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Abstract
We propose a novel technique to represent names and binders in
Haskell. The dynamic (run-time) representation is based on de
Bruijn indices, but it features an interface to write and manip-
ulate variables conviently, using Haskell-level lambdas and vari-
ables. The key idea is to use rich types: a subterm with an addi-
tional free variable is viewed either as ∀v.v → Term(a + v) or
∃v.v × Term(a + v) depending on whether it is constructed or
analysed. We demonstrate on a number of examples how this ap-
proach permits to express term construction and manipulation in a
natural way, while retaining the good properties of representations
based on de Bruijn indices.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]

Keywords name binding, polymorphism, parametricity, type-
classes, nested types

1. Introduction
One of the main application areas of functional programming lan-
guages such as HASKELL is programming language technology. In
particular, HASKELL programmers often find themselves manip-
ulating data structures representing some higher-order object lan-
guages, featuring binders and names.

Yet, the most commonly used representations for names and
binders yield code which is difficult to read, or error-prone to
write and maintain. The techniques in question are often referred as
“nominal”, “de Bruijn indices” and “Higher-Order Abstract Syntax
(HOAS)”.

In the nominal approach, one typically uses some atomic type
to represent names. Because a name is simply referred to the atom
representing it, the nominal style is natural. The main issues with
this technique are that variables must sometimes be renamed in or-
der to avoid name capture (that is, if a binder refers to an already
used name, variables might end up referring to the wrong binder).
The need for renaming demands a way to generate fresh atoms.
This side effect can be resolved with a supply for unique atoms
or using an abstraction such as a monad but is disturbing if one
wishes to write functional code. Additionally, nominal represen-
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tations are not canonical. (For instance, two α-equivalent repre-
sentations of the same term such as λx.x and λy.y may be dif-
ferent). Hence special care has to be taken to prevent user code
to violate the abstraction barrier. Furthermore fresh name gen-
eration is an observable effect breaking referential transparency
(fresh x in x ı fresh x in x). For instance a function gen-
erating fresh names and not properly using them to close abstrac-
tions becomes impure.

To avoid the problem of name capture, one can represent names
canonically, for example by the number of binders, typically λ,
to cross between an occurrence and its binding site (a de Bruijn
index). This has the added benefit of making α-equivalent terms
syntactically equal. In practice however, this representation makes
it hard to manipulate terms: instead of calling things by name,
programmers have to rely on their arithmetic abilities, which turns
out to be error-prone. As soon as one has to deal with more than
just a couple open bindings, it becomes easy to make mistakes.

Finally, one can use the binders of the host language (in our case
HASKELL) to represent binders of the object language. This tech-
nique (called HOAS) does not suffer from name-capture problems
nor does it involve arithmetic. However the presence of functions in
the term representation mean that it is difficult to manipulate, and
it may contain values which do not represent any term.

The contribution of this paper is a new programming interface
for binders, which provides the ability to write terms in a natural
style close to concrete syntax. We can for example build the appli-
cation function of the untyped λ-calculus as follows:

-- Building the following term: λ f x → f x
apTm = lam $ λ f → lam $ λ x → var f ‘App‘ var x

and we are able to test if a term is eta-contractible using the
following function:

canEta (Lam e ) = unpack e $ λ x t → case t of
App e1 (Var y ) → y ‘isOccurenceOf‘ x &&

x ‘freshFor‘ e1
→ False

canEta = False

All the while, neither do we require a name supply, nor is there
a risk for name capture. Testing terms for α-equivalence remains
straightforward and representable terms are exactly those intended.
The cost of this achievement is the use of somewhat more involved
types for binders, and the use of extensions of the HASKELL type-
system. The new construction is informally described and moti-
vated in sec. 2. In sections 3 to 5 we present in detail the imple-
mentation of the technique as well as basic applications. Larger
applications such as normalization (using hereditary substitutions),
closure conversion and CPS transformation are presented in sec. 6.



2. Overview
In this section we describe our interface, but before doing so we
describe a simple implementation which can support this interface.

2.1 de Bruijn Indices
De Bruijn (1972) proposed to represent an occurrence of some
variable x by counting the number of binders that one has to
cross between the occurrence and the binding site of x. A direct
implementation of the idea may yield the following representation
of untyped λ-terms:

data Nat = O | S Nat
data TmB where

VarB :: Nat → TmB
AppB :: TmB → TmB → TmB
LamB :: TmB → TmB

Using this representation, the implementation of the application
function λ f x → f x is the following:

apB :: TmB
apB = LamB $ LamB $ VarB (S O ) ‘AppB‘ VarB O

However, such a direct implementation is cumbersome and
naı̈ve. For instance it cannot statically distinguish bound and free
variables. That is, a closed term has the same type as an open term.

