
Proving Correctness of Compilers using
Structured Graphs

Patrick Bahr

Department of Computer Science, University of Copenhagen
paba@diku.dk

Abstract. We present an approach to compiler implementation using
Oliveira and Cook’s structured graphs that avoids the use of explicit
jumps in the generated code. The advantage of our method is that it
takes the implementation of a compiler using a tree type along with
its correctness proof and turns it into a compiler implementation using
a graph type along with a correctness proof. The implementation and
correctness proof of a compiler using a tree type without explicit jumps
is simple, but yields code duplication. Our method provides a convenient
way of improving such a compiler without giving up the benefits of simple
reasoning.

1 Introduction

Verification of compilers – like other software – is difficult [11]. In such an en-
deavour one typically has to balance the “cleverness” of the implementation with
the simplicity of reasoning about it. A concrete example of this fact is given by
Hutton and Wright [9] who present correctness proofs of compilers for a simple
language with exceptions. The authors first present a näıve compiler implemen-
tation that produces a tree representing the possible control flow of the input
program. The code that it produces is essentially the right code, but the com-
piler loses information since it duplicates code instead of sharing it. However,
the simplicity of the implementation is matched with a clean and simple proof by
equational reasoning. Hutton and Wright also present a more realistic compiler,
which uses labels and explicit jumps, resulting in a target code in linear form and
without code duplication. However, the cleverer implementation also requires a
more complicated proof, in which one has to reason about the freshness and
scope of labels.

In this paper we present an intermediate approach, which is still simple, both
in its implementation and in its correctness proof, but which avoids the loss of
information of the simple approach described by Hutton and Wright [9]. The
remedy for the information loss of the simple approach is obvious: we use a graph
instead of a tree structure to represent the target code. The linear representation
with labels and jumps is essentially a graph as well – it is just a very inconvenient
one for reasoning. Instead of using unique names to represent sharing, we use the
structured graphs representation of Oliveira and Cook [15]. This representation
of graphs uses parametric higher-order abstract syntax (PHOAS) [4] to represent

binders, which in turn is used to represent sharing. This structure allows us to
take the simple compiler implementation using trees, make a slight adjustment
to it, and obtain a compiler implementation using graphs that preserves the
sharing information.

The key observation that also keeps the correctness proof simple is that the
semantics of the two target languages, i.e. their respective virtual machines, are
equivalent after unravelling of the graph structure. More precisely, given the
semantics of the tree-based and the graph-based target language as execT and
execG, respectively, we have the following equation:

execG = execT ◦ unravel

We show that this correspondence is an inherent consequence of the recursion
schemes that are used to define these semantics. That is, the above property
is independent of the object language of the compiler. As a consequence, the
correctness proof of the improved, graph-based compiler is reduced to a proof
that its implementation is equivalent to the tree-based implementation modulo
unravelling. More precisely, it then suffices to show that

compT = unravel ◦ compG

which is achieved by a straightforward induction proof.
In sum, the technique that we propose here improves existing simple com-

piler implementations to more realistic ones using a graph representation for the
target code. This improvement requires minimal effort – both in terms of the
implementation and the correctness proof. The fact that we consider both the
implementation and its correctness proof makes our technique the ideal com-
panion to improve a compiler that has been obtained by calculation [14]. Such
calculations derive a compiler from a specification, and produce not only an im-
plementation of the compiler but also a proof of its correctness. The example
compiler that we use in this paper has in fact been calculated in this way by Bahr
and Hutton [2], and we have successfully applied our technique to other com-
pilers derived by Bahr and Hutton [2], which includes compilers for languages
with features such as (synchronous and asynchronous) exceptions, (global and
local) state and non-determinism. Thus, despite its simplicity, our technique
is quite powerful, especially when combined with other techniques such as the
abovementioned calculation techniques.

In short, the contributions of this paper are the following:

– From a compiler with code duplication we derive a compiler that avoids
duplication using a graph representation.

– We prove that folds over graphs are equal to corresponding folds over the
unravelling of the input graphs.

– Using the above result, we derive the correctness of the graph-based compiler
implementation from the correctness of the tree based compiler.

– We further simplify the proof by using free monads to represent tree types
together with a corresponding monadic graph type.

2

Throughout this paper we use Haskell [12] as the implementation language.
Moreover, the paper is written as a literate Haskell file, which can be compiled
using the Glasgow Haskell Compiler (GHC). The source file along with the Coq
formalisation of the proofs can be found in the associated material1.

2 A Simple Compiler

The example language that we use throughout the paper is a simple expression
language with integers, addition and exceptions:

data Expr = Val Int | Add Expr Expr
| Throw | Catch Expr Expr

The semantics of this language is defined using an evaluation function that
evaluates a given expression to an integer value or returns Nothing in case of an
uncaught exception:

eval :: Expr → Maybe Int
eval (Val n) = Just n
eval (Add x y) = case eval x of

Nothing → Nothing
Just n → case eval y of

Nothing → Nothing
Just m → Just (n + m)

eval Throw = Nothing
eval (Catch x h) = case eval x of

Nothing → eval h
Just n → Just n

This is the same language and semantics used by Hutton and Wright [9]. Like
Hutton and Wright, we chose a simple language in order to focus on the essence
of the problem, which in our case is control flow in the target language and the
use of duplication or sharing to represent it. Moreover, this choice allows us to
compare our method to the original work of Hutton and Wright whose focus was
on the simplicity of reasoning.

