and programs. It is possible to write machine-checked proofs that
a circuit matches its specification, but such formal proofs can become large and
unwieldy.

Using Lava, many complex hardware designs can be expressed by composing
smaller circuits: a binary adder circuit can be implemented by wiring together a
series of full adder circuits that each add two bits. Unfortunately, Lava does not
exploit this structure during verification. The challenge is to find a suitable set of
proof combinators to make large proofs manageable.

The second component of this research project consists of engineering a library
of proof combinators that facilitate the verification of composite circuits. This work will
enable the compositional verification of circuit designs—to prove a complex circuit satis-
fies its specification, it will suffice to verify the circuit’s subcomponents separately
and construct a larger proof using the proposed proof combinators. One example
of such a proof combinators is a dependently typed view [37, 59], or custom in-
duction principle. Such higher-order properties are not easy to express in proof
assistants with a more restricted logic such as ACL2.

Developing a library of verified components in this fashion can cut back the
overall cost of circuit verification. Finally, these combinators will make it possi-
ble to prove the correctness of parametrised circuit generators [51] and circuits with
unbounded state spaces—two domains where many traditional verification tech-
niques struggle.

3 Refinement The previous section discusses how to verify that a circuit descrip-
tion meets its specification. It does not say anything about how to derive the circuit
definition starting from a specification.

Yet this is an important question to ask: when designing circuits you often want
to start with a high-level specification, describing the expected behaviour of a mi-
croprocessor, for instance. From this specification, designers may start implement-
ing parts of the design all the way down to its individual gates; or alternatively,
designers may want to optimize this design, adding pipelines and caches. Either
way, the circuit should continue to meet its original specification—only more and
more implementation details and optimizations are added.
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A final aim of this project is to adapt ideas from the refinement calculus [4, 39],
a logic of verified software, to develop a similar logic of circuit refinement. This
would make enable us to unify our previous work on high-level hardware speci-
fication languages [15, 58] and low-level Lava circuit descriptions—refinement re-
lation describes the steps from a mathematical specification all the way down to a
circuit’s gate-level implementation. Although there have been previous notions of
refinement for specific problems in hardware design [2, 35], we propose to tackle
this problem in its full generality.

This part of the proposed research has the potential to make a significant im-
pact: programming languages with dependent types are by their very nature de-
signed to provide single language of programs, specifications, and proofs—and
establishing the relation between these concepts is precisely where many existing
hardware description languages fall short.

Research embedding The research will be carried out at the Radboud Univer-
sity of Nijmegen by dr. Swierstra and forms a natural successor to dr. Swierstra’s
current NWO Rubicon project, The Logic of Interaction. The Foundations research
group in Nijmegen is involved with several joint European efforts on type theory
and mathematics, such as the EU STREP project ForMath and the EU Coordination
Action TYPES. There is further local expertise on hardware verification in the form
of dr. Schmaltz and his NWO EviDAM project. In summary, the Radboud Uni-
versity is one of the few universities combining strong research in both hardware
verification and type theory.

6.b Application perspective

The current generation of hardware description languages are struggling to cope
with the skyrocketing cost of the verification of modern circuits. The recent Inter-
national Technology Roadmap for Semiconductors [1] states that:

without major breakthroughs, verification will be a non-scalable, show-
stopping barrier to further progress in the semiconductor industry.

The proposed research addresses this problem.
This research will replace the current standard tools, such as Verilog or VHDL,

in the immediate future. Hardware manufacturers have invested too much in the
existing technology to justify the adoption of new, experimental hardware descrip-
tion languages. In the longer run, however, experimental domain-specific lan-
guages such as the one proposed here may influence the next generation of hard-
ware description languages or may be used to complement existing verification
tools.

Nowadays there are domain-specific languages establishing a foothold in the
hardware industry. A good example of this is Cryptol [23], a domain-specific
language for cryptographic algorithms developed by Galois, Inc. Algorithm de-
scriptions in Cryptol are compiled to different back-ends, such as VHDL or C. The
Cryptol descriptions of crypto-algorithms tend to be much easier to write, reason
about, and verify. In previous work, dr. Swierstra has already shown how key fea-
tures of the Cryptol language can be implemented in a language with dependent
types [45]. In certain domains, like cryptography, where correctness is critical, the
potential reduction of verification cost already outweighs the price associated with
the adoption of novel technology.

Beneficiaries

The proposed research has several beneficiaries from different communities:
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Hardware designers The hardware language community will be one of the main
beneficiaries of the proposed research. The proposed research aims to transfer
technology from programming language design and type theory to the hardware
community.

Functional programmers and type theorists There is a growing interest into
programming with dependent types. Functional language designers are gradu-
ally developing new language features that encode more information in a value’s
type [49, 48]. On the other end of the spectrum, type theorists are exploring how
to apply their ideas in functional languages [36]. One of the missing ingredients
here is large case studies. To bring these two research communities (functional
programmers and type theorists) closer together, it is necessary to establish fur-
ther common ground: practical applications of dependent types that appeal to
functional programmers and type theorists alike. The proposed research fills this
niche.