Nested Abstract Syntax In functional programming languages
such as HASKELL, it is possible to remedy to this situation by using
nested data types and polymorphic recursion. That is, one parame-
terizes the type of terms by a type that can represent free variables.
If the parameter is the empty type, terms are closed. If the param-
eter is the unit type, there is at most one free variable, etc. This
representation is known as Nested Abstract Syntax (Bellegarde and
Hook 1994; Bird and Paterson 1999; Altenkirch and Reus 1999).

data Tm a where
Var :: a → Tm a
App :: Tm a → Tm a → Tm a
Lam :: Tm (Succ a ) → Tm a

The recursive case Lam changes the type parameter, increas-
ing its cardinality by one, since the body can refer to one more
variable. Anticipating the amendments we propose, we define the
type Succ a as a proper sum of a and the unit type ( ) instead
of Maybe a as customary. Because the sum is used in an asym-
metric fashion (the left-hand-side corresponds to variables bound
earlier and the right-hand-side to the freshly bound one), we give
a special definition of sum written B, whose syntax reflects the in-
tended semantics.

type Succ a = a B ( )

data a B v = Old a | New v

mapOld :: (a → a’ ) → (a B v ) → (a’ B v )
mapOld f (Old x ) = Old (f x )
mapOld (New x ) = New x

mapNew :: (v → v’ ) → (a B v ) → (a B v’ )
mapNew (Old x ) = Old x
mapNew f (New x ) = New (f x )

Using the Tm representation, the implementation of the applica-
tion function λ f x → f x is the following:

apNested :: Tm Zero
apNested = Lam $ Lam $ Var (Old $ New ( ) )

‘App‘ Var (New ( ) )

As promised, the type is explicit about apNested being a closed
term: this is ensured by using the empty type Zero as an argument
to Tm.

data Zero -- no constructors

In passing, we remark that another type which faithfully cap-
tures closed terms is ∀ a. Tm a — literally: the type of terms
which are meaningful in any context. Indeed, because a is univer-
sally quantified, there is no way to construct an inhabitant of it;
therefore one cannot possibly refer to any free variable. In particu-
lar one can instantiate a to be the type Zero.

However the main drawback of using de Bruijn indices remains:
one must still count the number of binders between the declaration
of a variable and its occurrences.

2.2 Referring to Bound Variables by Name
To address the issues just touched upon, we propose to build λ-
abstractions with a function called lam. What matters the most is
its type:

lam :: (∀ v. v → Tm (a B v ) ) → Tm a
lam f = Lam (f ( ) )

That is, instead of adding a concrete unique type (namely ( )) in
the recursive parameter of Tm, we quantify universally over a type
variable v and add this type variable to the type of free variables.
The body of the lambda-abstraction receives an arbitrary value of
type v, to be used at occurrences of the variable bound by lam.

The application function is then built as follows:

apTm :: Tm Zero
apTm = lam $ λ f → lam $ λ x →

Var (Old (New f ) ) ‘App‘ Var (New x )

By unfolding the definition of lam in apTm one recovers the
definition of apNested.

Safety Using our approach, the binding structure, which can be
identified as the specification, is written using the host language
binders. However at variable occurrences, de Bruijn indices are still
present in the form of the constructors New and Old, and are purely
part of the implementation.

The type-checker then makes sure that the implementation
matches the specification: for example if one now makes a mis-
take and forgets one Old when entering the term, the HASKELL
type system rejects the definition.

oops = lam $ λ f → lam $ λ x →
Var (New f ) ‘App‘ Var (New x )

-- Couldn’t match expected type ‘v1’
-- with actual type ‘v’

In fact, if all variables are introduced with the lam combinator
the possibility of making a mistake in the implementation is nonex-
istent, if we ignore obviously diverging terms. Indeed, because the
type v corresponding to a bound variable is universally quantified,
the only way to construct a value of its type is to use the variable
bound by lam. (In HASKELL one can use a diverging program;



however one has to make a conscious decision to produce a value
of such an obviously empty type.)

In general, in a closed context, if one considers the expres-
sion Var ( (Old )n (New x ) ), only one possible value of n is
admissible. Indeed, anywhere in the formation of a term us-
ing lam, the type of variables is a = a0 B v0 B v1 B · · · B vn
where v0, v1, . . . , vnare all distinct and universally quantified, and
none of them occurs as part of a0. Hence, there is only one injection
function from a given vi to a.

Auto-Inject Knowing that the injection functions are uniquely
determined by their type, one may wish to infer them mechanically.
Thanks the powerful instance search mechanism implemented in
GHC, this is feasible. To this effect, we define a class v ∈ a
capturing that v occurs as part of a context a:

class v ∈ a where
inj :: v → a

We can then wrap the injection function and Var in a convenient
package:

var :: ∀ v a. (v ∈ a ) ⇒ v → Tm a
var = Var . inj

and the application function can be conveniently written:

-- Building the following term: λ f x → f x
apTm = lam $ λ f → lam $ λ x → var f ‘App‘ var x

In a nutshell, our de Bruijn indices are typed with the context
where they are valid. If that context is sufficiently polymorphic,
they can not be mistakenly used in a wrong context. Another intu-
ition is that New and Old are building proofs of “context member-
ship”. Thus, when a de Bruijn index is given a maximally polymor-
phic context, it is similar to a well-scoped name.

So far, we have seen that by taking advantage of polymorphism,
our interface allows to construct terms with de Bruijn indices,
combined with the safety and convenience of named variables. In
the next section we show how to use the same idea to provide the
same advantages for the analysis and manipulation of terms.