The target for the compiler is a simple stack machine with the following
instruction set:

data Code = PUSH Int Code | ADD Code | HALT
| UNMARK Code | MARK Code Code | THROW

The intended semantics (which is made precise later) for the instructions is:

– PUSH n pushes an integer value n on the top of the stack,
– ADD expects the two topmost stack elements to be integers and replaces

them with their sum,

1 See http://diku.dk/~paba/graphs.tgz.

3

http://diku.dk/~paba/graphs.tgz

– MARK c pushes the code c on the stack, which is meant for handling ex-
ceptions,

– UNMARK removes such a handler code from the stack,
– THROW throws an exception, which causes an unwinding of the stack until

a handler code is reached, and
– HALT stops the execution.

For the implementation of the compiler we deviate slightly from the presen-
tation of Hutton and Wright [9] and instead write the compiler in a style that
uses additional accumulation parameter c, which simplifies the proofs [8]:

compA :: Expr → Code → Code

compA (Val n) c = PUSH n c

compA (Add x y) c = compA x (compA y (ADD c))

compA Throw c = THROW

compA (Catch x h) c = MARK (compA h c) (compA x (UNMARK c))

Since the code generator is implemented in this code continuation passing style,
function application corresponds to concatenation of code fragments. To stress
this reading, we shall use the operator ., which is simply defined as function
composition and is declared to associate to the right with minimal precedence:

(.) :: (a → b)→ a → b
f . x = f x

For instance, the equation for the Add case of the definition of compA then reads:

compA (Add x y) c = compA x . compA y .ADD . c

To obtain the final code for an expression, we supply HALT as the initial ac-
cumulator to compA. The use of the . operator to supply the argument indicates
the intuition that HALT is placed at the end of the code produced by compA:

comp :: Expr → Code

comp e = compA e .HALT

The following examples illustrate the workings of the compiler comp:

comp (Add (Val 2) (Val 3)) PUSH 2 . PUSH 3 .ADD .HALT
comp (Catch (Val 2) (Val 3)) MARK (PUSH 3 .HALT)

. PUSH 2 .UNMARK .HALT
comp (Catch Throw (Val 3)) MARK (PUSH 3 .HALT) . THROW

For the virtual machine that executes the code produced by the above com-
piler, we use the following type for the stack:

type Stack = [Item]
data Item = VAL Int | HAN (Stack → Stack)

4

This type deviates slightly from the one for the virtual machine defined by
Hutton and Wright [9]. Instead of having the code for the handler on the stack
(constructor HAN), we have the continuation of the virtual machine on the
stack. This will simplify the proof as we shall see later on. However, this type
and the accompanying definition of the virtual machine that is given below is
exactly the result of the calculation given by Bahr and Hutton [2] just before
the last calculation step (which then yields the virtual machine of Hutton and
Wright [9]). The virtual machine that works on this stack is defined as follows:

exec :: Code → Stack → Stack
exec (PUSH n c) s = exec c (VAL n : s)
exec (ADD c) s = case s of

(VAL m : VAL n : s ′)→ exec c (VAL (n + m) : s ′)
exec THROW s = unwind s
exec (MARK h c) s = exec c (HAN (exec h) : s)
exec (UNMARK c) s = case s of

(x : HAN : s ′)→ exec c (x : s ′)
exec HALT s = s

unwind :: Stack → Stack
unwind [] = []
unwind (VAL : s) = unwind s
unwind (HAN h : s) = h s

The virtual machine does what is expected from the informal semantics that we
have given above. The semantics of MARK , however, may seem counterintuitive
at first: MARK does not put the handler code on the stack but rather the
continuation that is obtained by executing it. Consequently, when the unwinding
of the stack reaches a handler h on the stack, this handler h is directly applied to
the remainder of the stack. This slight deviation from the semantics of Hutton
and Wright [9] makes sure that exec is in fact a fold.

We will not go into the details of the correctness proof for the compiler comp.
One can show that it satisfies the following correctness property [2]:

Theorem 1 (compiler correctness).

exec (comp e) [] = conv (eval e)

where conv (Just n) = [Val n]
conv Nothing = []

That is, in particular, we have that

exec (comp e) [] = [Val n] ⇐⇒ eval e = Just n

While the compiler has the nice property that it can be derived from the
language semantics, the code that it produces is quite unrealistic. Note the du-
plication that occurs for generating the code for Catch: the continuation code c

5

is inserted both after the handler code (in compA h c) and after the UNMARK
instruction. This is necessary since the code c should be executed regardless
whether an exception is thrown or not.

This duplication can be avoided by using explicit jumps in the code. Instead
of duplicating code, jumps to a single copy of the code are inserted. However,
this complicates both the implementation of the compiler and its correctness
proof [9]. Also the derivation of such a compiler is by calculation is equally
cumbersome.

The approach that we suggest in this paper derives a slightly different com-
piler that instead of a tree structure produces a graph structure. Along with the
compiler we derive a virtual machine that also works on the graph structure.
The two variants of the compiler and its companion virtual machine only differ
in the sharing that the graph variant provides. This fact allows us to derive
the correctness of the graph-based compiler very easily from the correctness of
the original tree-based compiler. In particular, we use the structured graphs of
Oliveira and Cook [15], which will allow us to implement the compiler without
code duplication and prove its correctness with little overhead.

3 From Trees to Graphs

Before we derive the graph-based compiler and the corresponding virtual ma-
chine, we restructure the definition of the original compiler and the corresponding
virtual machine. This will smoothen the process and simplify the presentation.