Program language designers Functional languages, such as Haskell, are starting
to have a significant impact on mainstream languages. Many of the recent de-
velopments in Java and C#, such as delegates and generics [40], are inspired by
technology from the functional programming community. Language architects at
leading companies, such as Erik Meijer (Microsoft) or Guy Steele (Sun), have a
background in functional programming. F#, a functional language developed at
Microsoft, is now part of the .NET framework and rapidly gaining popularity.

An auxiliary aim of this research proposal is to continue pushing the bound-
aries of what is possible using functional languages. In the long run, the results of
this research will help shape the future developments of mainstream languages.

Industrial contacts

We have several contacts with companies where this research can be applied. Dr.
Swierstra’s previous postdoctoral research was funded by Intel, with Carl Seger
being his main contact. We fully expect to continue this collaboration when under-
taking this research.

Nationally, dr. Swierstra was previously employed by Vector Fabrics, a high-
tech startup specialised in applying functional languages in the development of
embedded systems. Although the results of this research will not be of immediate
corporate value, it will be interesting to investigate how the proposed domain-
specific language may serve as a specification language for their customers.

7. Project planning

We request funding for a three year postdoc position. We have identified separate
Work Packages (WP) and scheduled them in the Gantt chart below (Figure 1).

Year 1 In the first year, the research will focus on combinational circuits, that is,
circuits whose outputs only depend on their inputs. We do not foresee any tech-
nical difficulties executing the proposed research for this class of circuits as they
correspond to boolean logic formulae, for which (semi)automatic solvers exist.

At the end of the first year, we will have a prototype language design and
implementation in the programming language and proof assistant Coq [6], made
publicly available under an open source license (WP1). It will be possible to (sym-
bolically) simulate these circuit descriptions and extract corresponding VHDL from
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WP1: Study combinational circuits

WP2: VHDL extraction

WP3: Case studies and verification

WP4: Sequential circuits

WP5: Case study–microprocessor

WP6: Proof automation

WP7: Develop logic of refinement

WP8: Refinement case studies

0 12 24 36

Figure 1: Gantt diagram for proposed research

them (WP2). We expect to publish our initial results within the first year in order
to advertise this project to the wider community, and collect feedback from other
experts.

To evaluate our results, we will implement and verify several small, classic
examples of Lava circuit designs such as (prefix) adders [53] or sorter cores [16]
(WP3). Our aim is not to design exciting new hardware, but rather to compare our
approach to existing technology and, where necessary, refine our design choices at
this early stadium.

Year 2 We will show how these initial results can be extended to sequential circuits,
that is, circuits that may maintain some internal state, in the second year (WP4).
The main challenge will be to deal with feedback loops and develop a suitable logic
for reasoning about such loops. Recent results on mixed inductive and coinductive
data type definitions may provide a welcome foothold [19].

At the end of the second year, we will have several more substantial exam-
ples of circuit descriptions and verification developments. One typical case study
would be the formal verification of a simple microprocessor as described by Hen-
nessy and Patterson [28] (WP5). To ensure the correctness proofs scale along with
our circuit descriptions, it is important to identify high-level proof principles and
opportunities for automation (WP6). Once again, it will be possible to simulate the
circuits described in our case studies and extract VHDL from them.

Year 3 In the final year, we will develop a notion of refinement between circuits
and their specifications (WP7). Drawing on existing work on refinement calcu-
lus [4, 39] and our work on specification languages [15, 58], we aim to show how to
refine a mathematical circuit specification to a gate-level description of a hardware
circuit. We will re-use the case studies developed in previous years to evaluate our
results. To raise the bar even further, we will establish how certain circuit optimiza-
tions, such as pipelines and memory caches, can also be considered refinements of
a (more naı̈ve) circuit with the same behaviour (WP8).
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8. Expected use of instrumentation

The proposed research requires only the use of stock laptop computers and open
source software.

Word count: Sections 6, 7, and 8 use a total of 3494 words.

Five important publications

The five most important publications of the research team relevant to this proposal
are:

• Per Bjesse, Koen Claessen, Mary Sheeran and Satnam Singh. Lava: hardware
design in Haskell. In Proceedings of the third ACM SIGPLAN International Con-
ference on Functional Programming, 1998.

• Herman Geuvers and Henk Barendregt. Proof-assistants using dependent
type systems. Handbook of automated reasoning, Volume 2. 2001.

• Conor McBride and James McKinna. The view from the left. Journal of Func-
tional Programming, 14(1), 2004.

• Nicolas Oury and Wouter Swierstra. The Power of Pi. In ICFP 08: Proceedings
of the Thirteenth ACM SIGPLAN International Conference on Functional Program-
ming, 2008.

• Wouter Swierstra, Koen Claessen, Carl Seger, Mary Sheeran, and Emily Shriver.
Chalk: a language and tool for architecture design and analysis. Eighth Inter-
national Workshop on Designing Correct Circuits, 2010.
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