2.3 Referring to Free Variables by Name
Often, one wants to be able to check if an occurrence of a variable
is a reference to some previously bound variable. With de Bruijn
indices, one must (yet again) count the number of binders tra-
versed between the variable bindings and its potential occur-
rences — an error prone task. Here as well, we can take ad-
vantage of polymorphism to ensure that no mistake happens.
We provide a combinator unpack, which hides the type of the
newly bound variables (the type ( )) as an existentially quanti-
fied type v. The combinator unpack takes a binding structure (of
type Tm (Succ a )) and gives a pair of a value x of type v and a
sub-term of type Tm (a B v ). Here we represent the existential
using continuation-passing style instead of a data-type, as it ap-
pears more convenient to use this way. Because this combinator is
not specific to our type Tm we generalize it to any type construc-
tor f:

unpack :: f (Succ a ) →
(∀ v. v → f (a B v ) → r ) → r

unpack e k = k ( ) e

Because v is existentially bound, x can never be used in a
computation. It only acts as a reference to a variable in a context,
in a way which is only accessible to the type-checker. For instance,

when facing a term t of type Tm (a B v0 B v1 B v ), x refers to
the last introduced free variable in t. Using unpack, one can write
a function which can recognize an eta-contractible term as follows:
(Recall that an eta-contractible term has the form λ x → e x,
where x does not occur free in e.)

canEta :: Tm Zero → Bool
canEta (Lam e ) = unpack e $ λ x t → case t of
App e1 (Var y ) → y ‘isOccurenceOf‘ x &&

x ‘freshFor‘ e1
→ False

canEta = False

In the above example, the two functions isOccurenceOf
and freshFor use the inj function to lift x to a reference in the
right context before comparing it to the occurrences. The calls to
these functions do not get more complicated in the presence of
multiple binders. For example, the code which recognizes the pat-
tern λ x y → e x is as follows:

recognizeExample :: Tm Zero → Bool
recognizeExample t0 = case t0 of

Lam f → unpack f $ λ x t1 → case t1 of
Lam g → unpack g $ λ y t2 → case t2 of
App e1 (Var z ) → z ‘isOccurenceOf‘ x &&

x ‘freshFor‘ e1 &&
y ‘freshFor‘ e1

→ False
→ False

→ False

Again, even though variables are represented by mere indices,
the use of polymorphism allows the user to refer to them by name,
using the instance search mechanism to fill in the details of imple-
mentation.

Pack It is easy to invert the job of unpack. Indeed, given a value x
of type v and a term of type Tm (a B v ) one can reconstruct a
binder as follows:

pack :: Functor tm ⇒ v → tm (a B v ) → tm (Succ a )
pack x = fmap (mapNew (const ( ) ) )

(The Functor constraint is harmless, as we will see in sec. 4.)
As we can see, the value x is not used by pack. However it statically
helps as a specification of the user intention: it makes sure the
programmer relies on host-level variable names, and not indices.

A production-quality version of pack would allow to bind any
free variable. Writing the constraint Insert v a b to mean that
by removing the variable v from the context b one obtains a, then
a generic pack would have the following type:

packGen :: ∀ f v a b w. (Functor f, Insert v a b ) ⇒
v → f b → (w → f (a B w ) )

The implementation of packGen and Insert is a straightfor-
ward extension of inj and (∈), but it does not fit here, so we defer
it to the development online (?).

In sum, the pack combinator makes it possible to give a
nominal-style interface to binders. For example an alternative way
to build the Lam constructor is the following:

lamP :: v → Tm (a B v ) → Tm a
lamP x t = Lam (pack x t )



3. Contexts
Having introduced our interface informally, we now begin a sys-
tematic description of is realization and the concepts it builds upon.

We have seen that the type of free variables essentially describes
the context where they are meaningful. A context can either be
empty (and we represent it by the type Zero) or not (which we
can represent by the type a B v).

An important function of the v type variable is to make sure
programmers refer to the variable they intend to. For example, con-
sider the following function, which takes a list of (free) variables
and removes one of them from the list. It takes a list of variables
in the context a B v and returns a list in the context a. For extra
safety, it also takes the name of the variable being removed, which
is used only for type-checking purposes.

remove :: v → [a B v] → [a]
remove xs = [x | Old x ← xs]

The function which computes the list of occurrences of free
variables in a term can be directly transcribed from its nominal-
style definition, thanks to the unpack combinator.

freeVars :: Tm a → [a]
freeVars (Var x ) = [x]
freeVars (Lam b ) = unpack b $ λ x t →

remove x (freeVars t )
freeVars (App f a ) = freeVars f ++ freeVars a

3.1 Names Are Polymorphic Indices
Checking whether two names are equal or not is necessary to im-
plement a large class of term manipulation functions. To implement
comparison between names, we provide the following two Eq in-
stances. First, the Zero type is vacuously equipped with equality:

instance Eq Zero where
(== ) = magic

magic :: Zero → a
magic = error "impossible"

Second, if two indices refer to the first variable they are equal;
otherwise we recurse. We stress that this equality inspects only
the indices, not the values contained in the type. For exam-
ple New 0 == New 1 is True:

instance Eq a ⇒ Eq (a B v ) where
New == New = True
Old x == Old y = x == y

== = False

Comparing naked de Bruijn indices for equality is an error prone
operation, because one index might be valid in a context different
from the other, and thus an arbitrary adjustment might be required.
With Nested Abstract Syntax, the situation improves: by requiring
equality to be performed between indices of the same type, a whole
class of errors are prevented by type-checking. Some mistakes are
possible though: given an index of type a B ( ) B ( ), a swap
of the last two variables might be the right thing to do, but one
cannot decide if it is so from the types only. By making the contexts
fully polymorphic as we propose, no mistake is possible. Hence the
slogan: names are polymorphic indices.

Consequently, the derived equality instance of Tm gives α-
equality, and is guaranteed safe in fully-polymorphic contexts.

3.2 Membership
Given the above representation of contexts, we can implement
the relation of context membership by a type class ∈, whose sole
method performs the injection from a member of the context to
the full context. The relation is defined by two inference rules,
corresponding to finding the variable in the first position of the
context, or further away in it, with the necessary injections:

instance v ∈ (a B v ) where
inj = New

instance (v ∈ a ) ⇒ v ∈ (a B v’ ) where
inj = Old . inj

The cognoscenti will recognize the two above instances as inco-
herent, that is, if v and v’ were instantiated to the same type, both
instances would apply, but the injections would be different. For-
tunately, this incoherence never triggers as long as one keeps the
contexts maximally polymorphic contexts: v and v’ will always be
different.