3.1 Preparations

Instead of defining the type Code directly, we represent it as the initial algebra of
a functor. To distinguish this representation from the later graph representation,
we use the name Tree for the initial algebra construction.

data Tree f = In (f (Tree f))

The functor that induces the initial algebra that we shall use for representing
the target language is defined as follows:

data Code a = PUSH Int a | ADD a | HALT
| MARK a a | UNMARK a | THROW

The type representing the target code is thus Tree Code. We proceed by
reformulating the definition of comp to work on the type Tree Code:

compA
T :: Expr → Tree Code → Tree Code

compA
T (Val n) c = PUSH T n . c

compA
T (Add x y) c = compA

T x . compA
T y .ADDT . c

compA
T Throw c = THROW T

compA
T (Catch x h) c = MARKT (compA

T h . c) . compA
T x .UNMARKT . c

6

compT :: Expr → Tree Code

compT e = compA
T e .HALTT

Note that we do not use the constructors of Code directly, but instead we use
smart constructors that also apply the constructor In of the type constructor
Tree. For example, PUSH T is defined as follows:

PUSH T :: Int → Tree Code → Tree Code
PUSH T i c = In (PUSH i c)

Lastly, we also reformulate the semantics of the target language, i.e. we define the
function exec on the type Tree Code. To do this, we use the following definition
of a fold on an initial algebra:

fold :: Functor f ⇒ (f r → r)→ Tree f → r
fold alg (In t) = alg (fmap (fold alg) t)

The definition of the semantics is a straightforward transcription of the def-
inition of exec into an algebra:

execAlg :: Code (Stack → Stack)→ Stack → Stack
execAlg (PUSH n c) s = c (VAL n : s)
execAlg (ADD c) s = case s of

(VAL m : VAL n : s ′)→ c (VAL (n + m) : s ′)
execAlg THROW s = unwind s
execAlg (MARK h c) s = c (HAN h : s)
execAlg (UNMARK c) s = case s of

(x : HAN : s ′)→ c (x : s ′)
execAlg HALT s = s

execT :: Tree Code → Stack → Stack
execT = fold execAlg

From the correctness of the original compiler from Section 2, as expressed in
Theorem 1, we obtain the correctness of our reformulation of the implementation:

Corollary 1 (correctness of compT).

execT (compT e) [] = conv (eval e)

3.2 Deriving a Graph-Based Compiler

Finally, we turn to the graph-based implementation of the compiler. Essentially,
this implementation is obtained from compT by replacing the type Tree Code
with a type Graph Code, which instead of a tree structure has a graph structure,
and using explicit sharing instead of duplication.

In order to define graphs over a functor, we use the representation of Oliveira
and Cook [15] called structured graphs. Put simply, a structured graph is a tree

7

with added sharing facilitated by let bindings. In turn, let bindings are repre-
sented using parametric higher-order abstract syntax [4].

data Graph ′ f v = GIn (f (Graph ′ f v))
| Let (Graph ′ f v) (v → Graph ′ f v)
| Var v

The first constructor has the same structure has the constructor of the Tree type
constructor. The other two constructors will allow us to express let bindings:
Let g (λx → h) binds g to the metavariable x in h. Metavariables bound in a
let binding have type v ; the only way to use them is with the constructor Var .
To enforce this invariant, the type variable v is made polymorphic:

newtype Graph f = Graph {unGraph :: ∀ v .Graph ′ f v }

We shall use the type constructor Graph (and Graph ′) as a replacement for
Tree. For the purposes of our compiler we only need acyclic graphs. That is
why we only consider non-recursive let bindings as opposed to the more general
structured graphs of Oliveira and Cook [15]. This restriction to non-recursive let
bindings is crucial for the reasoning principle that we use to prove correctness.

We can use the graph type almost as a drop-in replacement for the tree type.
The only thing that we need to do is to use smart constructors that use the
constructor GIn instead of In, e.g.

PUSH G :: Int → Graph ′ Code v → Graph ′ Code v
PUSH G i c = GIn (PUSH i c)

From the type of the smart constructors we can observe that graphs are con-
structed using the type constructor Graph ′, not Graph. Only after the construc-
tion of the graph is completed, the constructor Graph is applied in order to
obtain a graph of type Graph Code.

The definition of compA
T can be transcribed into graph style by simply using

the abovementioned smart constructors instead:

compA
G :: Expr → Graph ′ Code a → Graph ′ Code a

compA
G (Val n) c = PUSH G n . c

compA
G (Add x y) c = compA

G x . compA
G y .ADDG . c

compA
G (Throw) c = THROW G

compA
G (Catch x h) c = MARKG (compA

G h . c) . compA
G x .UNMARKG . c

The above is a one-to-one transcription of compA
T. But this is not what we want.

We want to make use of the fact that the target language allows sharing. In
particular, we want to get rid of the duplication in the code generated for Catch.

We can avoid this duplication by simply using a let binding to replace the
two occurrences of c with a metavariable c′ that is then bound to c. The last
equation for compA

G is thus rewritten as follows:

8

compA
G (Catch x h) c = Let c (λc′ → MARKG (compA

G h .Var c′)

. compA
G x .UNMARKG .Var c′)

The right-hand side for the case Catch x h has now only one occurrence of c.
The final code generator function compA

G is then obtained by supplying
HALTG as the initial value of the code continuation and wrapping the result
so as to return a result of type Graph Code:

compG :: Expr → Graph Code

compG e = Graph (compA
G e .HALTG)

This definition makes explicit that the result type of compA
G is parametric in the

type v of metavariables. This parametricity makes sure that the graphs we get
are in fact well-defined.