We have seen before that the overloading of the inj function
in the type class ∈ allows to automatically convert a type-level
reference to a term into a properly tagged de Bruijn index, namely
the function var.

Conversely, one can implement occurrence-check by combining
inj with (== ): one first lifts the bound variable to the context of
the chosen occurrence and then tests for equality.

isOccurenceOf :: (Eq a, v ∈ a ) ⇒ a → v → Bool
x ‘isOccurenceOf‘ y = x == inj y

One can test if a variable is fresh for a given term as follows:

freshFor :: (Eq a, v ∈ a ) ⇒ v → Tm a → Bool
x ‘freshFor ‘ t = not (inj x ‘elem‘ freeVars t )

3.3 Inclusion
Another useful relation is context inclusion between contexts,
which we also represent by a type class, named⊆. The sole method
of the typeclass is again an injection, from the small context to the
bigger one. The main application of ⊆ is in term weakening, pre-
sented at the end of sec. 4.1.

class a ⊆ b where
injMany :: a → b

This time we have four instances: inclusion is reflexive; the
empty context is the smallest one; adding a variable makes the con-
text larger; and variable append (B v ) is monotonic for inclusion.

instance a ⊆ a where injMany = id

instance Zero ⊆ a where injMany = magic

instance (a ⊆ b ) ⇒ a ⊆ (b B v ) where
injMany = Old . injMany

instance (a ⊆ b ) ⇒ (a B v ) ⊆ (b B v ) where
injMany = mapOld injMany

This last case uses the fact that (B ) is functorial in its first
argument.



4. Term Structure
It is well-known that every term representation parameterized on
the type of free variables should exhibit monadic structure, with
substitution corresponding to the binding operator (Bellegarde and
Hook 1994; Bird and Paterson 1999; Altenkirch and Reus 1999).
That is, a Monad tm constraint means that a term representation tm
is stable under substitution. In this section we review this structure,
as well as other standard related structures on terms. These struc-
tures are perhaps easier to implement directly on a concrete term
representation, rather than our interface. However, we give an im-
plementation solely based on it, to demonstrate that it is complete
with respect to these structures. By doing so, we also illustrate how
to work with our interface in practice.

4.1 Renaming and Functors
The first, perhaps simplest, property of terms is that free variables
can be renamed. This property is captured by the Functor struc-
ture.

The “renaming” to apply is given as a function f from a to b
where a is the type of free variables of the input term (Tm a) and b
is the type of free variables of the “renamed” term (Tm b). While
the function f should be injective to be considered a renaming,
the functor instance works well for any function f. The renaming
operation then simply preserves the structure of the input term. At
occurrence sites it uses f to rename free variables. At binding sites,
f is upgraded from (a → b ) to (a B v → b B v ) using the
functoriality of (B v ) with mapOld f. Adapting the function f is
necessary to protect the bound name from being altered by f, and
thanks to our use of polymorphism, the type-checker ensures that
we make no mistake in doing so.

instance Functor Tm where
fmap f (Var x ) = Var (f x )
fmap f (Lam b ) = unpack b $ λ x t →

lamP x $ fmap (mapOld f ) t
fmap f (App t u ) = App (fmap f t ) (fmap f u )

As usual satisfying functor laws implies that the structure is
preserved by the functor action (fmap). The type for terms being
a functor therefore means that applying a renaming is going to
only affect the free variables and leave the structure untouched.
That is, whatever the function f is doing, the bound names are not
changing. The Functor laws are the following:

fmap id ≡ id
fmap (f . g ) ≡ fmap f . fmap g

In terms of renaming, they mean that the identity function cor-
responds to not renaming anything and compositions of renaming
functions corresponds to two sequential renaming operations.

Assuming only a functor structure, it is possible to write useful
functions on terms which involve only renaming. A couple of
examples follow.

First, let us assume an equality test on free variables. We can
then write a function rename (x,y ) t which replaces free occur-
rences of x in t by y and swap (x,y ) t which exchanges free
occurrences of x and y in t.

rename0 :: Eq a ⇒ (a, a ) → a → a
rename0 (x,y ) z | z == x = y

| otherwise = z

rename :: (Functor f, Eq a ) ⇒ (a, a ) → f a → f a
rename = fmap . rename0

swap0 :: Eq a ⇒ (a, a ) → a → a
swap0 (x,y ) z | z == y = x

| z == x = y
| otherwise = z

swap :: (Functor f, Eq a ) ⇒ (a, a ) → f a → f a
swap = fmap . swap0

Second, let us assume two arguments a and b related by the type
class⊆. Thus we have injMany of type a → b, which can be seen
as a renaming of free variables via the functorial structure of terms.
By applying fmap to it, one obtains an arbitrary weakening from
the context a to the bigger context b.

wk :: (Functor f, a ⊆ b ) ⇒ f a → f b
wk = fmap injMany

Again, this arbitrary weakening function relieves the program-
mer from tediously counting indices and constructing an appropri-
ate renaming function. We demonstrate this feature in sec. 6.

4.2 Substitution and Monads
Another useful property of terms is that they can be substituted for
free variables in other terms. This property is captured algebraically
by asserting that terms form a Monad, where return is the variable
constructor and>>= acts as parallel substitution. Indeed, one can
see a substitution from a context a to a context b as mapping from a
to Tm b, (technically a morphism in the associated Kleisli category)
and (>>= ) applies a substitution everywhere in a term.

The definition of the Monad instance is straightforward for vari-
able and application, and we isolate the handling of binders in
the (>>>= ) function.

instance Monad Tm where
return = Var
Var x >>= θ = θ x
Lam s >>= θ = Lam (s >>>= θ )
App t u >>= θ = App (t >>= θ ) (u >>= θ )

At binding sites, one needs to lift the substitution so that it
does not act on the newly bound variables, a behavior isolated in
the helper >>>=. As for the Functor instance, the type system
guarantees that no mistake is made. Perhaps noteworthy is that this
operation is independent of the concrete term structure: we only
“rename” with fmap and inject variables with return.

liftSubst :: (Functor tm, Monad tm ) ⇒
v → (a → tm b ) → (a B v ) → tm (b B v )

liftSubst θ (Old x ) = fmap Old (θ x )
liftSubst θ (New x ) = return (New x )

Substitution under a binder (>>>= ) is then the wrapping
of liftSubst between unpack and pack. It is uniform as well,
and thus can be reused for every structure with binders.

(>>>= ) :: (Functor tm, Monad tm ) ⇒
tm (Succ a ) → (a → tm b ) → tm (Succ b )

s >>>= θ = unpack s $ λ x t →
pack x (t >>= liftSubst x θ )

For terms, the meaning of the monad laws can be interpreted as
follows. The associativity law ensures that applying a composition
of substitutions is equivalent to sequentially applying them, while
the identity laws ensure that variables act indeed as such.



We can write useful functions for terms based only on the Monad
structure. For example, given the membership (∈), one can provide
the a generic combinator to reference to a variable within any term
structure:

var :: (Monad tm, v ∈ a ) ⇒ v → tm a
var = return . inj

One can also substitute an arbitrary variable:

substitute :: (Monad tm, Eq a, v ∈ a ) ⇒
v → tm a → tm a → tm a

substitute x t u = u >>= λ y →
if y ‘isOccurenceOf‘ x then t else return y

One might however also want to remove the substituted variable
from the context while performing the substitution:

substituteOut :: Monad tm ⇒
v → tm a → tm (a B v ) → tm a

substituteOut x t u = u >>= λ y → case y of
New → t
Old x → return x

4.3 Traversable
Functors enable to apply any pure function f :: a → b to
the elements of a structure to get a new structure holding the
images of f. Traversable structures enable to apply an effect-
ful function f :: a → m b where m can be any Applicative
functor. An Applicative functor is strictly more powerful than
a Functor and strictly less powerful than a Monad. Any Monad is
an Applicative and any Applicative is a Functor. To be tra-
versed a structure only needs an applicative and therefore support
monadic actions directly (McBride and Paterson 2007).

instance Traversable Tm where
traverse f (Var x ) = Var <$> f x
traverse f (App t u ) =
App <$> traverse f t <*> traverse f u

traverse f (Lam t ) =
unpack t $ λ x b →
lamP x <$> traverse (bitraverse f pure ) b

In order to traverse name abstractions, indices need to be tra-
versed as well. The type (B ) is a bi-functor and is bi-traversable.
The function bitraverse is given two effectful functions, one for
each case:

bitraverse :: Functor f ⇒ (a → f a’ )
→ (b → f b’ )
→ (a B b → f (a’ B b’ ) )

bitraverse f (Old x ) = Old <$> f x
bitraverse g (New x ) = New <$> g x

An example of a useful effect to apply is throwing an exception,
implemented for example as the Maybe monad. If a term has no free
variable, then it can be converted from the type Tm a to Tm Zero
(or equivalently ∀ b. Tm b), but this requires a dynamic check. It
may seem like a complicated implementation is necessary, but in
fact it is a direct application of the traverse function.

closed :: Traversable tm ⇒ tm a → Maybe (tm b )
closed = traverse (const Nothing )

Thanks to terms being an instance of Traversable they are
also Foldable meaning that we can combine all the elements of
the structure (i.e. the occurrences of free variables in the term)
using any Monoid. One particular monoid is the free monoid of
lists. Consequently, Data.Foldable.toList is computing the
free variables of a term and Data.Foldable.elem can be used to
build freshFor:

freeVars :: Tm a → [a]
freeVars = toList

freshFor :: (Eq a, v ∈ a ) ⇒ v → Tm a → Bool
x ‘freshFor‘ t = not (inj x ‘elem‘ t )

5. Scopes
Armed with an intuitive understanding of safe interfaces to manipu-
late de Bruijn indices, and the knowledge that one can abstract over
any substitutive structure by using standard type-classes, we can re-
capitulate and succinctly describe the essence of our constructions.

In Nested Abstract Syntax, a binder introducing one variable in
scope, for an arbitrary term structure tm is represented as follows:

type SuccScope tm a = tm (Succ a )

In essence, we propose two new, dual representations of binders,
one based on universal quantification, the other one based on exis-
tential quantification.

type UnivScope tm a = ∀ v. v → tm (a B v )
type ExistScope tm a = ∃ v. (v , tm (a B v ) )

The above syntax for existentials is not supported in HASKELL,
so we must use one of the lightweight encodings available. In
the absence of view patterns, a CPS encoding is convenient for
programming (so we used this so far), but a datatype representation
is more convenient when dealing with scopes only:

data ExistScope tm a where
E :: v → tm (a B v ) → ExistScope tm a

As we have observed on a number of examples, these represen-
tations are dual from a usage perspective: the universal-based rep-
resentation allows safe construction of terms, while the existential-
based representation allows safe analysis of terms. Strictly speak-
ing, safety holds only if one disregards non-termination and seq,
but because the values of type v are never used for computation,
mistakenly using a diverging term in place of a witness of variable
name is far-fetched.