To illustrate the difference between compG and compT, we apply both of
them to an example expression e = Add (Catch (Val 1) (Val 2)) (Val 3):

compT e MARK (PUSH T 2 . PUSH T 3 .ADDT .HALTT)
. PUSH T 1 .UNMARKT . PUSH T 3 .ADDT .HALTT

compG e Let (PUSH G 3 .ADDG .HALTG) (λv →
MARKG (PUSH G 2 .Var v) . PUSH G 1 .UNMARKG .Var v)

Note that compT duplicates the code fragment PUSH T 3 . ADDT . HALTT,
which is supposed to be executed after the catch expression, whereas compG

binds this code fragment to a metavariable v , which is then used as a substitute.
The recursion schemes on structured graphs make use of the parametricity

in the variable type as well. The general fold over graphs as given by Oliveira
and Cook [15] is defined as follows:2

gfold :: Functor f ⇒ (v → r)→ (r → (v → r)→ r)→ (f r → r)
→ Graph f → r

gfold v l i (Graph g) = trans g where
trans (Var x) = v x
trans (Let e f) = l (trans e) (trans ◦ f)
trans (GIn t) = i (fmap trans t)

It takes three functions, which are used to interpret the three constructors of
Graph ′. This general form is needed for example if we want to transform the
graph representation into a linearised form (see associated material), but for our
purposes we only need a simple special case of it:

ufold :: Functor f ⇒ (f r → r)→ Graph f → r
ufold = gfold id (λe f → f e)

Note that the type signature is identical to the one for fold except for the use
of Graph instead of Tree. And indeed the semantics of the two folds are related:

2 Oliveira and Cook [15] considered the more general case of cyclic graphs, the defini-
tion of gfold given here is specialised to the case of acyclic graphs.

9

ufold r a g is equal to fold r a t , where t is the unravelling of g . This is one of the
key properties that we shall use for deriving the correctness theorem for compG.
Moreover, this property allows us to define the semantics of the target language
Graph Code by reusing the algebra execAlg that we defined in Section 3.1 to
define the semantics of Tree Code:

execG :: Graph Code → Stack → Stack
execG = ufold execAlg

4 Correctness Proof

In this section we shall prove that the compiler that we defined in Section 3 is
indeed correct. This turns to be rather simple: we derive the correctness prop-
erty for compG from the correctness property for compT. The simplicity of the
argument is rooted in the fact that compT is the same as compG followed by un-
ravelling. In other words, compG only differs from compT in that it adds sharing
– as expected.

4.1 Compiler Correctness by Unravelling

Before we prove this relation between compT and compG, we need to specify
what unravelling means:

unravel :: Functor f ⇒ Graph f → Tree f
unravel = ufold In

While this definition is nice and compact, we gain more insight into what it
actually does by unfolding it:

unravel :: Functor f ⇒ Graph f → Tree f
unravel (Graph g) = unravel ′ g

unravel ′ :: Functor f ⇒ Graph ′ f (Tree f)→ Tree f
unravel ′ (Var x) = x
unravel ′ (Let e f) = unravel ′ (f (unravel ′ e))
unravel ′ (GIn t) = In (fmap unravel ′ t)

We can see that unravel simply replaces GIn with In, and applies the function
argument f of a let binding to the bound value e. For example, we have that

unravel (Graph (Let (PUSH G 2) (λx → MARKG (Var x) .Var x)))
 MARKT (PUSH T 2) . PUSH T 2

We can now formulate the relation between compA
T and compA

G:

Lemma 1.

compT = unravel ◦ compG

10

This lemma, which we shall prove at the end of this section, is one half of the
argument for deriving the correctness property for compG. The other half is the
property that execT and execG have the converse relationship, viz.

execG = execT ◦ unravel

Proving this property is much simpler, though, because it follows from a more
general property of ufold and fold .

Theorem 2. Given a strictly positive functor f , a type c, and alg :: f c → c,
we have the following:

ufold alg = fold alg ◦ unravel

The equality execG = execT ◦ unravel is an instance of Theorem 2 where alg =
execAlg . We defer discussion of the proof of this theorem until Section 4.2.

We can now derive the correctness property of compG by combining Lemma 1
and Theorem 2:

Theorem 3 (correctness of compG).

execG (compG e) [] = conv (eval e) for all e :: Expr

Proof. execG (compG e) []
Thm. 2

= execT (unravel (compG e) []

Lem. 1
= execT (compT e) []

Cor. 2
= conv (eval e) ut

We conclude this section by giving the proof of Lemma 1.

Proof (of Lemma 1). Instead of proving the equation directly, we prove the
following equation:

compA
T e.unravel ′ c = unravel ′ (compA

G e.c) for all c ::∀ v .Graph ′ Code v (1)

The lemma follows from the above equation as follows:

compT e
= { definition of compT }
compA

T e .HALTT

= { definition of unravel ′ }
compA

T e . unravel ′ HALTG

= { Equation (1) }
unravel ′ (compA

G e .HALTG)
= { definition of unravel }
unravel (Graph (compA

G e .HALTG))
= { definition of compG }
unravel (compG e)

11

We prove (1) by induction on e:

– Case e = Val n:

unravel ′ (compA
G (Val n) . c)

= { definition of compA
G }

unravel ′ (PUSH G n . c)
= { definition of unravel ′ }
PUSH T n . unravel ′ c

= { definition of compA
T }

compA
T (Val n) . unravel ′ c

– Case e = Throw :

unravel ′ (compA
G Throw . c)

= { definition of compA
G }

unravel ′ THROW G

= { definition of unravel ′ }
THROW T

= { definition of compA
T }

compA
T Throw . unravel ′ c

– Case e = Add x y :

unravel ′ (compA
G (Add x y) . c)