For the above reason, we do not commit to either side, and use
the suitable representation on a case-by-case basis. This flexibil-
ity is possible because these scope representations (SuccScope,
UnivScope and ExistScope) are isomorphic. In the following we
exhibit the conversion functions between SuccScope one side and
either UnivScope or ExistScope on the other. We then prove that
they form isomorphisms, assuming an idealized HASKELL lacking
non-termination and seq.

5.1 UnivScope tm a ∼= SuccScope tm a

The conversion functions witnessing the isomorphism are the fol-
lowing.



succToUniv :: Functor tm ⇒
SuccScope tm a → UnivScope tm a

succToUniv t = λ x → mapNew (const x ) <$> t

univToSucc :: UnivScope tm a → SuccScope tm a
univToSucc f = f ( )

The univToSucc function has not been given a name in the
previous sections, but was implicitly used in the definition of lam.
This is the first occurrence of the succToUniv function.

We prove first that UnivScope is a proper representation
of SuccScope, that is univToSucc . succToUniv ≡ id. This
can be done by simple equational reasoning:

univToSucc (succToUniv t )
≡ {- by def -}

univToSucc (λ x → mapNew (const x ) <$> t )
≡ {- by def -}

mapNew (const ( ) ) <$> t
≡ {- by ( ) having just one element -}

mapNew id <$> t
≡ {- by (bi )functor laws -}

t

The second property (succToUniv . univToSucc ≡ id)
means that there is no “junk” in the representation: one cannot
represent more terms in UnivScope than in SuccScope. It is
more difficult to prove, as it relies on parametricity and in turn
on the lack of junk (non-termination or seq) in the host lan-
guage. Hence we need to use the free theorem for a value f of
type UnivScope tm a. Transcoding UnivScope tm a to a rela-
tion by using Paterson’s version (Fegaras and Sheard 1996) of the
abstraction theorem (Reynolds 1983; Bernardy et al. 2012), as-
suming additionally that tm is a functor. We obtain the following
lemma:

∀ v1:*. ∀ v2:*. ∀ v:v1 → v2.
∀ x1:v1. ∀ x2:*. v x1 ≡ x2.
∀ g:(a B v1) → (a B v2).
(∀ y:v1. New (v y ) ≡ g (New y ) ) →
(∀ n:a. Old n ≡ g (Old n ) ) →
f x2 ≡ g <$> f x1

We can then specialize v1 and x1 to ( ), v to const x2, and g
to mapNew v. By definition, g satisfies the conditions of the lemma
and we get:

f x ≡ mapNew (const x ) <$> f ( )

We can then reason equationally:

f
≡ {- by the above -}
λ x → mapNew (const x ) <$> f ( )

≡ {- by def -}
succToUniv (f ( ) )

≡ {- by def -}
succToUniv (univToSucc f )

5.2 ExistScope tm a ∼= SuccScope tm a

The conversion functions witnessing the isomorphism are the fol-
lowing.

succToExist :: SuccScope tm a → ExistScope tm a
succToExist = E ( )

existToSucc :: Functor tm ⇒
ExistScope tm a → SuccScope tm a

existToSucc (E t ) = mapNew (const ( ) ) <$> t

One can recognise the functions pack and unpack as CPS
versions of existToSucc and succToExist.

The proof of existToSucc . succToExist ≡ id (no junk)
is nearly identical to the first proof about UnivScope and hence
omitted. To prove succToExist . existToSucc ≡ id, we first
remark that by definition:

succToExist (existToSucc (E y t ) ) ≡
E ( ) (fmap (mapNew (const ( ) ) ) t )

It remains to show that E y t is equivalent to the right-hand
side of the above equation. To do so, we consider any observation
function o of type ∀ v. v → tm (a B v ) → K for some con-
stant type K, and show that it returns the same result if applied to y
and t or ( ) and fmap (mapNew (const ( ) ) )

t. This fact is a consequence of the free theorem associated
with o:

∀ v1:*. ∀ v2:*. ∀ v:v1 → v2.
∀ x1:v1. ∀ x2:*. v x1 ≡ x2.
∀ t1:tm (a B v1). ∀ t2:tm (a B v2).
(∀ g:(a B v1) → (a B v2).
(∀ y:v1. New (v y ) ≡ g (New y ) ) →
(∀ n:a. Old n ≡ g (Old n ) ) →
t2 ≡ fmap g t1) →
o x2 t2 ≡ o x1 t1

Indeed, after specializing x2 to ( ) and v to const ( ), the last
condition amounts to t2 ≡ fmap (mapNew (const ( ) ) ) t1,
and we get the desired result.

5.3 A Matter of Style
We have seen that ExistScope is well-suited for term analysis,
while UnivScope is well-suited for term construction. What about
term transformations, which combine both aspects? In this case,
one is free to choose either interface. This can be illustrated by
showing both alternatives for the Lam case of the fmap function.
(The App and Var cases are identical.) Because the second version
is more concise, we prefer it in the upcoming examples, but the
other choice is equally valid.

fmap’ f (Lam b )
= unpack b $ λ x t → lamP x (mapOld f <$> t )

fmap’ f (Lam b )
= lam (λ x → mapOld f <$> (b ‘atVar‘ x ) )

When using succToUniv, the type of the second argument of
succToUniv should always be a type variable in order to have
maximally polymorphic contexts. To remind us of this requirement
when writing code, we give the alias atVar for succToUniv. (Sim-
ilarly, to guarantee safety, the first argument of pack (encapsulated
here in lamP) must be maximally polymorphic.)

5.4 Scope Representations and Term Representations
By using an interface such as ours, term representations can be
made agnostic to the particular scope representation one might
choose. In other words, if some interface appears well-suited to a
given application domain, one might choose it as the scope repre-



sentation in the implementation. Typically, this choice is be guided
by performance considerations. Within this paper we favor code
concision instead, and therefore in sec. 6.1 we use ExistScope,
and in sections 6.2 and 6.3 we use UnivScope.

6. Bigger Examples
6.1 Normalization using hereditary substitution
A standard test of binder representations is how well they support
normalization. In this section we show how to implement normal-
ization using our constructions.

The following type captures normal forms of the untyped λ-
calculus: a normal form is either an abstraction over a normal form
or a neutral term (a variable applied to some normal forms). In this
definition we use an existential-based version of scopes, which we
splice in the LamNo constructor.

data No a where
LamNo :: v → No (a B v ) → No a
Neutr :: a → [No a] → No a

The key to this normalization procedure is that normal forms
are stable under hereditary substitution (Nanevski et al. 2008). The
function performing a hereditary substitution substitutes variables
for their value, while reducing redexes on the fly.

instance Monad No where
return x = Neutr x []
LamNo x t >>= θ = LamNo x (t >>= liftSubst x θ )
Neutr f ts >>= θ = foldl app (θ f )( (>>= θ )<$>ts )

The most notable feature of this substitution is the use of app to
normalize redexes:

app :: No a → No a → No a
app (LamNo x t ) u = substituteOut x u t
app (Neutr f ts ) u = Neutr f (ts++[u] )

The normalize is then a simple recursion on the term structure:

norm :: Tm a → No a
norm (Var x ) = return x
norm (App t u ) = app (norm t ) (norm u )
norm (Lam b ) = unpack b $ λ x t →

LamNo x (norm t )

6.2 Closure Conversion
A common phase in the compilation of functional languages is clo-
sure conversion. The goal of closure conversion is make explicit the
creation and opening of closures, essentially implementing lexical
scope. What follows is a definition of closure conversion, as can
be found in a textbook (in fact this version is slightly adapted from
Guillemette and Monnier (2007)). In it, we use a hat to distinguish
object-level abstractions (λ̂) from host-level ones. Similarly, the @
sign is used for object-level applications.

The characteristic that interests us in this definition is that it is
written in nominal style. For instance, it pretends that by match-
ing on a λ̂-abstraction, one obtains a name x and an expression e,
and it is silent about the issues of freshness and transport of names
between contexts. In the rest of the section, we construct an imple-
mentation which essentially retains these characteristics.

JxK= x

Jλ̂x.eK= closure (λ̂x xenv.ebody) eenv

where y1, . . . , yn = FV (e)− {x}
ebody = JeK[xenv.i/yi]
eenv = 〈y1, . . . , yn〉

Je1@e2K= let (xf , xenv) = open Je1K in xf 〈Je2K, xenv〉

The first step in implementing the above function is to define
the target language. It features variables and applications as usual.
Most importantly, it has a constructor for Closures, composed of
a body and an environment. The body of closures have exactly two
free variables: vx for the parameter of the closure and venv for its
environment. These variables are represented by two UnivScopes,
which we splice in the type of the constructor. An environment is
realized by a Tuple. Inside the closure, elements of the environ-
ment are accessed via their Index in the tuple. Finally, the LetOpen
construction allows to access the components of a closure (its first
argument) in an arbitrary expression (its second argument). This
arbitrary expression has two extra free variables: vf for the code of
the closure and venv for its environment.

data LC a where
VarLC :: a → LC a
AppLC :: LC a → LC a → LC a
Closure :: (∀ vx venv. vx → venv →

LC (Zero B venv B vx ) ) →
LC a → LC a

Tuple :: [LC a] → LC a
Index :: LC a → Int → LC a
LetOpen :: LC a → (∀ vf venv. vf → venv →

LC (a B vf B venv ) ) → LC a

This representation is an instance of Functor and Monad, and
the corresponding code offers no surprise. We give an infix alias
for AppLC, named $$.

Closure conversion can then be implemented as a function
from Tm a to LC a. The case of variables is trivial. For an abstrac-
tion, one must construct a closure, whose environment contains
each of the free variables in the body. The application must open
the closure, explicitly applying the argument and the environment.

The implementation closely follows the mathematical definition
given above. The work to manage variables explicitly is limited
to the lifting of the substitution [xenv.i/yi], and an application
of wk. Additionally, the substitution performed by wk is inferred
automatically by GHC.

cc :: Eq a ⇒ Tm a → LC a
cc (Var x ) = VarLC x
cc t0@(Lam b ) =
let yn = nub $ freeVars t0
in Closure (λ x env → cc (b ‘atVar‘ x ) >>=

liftSubst x (idxFrom yn env ) )
(Tuple $ map VarLC yn )

cc (App e1 e2 ) =
LetOpen (cc e1 )

(λ f x → var f $$ wk (cc e2 ) $$ var x )

A notable difference between the above implementation and
that of Guillemette and Monnier is the following. They first modify
the function to take an additional substitution argument, citing the
difficulty to support a direct implementation with de Bruijn indices.
We need not do any such modification: our interface is natural
enough to support a direct implementation of the algorithm.