= { definition of compA
G }

unravel ′ (compA
G x . compA

G y .ADDG . c)
= { induction hypothesis }
compA

T x . unravel ′ (compA
G y .ADDG . c)

= { induction hypothesis }
compA

T x . compA
T y . unravel ′ (ADDG . c)

= { definition of unravel ′ }
compA

T x . compA
T y .ADDT . unravel

′ c

= { definition of compA
T }

compA
T (Add x y) . unravel ′ c

– Case e = Catch x h:

unravel ′ (compA
G (Catch x h) . c)

= { definition of compA
G }

unravel ′ (Let c (λc′ → MARKG (compA
G h .Var c′)

. compA
G x .UNMARKG .Var c′))

= { definition of unravel ′ and β-reduction }
unravel ′ (MARKG (compA

G h .Var (unravel ′ c))

. compA
G x .UNMARKG .Var (unravel ′ c))

= { definition of unravel ′ }
MARKT (unravel ′ (compA

G h .Var (unravel ′ c)))

. unravel ′ (compA
G x .UNMARKG .Var (unravel ′ c))

= { induction hypothesis }
MARKT (compA

T h . unravel ′ (Var (unravel ′ c)))

. compA
T x . unravel ′ (UNMARKG .Var (unravel ′ c))

= { definition of unravel ′ }
MARKT (compA

T h . unravel ′ c) . compA
T x .UNMARKT . unravel

′ c

= { definition of compA
T }

compA
T (Catch x h) . unravel ′ c

12

ut

4.2 Proof of Theorem 2

To conclude this section, we discuss Theorem 2 and its proof. The statement
of said theorem is quite intuitive: given a structured graph g :: Graph f over a
strictly positive functor f , a fold with algebra alg yields the same result as first
unravelling g and then folding the resulting tree with alg , i.e.

ufold alg = fold alg ◦ unravel

When looking at the definition of unravel and ufold , it becomes intuitively
clear why this equality holds: unravel inlines let-bindings while ufold folds a let
binding by folding the bound expression and then inserting the result for each
occurrence of the bound metavariable. However, proving this property formally
turns out to be quite difficult.

The problem is that both sides of the equation involve a fold over a structured
graph and each of the two folds maintain different invariants. Implicitly, every
fold over a graph maintains an invariant about metavariables, i.e. subterms of
the form Var x . This invariant is established by which kind of arguments are
passed to the function f that is the second argument of the Let constructor. For
example, the invariant for unravel is that, in every occurrence of Var x , x is the
result of unravel ′ applied to some graph.

As a consequence, for an equality as the one stated in Theorem 2, the two
invariants get out of sync when trying to conduct an induction proof.

To avoid this problem, we have reformulated the implementation of struc-
tured graphs such that it uses de Bruijn indices for encoding binders instead
of PHOAS. Moreover, we have used the technique proposed by Bernardy and
Pouillard [3] to provide a PHOAS interface to this implementation of struc-
tured graphs. This allows us to use essentially the same simple definition of the
graph-based compiler as presented in Section 3.2. Using this representation of
structured graphs – PHOAS interface on the outside, de Bruijn indices under
the hood – we proved Theorem 2 as well as Lemma 1 in the Coq theorem prover
(see associated material).

5 Concluding Remarks

5.1 A Monadic Approach

The proof technique presented in this paper can be refined further by replacing
the tree type Tree f of a functor f by the free monad type TreeM f of f . The
type constructor TreeM is obtained from Tree by adding a constructor of type
a → TreeM f a. Likewise, the graph type Graph f can be given a monadic
structure.

This monadic structure allows us to use the monadic bind operator >> instead
of function application (for which we used the . notation). That is, we write
compA

T h >> c instead of compA
T h . c for example. The use of an accumulating

parameter in the original compiler implementations is simulated by the monadic

13

structure (an idea used by Matsuda et al. [13]). As a result, the proof of Lemma 1
can be simplified. Instead of the equation

compA
T e ◦ unravel ′ = unravel ′ ◦ compA

G e

we only have to prove the simpler equation

compA
T = unravel ′ ◦ compA

G

This simplifies the induction proof. While this proof requires an additional
lemma, viz. that unravelling distributes over >>, this lemma can be proved (once
and for all) for any strictly positive functor f :

unravel ′ (g1 >> g2) = unravel ′ g1 >> unravel ′ g2

The details can be found in the associated material.

5.2 Related and Future Work

Compiler verification is still a hard problem and in this paper we only cover one
– but arguably the central – part of a compiler, viz. the translation of a high-
level language to a low-level language. The literature on the topic of compiler
verification is vast (e.g. see the survey of Dave [6]). More recent work has shown
impressive results in verification of a realistic compiler for the C language [11].
But there are also efforts in verifying compilers for more higher-level languages
(e.g. by Chlipala [5]).

This paper, however, focuses on identifying simple but powerful techniques
for reasoning about compilers rather than engineering massive proofs for full-
scale compilers. Our contributions thus follow the work on calculating compilers
[19, 14, 1] as well as Hutton and Wright’s work on equational reasoning about
compilers [9, 10].

Structured graphs have been used in the setting of programming language
implementation before: Oliveira and Löh [16] used structured graphs to represent
embedded domain-specific languages (EDSLs). That is, graphs are used for the
representation of the source language. Graph structures used for representing
intermediate languages in a compiler typically employ pointers (e.g. Ramsey
and Dias [17]) or labels (e.g. Ramsey et al. [18]). We are not aware of any
work that makes use of higher-order abstract syntax or de Bruijn indices in the
representation of graph structures in this setting.

The use of structured graphs simplifies both the implementation – there is
hardly any syntactic overhead compared to the tree-based implementation – and
the reasoning. However, reasoning directly over different folds on such graphs is
still a problem as we have described in Section 4.2. Oliveira and Cook [15] present
some algebraic laws for reasoning over structured graphs directly, but these laws
are restricted to particular instances like cyclic streams and cyclic binary trees.

A shortcoming of our method is its limitation to acyclic graphs. Nevertheless,
the implementation part of our method easily generalises to cyclic structures,
which permits compilation of cyclic control structures like loops. Corresponding
correctness proofs, however, need a different reasoning principle.

14

Acknowledgements

The author would like to thank Nicolas Pouillard and Daniel Gustafsson for their
assistance in the accompanying Coq development.

References

[1] M. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. From interpreter to
compiler and virtual machine: A functional derivation. Technical Report
RS-03-14, Department of Computer Science, University of Aarhus, 2003.

[2] P. Bahr and G. Hutton. Calculating correct compilers. Unpublished
manuscript, 2013.

[3] J.-P. Bernardy and N. Pouillard. Names for free: polymorphic views of
names and binders. In Haskell ’13, pages 13–24, 2013.

[4] A. Chlipala. Parametric higher-order abstract syntax for mechanized se-
mantics. In ICFP ’08, pages 143–156, 2008.

[5] A. Chlipala. A verified compiler for an impure functional language. In
POPL ’10, pages 93–106, 2010.

[6] M. Dave. Compiler verification: a bibliography. SIGSOFT Softw. Eng.
Notes, 28(6):2–2, 2003.

[7] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. System
Sci., 31(1):71 – 146, 1985.

[8] G. Hutton. Programming in Haskell, volume 2. CUP Cambridge, 2007.
[9] G. Hutton and J. Wright. Compiling exceptions correctly. In D. Kozen,

editor, Mathematics of Program Construction, volume 3125 of LNCS, pages
211–227, 2004.

[10] G. Hutton and J. Wright. What is the meaning of these constant interrup-
tions? J. Funct. Program., 17(06):777–792, 2007.

[11] X. L. Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In POPL ’06, pages 42–54, 2006.

[12] S. Marlow. Haskell 2010 language report, 2010.
[13] K. Matsuda, K. Inaba, and K. Nakano. Polynomial-time inverse computa-

tion for accumulative functions with multiple data traversals. In PEPM ’12,
pages 5–14, 2012.

[14] E. Meijer. Calculating Compilers. PhD thesis, Katholieke Universiteit Ni-
jmegen, 1992.

[15] B. Oliveira and W. Cook. Functional programming with structured graphs.
In ICFP ’12, pages 77–88, 2012.

[16] B. Oliveira and A. Löh. Abstract syntax graphs for domain specific lan-
guages. In PEPM ’13, pages 87–96, 2013.

[17] N. Ramsey and J. Dias. An applicative control-flow graph based on huet’s
zipper. In ML ’05, volume 148, pages 105 – 126, 2006.

[18] N. Ramsey, J. Dias, and S. Peyton Jones. Hoopl: a modular, reusable library
for dataflow analysis and transformation. In Haskell ’10, pages 121–134,
2010.

[19] M. Wand. Deriving target code as a representation of continuation seman-
tics. ACM Trans. Program. Lang. Syst., 4(3):496–517, 1982.

15

A Code Linearisation

While structured graphs afford a convenient and clear method for constructing
graph structures (and reasoning about them!), working with them afterwards can
be challenging. In particular, implementing complex transformations in terms of
gfold is not straightforward. A more pragmatic approach is to take the output of
compG of type Graph Code and transform it into another graph representation,
e.g. the graph representation of Hoopl [18], which then allows us to perform
data-flow analysis and rewriting.

To illustrate, how to further process the output of our code generator function
compG, we show how to transform a code graph into a linear form with explicit
labels and jumps. To this end, we us the following representation of linearised
code:

type Label = Int

data Inst = PUSH L Int | ADDL | THROW L | MARK L Label
| UNMARK L | JUMP Label | LABEL Label

type CodeL = [Inst]

For each constructor of Code, we have a corresponding constructor in the type
of instructions Inst . Additionally, we also have JUMP , representing a jump in-
struction, and LABEL, representing a jump target. Note that in order to have
linear code, we have to get rid of the branching of the MARK constructor. That
is why, we replaced the handler code argument of MARK with a label argument.

For the transformation from Graph Code to CodeL, we need a means to
generate fresh labels. To this end, we assume a monad Fresh with the following
interface to obtain fresh labels and to escape from the monad:

fresh :: Fresh Label
runFresh :: Fresh a → a

The linearisation is defined as a general fold over the graph structure:

linearCode :: Graph Code → CodeL
linearCode c = runFresh (gfold lVar lLet lAlg c [])

The simplest way to define the transformation is to take Fresh CodeL as the
result type of the fold. However, since we want to construct a list, we rather want
to use an accumulation parameter as well. Hence, the result type is CodeL →
Fresh CodeL. The additional argument [] to the fold above is the initial value of
the accumulator.

Before we look at the components of the fold, we introduce a simple auxiliary
operator, which is used to construct lists in a monad:

(〈:〉) :: Monad m ⇒ a → m [a]→ m [a]
ins 〈:〉mc = mc >>= (λc → return (ins : c))

16

The algebra lAlg has the carrier type CodeL → Fresh CodeL:

lAlg :: Code (CodeL → Fresh CodeL)→ CodeL → Fresh CodeL
lAlg (ADD c) d = ADDL 〈:〉 c d
lAlg (PUSH n c) d = PUSH L n 〈:〉 c d
lAlg THROW d = return [THROW L]
lAlg (MARK h c) d = fresh >>= λl → MARK L l 〈:〉 (c =<< LABEL l 〈:〉 h d)
lAlg (UNMARK c) d = UNMARK L 〈:〉 c d
lAlg HALT d = return []

Note that we use the operator =<<, which is simply the monadic bind operator
>>= with its arguments flipped. The case for MARK may need some explanation:
We replace the exception handler argument of MARK with a fresh label l and
continue with the code c. However, we change the accumulator d by putting the
instruction LABEL l followed by the exception handler code h in front of it.

The components lVar and lLet deal with the sharing of the graph. For their
implementations, we instantiate the type of metavariables in graphs with the
type Label and turn every metavariable into a jump JUMP l . However, we make
use of the accumulation argument in order to check whether the next instruction
is in fact a jump target with the same label l . If so, we can omit the jump:

lVar :: Label → CodeL → Fresh CodeL
lVar l (LABEL l ′ : d) | l ≡ l ′ = return (LABEL l ′ : d)
lVar l d = return (JUMP l : d)

The concrete label l is provided by the lLet component of the fold, which cre-
ates a fresh label l and passes it to the scope of the let binding. A corresponding
jump target LABEL l is created just before the code bound by the let binding:

lLet :: (CodeL → Fresh CodeL)→ (Label → CodeL → Fresh CodeL)
→ CodeL → Fresh CodeL

lLet b s d = fresh >>= λl → s l =<< LABEL l 〈:〉 b d

Composing the linearisation with the compiler compG then yields a compiler
to linearised code:

compL :: Expr → CodeL
compL = linearCode ◦ compG

For example, given the expression Add (Catch (Val 1) (Val 2)) (Val 3),
compL produces the following code:

[MARK L 1,PUSH L 1,UNMARK L, JUMP 0,LABEL 1,PUSH L 2,
LABEL 0,PUSH L 3,ADDL]

For comparison, the code graph produced by compG is

Let (PUSH G 3 .ADDG .HALTG) (λv → MARKG (PUSH G 2 .Var v) .
PUSH G 1 .UNMARKG .Var v)

Note that if we omitted the first clause of the definition of lVar , then the result
would have an additional instruction JUMP 0 just before LABEL 0.

17

B A Monadic Approach

The compiler compA
T in Section 3.1 follows a fairly regular recursion scheme. It

is fold with a function type as result type. Instead of viewing this as such a fold,
it can also be seen as a fold with an additional accumulation parameter, viz. the
code continuation. Recursion schemes of this form are well studied in automata
theory under the name macro tree transducers [7]. We will not go into the details
of these automata. An important property of macro tree transducers is that they
can be transformed (entirely mechanically) into recursive function definitions
without accumulation parameters [13]. If there is only a single recursive function,
as in our case, we even get a simple fold.

The idea, originally developed by Matsuda et al. [13], is to replace a function
f with an accumulation parameter by a function f ′ that produces a context with
the property that

f x a = (f ′ x)[a]

That is, we obtain the result of the original function f by simply plugging in the
accumulation argument in to the context that f ′ produces.

We shall use free monads in order to represent these contexts. To this end,
we modify the type constructor Tree to obtain the type constructor TreeM of
free monads:

data TreeM f a = Return a | InM (f (TreeM f a))

instance Functor f ⇒ Monad (TreeM f) where
return = Return
Return x >>= f = f x
InM t >>= f = InM (fmap (λs → s >>= f) t)

We start by reformulating the definition of compA
T to work with the free

monad type instead. To this end, we use an empty type Empty in order to
represent the type Tree Code above as TreeM Code Empty :

compA
M :: Expr → TreeM Code Empty → TreeM Code Empty

compA
M (Val n) c = PUSHM n c

compA
M (Add x y) c = compA

M x (compA
M y (ADDM c))

compA
M Throw c = THROWM

compA
M (Catch x h) c = MARKM (compA

M h c) (compA
M x (UNMARKM c))

Note that the definition uses smart constructors for the TreeM type indicated by
index M.

The transformation of compA
M into a context producing function is straight-

forward. Since, the function compA
M only has one accumulation parameter, the

context that we produce only has one type of hole. Therefore, we use the unit
type () as the type of holes in the free monad, i.e. TreeM Code () is the type of
contexts. Thus the holes in this type of contexts is denoted by return () and we
therefore define

18

hole = return ()

Moreover, plugging an accumulation argument into a context of type Tree Code ()
is achieved using the free monad’s bind operator >>. Thus the function compC

M

that we want to derive from compA
M must satisfy the equation

compA
M e c = compC

M e >> c for all e and c. (2)

We then obtain the definition of compC
M from the definition of compA

M by
replacing all occurrences of the accumulation variable c on the right-hand side
with hole and each occurrence of compA

M e x with compC
M e >> x :

compC
M :: Expr → TreeM Code ()

compC
M (Val n) = PUSHM n hole

compC
M (Add x y) = compC

M x >> compC
M y >>ADDM hole

compC
M (Throw) = THROWM

compC
M (Catch x h) = MARKM (compC

M h) (compC
M x >>UNMARKM hole)

Note that if we follow the transformation rules mechanically the right-hand side
for Catch should be as follows:

MARKM (compC
M h >> hole) (compC

M x >>UNMARKM hole)

However, according to the monad laws c>>hole = c for all c, and thus compC
M h>>

hole can be replaced by compC
M h.

We then get the final compiler by plugging the HALT instruction into the
context produced by compC

M:

compM :: Expr → TreeM Code Empty

compM e = compC
M e >>HALTM

The virtual machine execT can be easily translated into the free monad setting
using the following fold operation on TreeM

foldM :: Functor f ⇒ (f r → r)→ TreeM f Empty → r
foldM alg (InM t) = alg (fmap (foldM alg) t)

We can reuse the algebra used in the definition of execT:

execM :: TreeM Code Empty → Stack → Stack
execM = foldM execAlg

From Equation (2) and the correctness result in Corollary 2 the corresponding
result for compM is evident:

Corollary 2.

execM (compM e) [] = conv (eval e)

19

So what does this transformation of the compiler into the form of compM

buy us? It will simplify the reasoning of the graph based compiler by replacing
function composition with the monadic bind. In order to make use of this ob-
servation, we have to implement the graph based compiler in a monadic style as
well. To this end, we turn the type Graph into a monad similarly to TreeM:

data Graph ′
M f b a = GReturn a

| GInM (f (Graph ′
M f b a))

| LetM (Graph ′
M f b a) (b → Graph ′

M f b a)
| VarM b

newtype GraphM f a = GraphM {unGraphM :: ∀ b .Graph ′
M f b a }

One can show that, given a strictly positive functor f and any type b Graph ′
M f b

forms a monad with the following definitions:

instance Functor f ⇒ Monad (Graph ′
M f b) where

return x = (GReturn x)

VarM x >>= s = VarM x
LetM e f >>= s = LetM (e >>= s) (λx → f x >>= s)
GReturn x >>= s = s x
GInM t >>= s = GInM (fmap (>>=s) t)

From this one can derive that, given any strictly positive functor f , GraphM f
forms a monad as well:

instance Functor f ⇒ Monad (GraphM f) where
return x = GraphM (return x)
GraphM g >>= f = GraphM (g >>= unGraphM ◦ f)

We then derive the function compC
GM from compC

M as in the same way we
derived the non-monadic graph-based compiler in Section 3:

compC
GM :: Expr → Graph ′

M Code b ()

compC
GM (Val n) = PUSH GM n hole

compC
GM (Add x y) = compC

GM x >> compC
GM y >>ADDGM hole

compC
GM (Throw) = THROW GM

compC
GM (Catch x h) = LetM hole (λe → MARKGM

(compC
GM h >>VarM e)

(compC
GM x >>UNMARKGM (VarM e)))

And the final compiler is defined as expected:

compGM :: Expr → GraphM Code Empty

compGM e = GraphM (compC
GM e >>HALTGM)

In order to define the virtual machine execG on GraphM, we define corre-
sponding fold operations:

20

gfoldM :: Functor f ⇒ (v → r)→ (r → (v → r)→ r)→ (f r → r)
→ GraphM f Empty → r

gfoldM v l i (GraphM g) = trans g where
trans (VarM x) = v x
trans (LetM e f) = l (trans e) (trans ◦ f)
trans (GInM t) = i (fmap trans t)

ufoldM :: Functor f ⇒ (f r → r)→ GraphM f Empty → r
ufoldM alg = gfoldM id (λe f → f e) alg

Again, we reuse the algebra execAlg to define the virtual machine:

execGM :: GraphM Code Empty → Stack → Stack
execGM = ufoldM execAlg

Similar to Theorem 2, we also have a theorem that links ufoldM and foldM

via unravelM defined as follows:

unravelM :: Functor f ⇒ GraphM f a → TreeM f a
unravelM (GraphM g) = unravel ′M g

unravel ′M :: Functor f ⇒ Graph ′
M f (TreeM f a) a → TreeM f a

unravel ′M (VarM x) = x
unravel ′M (LetM e f) = unravel ′M (f (unravel ′M e))
unravel ′M (GReturn x) = Return x
unravel ′M (GInM t) = InM (fmap unravel ′M t)

Theorem 4. Given a strictly positive functor f , some type c, and alg :: f c → c,
we have

ufoldM alg = foldM alg ◦ unravelM
This again, yields one half of the correctness proof.

In addition, however, the monadic structure provides us with a generic theo-
rem that facilitates the other half of the correctness proof. The following propo-
sition links the bind operators of the two monads TreeM and Graph ′

M:

Proposition 1. Given g1, g2 ::∀ b .Graph ′ f b (), for any strictly positive functor
f , we have

unravel ′M (g1 >> g2) = unravel ′M g1 >> unravel ′M g2

Recall that in order to prove the equation

compT = unravel ◦ compG

we used the equation

compA
T e ◦ unravel ′ = unravel ′ ◦ compA

G e

21

which we proved by induction. The monadic approach allows us to use a simpler
equation in which the unravelling only appears on one side of the equation:

compC
M e = unravel ′M (compC

GM e)

For example, the case for e = Add x y then becomes as follows:

unravel ′M (compC
GM (Add x y))

= { definition of compC
GM }

unravel ′ (compC
GM x >> compC

GM y >>ADDGM hole)
= { Proposition 1 }
unravel ′ (compC

GM x)>> unravel ′ (compC
GM y)>> unravel ′ (ADDGM hole)

= { definition of unravel ′M }
unravel ′ (compC

GM x)>> unravel ′ (compC
GM y)>>ADDM hole

= { induction hypothesis }
compC

M x >> compC
M y >>ADDM hole

= { definition of compC
M }

compC
M (Add x y)

22

	Proving Correctness of Compilers using Structured Graphs