6.3 CPS Transform
The next example is a transformation to continuation-passing style
(CPS) based partially on work by Chlipala (2008) and Guillemette
and Monnier (2008). The main objective of the transformation
is to make the order of evaluation explicit, by let-binding every
intermediate Value in a specific order. To this end, we target a
special representation, where every intermediate result is named.
We allow for Values to be pairs, so we can easily replace each
argument with a pair of an argument and a continuation.

data TmC a where
HaltC :: Value a → TmC a
AppC :: Value a → Value a → TmC a
LetC :: Value a → TmC (Succ a ) → TmC a

data Value a where
LamC :: TmC (Succ a ) → Value a
PairC :: Value a → Value a → Value a
VarC :: a → Value a
FstC :: a → Value a
SndC :: a → Value a

We do not use Values directly, but instead their composition
with injection.

varC :: (v ∈ a ) ⇒ v → Value a
letC :: Value a → UnivScope TmC a → TmC a
lamC :: UnivScope TmC a → Value a
fstC :: (v ∈ a ) ⇒ v → Value a
sndC :: (v ∈ a ) ⇒ v → Value a

Free variables in TmC can be renamed, thus it enjoys a functor
structure, with a straightforward implementation found our online
development (?). However, this new syntax TmC is not stable under
substitution. Building a monadic structure would be more involved,
and is directly tied to the transformation we perform and the oper-
ational semantics of the language, so we omit it.

We implement a one-pass CPS transform (administrative re-
dexes are not created). This is done by passing a host-language con-
tinuation to the transformation. At the top-level the halting continu-
ation is used. A definition of the transformation using mathematical
notation could be written as follows.

JxKκ= κx
Je1 @ e2Kκ= Je1K(λf. Je2K(λx. f @ 〈x, κ〉))

Jλ̂x.eKκ= let f = λ̂p. letx1 = fst p in
letx2 = snd p in
Je[x1/x]K(λr. x2 @ r)

inκ f

The implementation follows the above definition, except for
the following minor differences. For the Lam case, the only de-
viation is an occurrence of wk. In the App case, we have an
additional reification of the host-level continuation as a proper
Value using the lamC function. In the variable case, we must
pass the variable v to the continuation. Doing so yields a value
of type TmC (a B a ). To obtain a result of the right type it suf-
fices to remove the extra tagging introduced by a B a everywhere
in the term, using (untag <$>). The function untag simply re-
moves the Old/New tags and thus has type a B a → a. Besides,

we use a number of instances of wk, and for each of them GHC is
able to infer the substitution to perform.

cps :: Tm a → (∀ v. v → TmC (a B v ) ) → TmC a
cps (Var x ) k = untag <$> k x
cps (App e1 e2 ) k =
cps e1 $ λ x1 →
cps (wk e2 ) $ λ x2 →
varC x1 ‘AppC‘ (varC x2 ‘PairC‘

lamC (λ x → wk $ k x ) )
cps (Lam e ) k =
letC

(lamC $ λp →
letC (fstC p ) $ λ x1 →
letC (sndC p ) $ λ x2 →
cps (wk $ e ‘atVar‘ x1 ) $ λr →
varC x2 ‘AppC‘ varC r ) k

It is folklore that a CPS transformation is easier to implement
with higher-order abstract syntax (Guillemette and Monnier 2008;
Washburn and Weirich 2003). Our interface for name abstractions
features a form of higher-order representation. (Namely, a quantifi-
cation, over a universally quantified type.) However limited, this
higher-order aspect is enough to allow an easy implementation of
the CPS transform.

7. Related Work
Representing names and binders in a safe and convenient manner
is a long-standing issue, with an extensive body of work devoted to
it. A survey is far beyond the scope of this paper. Hence, we limit
our comparison to the work that we judge most relevant, or whose
contrasts with our proposal is the most revealing.

However, we do not limit our comparison to interfaces for
names and binders, but also look at terms representations. Indeed,
we have noted in sec. 5.3 that every term representation embodies
an interface for binders.

7.1 Fin

Another approach already used and described by Altenkirch (1993);
McBride and McKinna (2004) is to index terms, names, etc. by a
number, a bound. This bound is the maximum number of distinct
free variables allowed in the value. This rule is enforced in two
parts: variables have to be strictly lower than their bound, and the
bound is incremented by one when crossing a name abstraction (a
λ-abstraction for instance).

The type Fin n is used for variables and represents natural
numbers strictly lower than n. The name Fin n comes from the
fact that it defines finite sets of size n.

We can draw a link with Nested Abstract Syntax. Indeed, as
with the type Succ ((B ( ) ) or Maybe), the type Fin (suc n )
has exactly one more element than the type Fin n. However, these
approaches are not equivalent for at least two reasons. Nested
Abstract Syntax can accept any type to represent variables. This
makes the structure more like a container and this allows to exhibit
the substitutive structure of terms as monads. The Fin approach
has advantages as well: the representation is concrete and closer to
the original approach of de Brujin. In particular the representation
of free and bound variables is more regular, and it may be more
amenable to the optimization of variables as machine integers.



7.2 Higher-Order Abstract Syntax (HOAS)
A way to represent bindings of an object language is via the bind-
ings of the host language. One naive translation of this idea yields
the following term representation:

data TmH = LamH (TmH → TmH ) | AppH TmH TmH

An issue with this kind of representation is the presence of
so-called “exotic terms”: a function of type TmH → TmH which
performs pattern matching on its argument does not necessarily
represent a term of the object language. A proper realization of the
HOAS idea should only allow functions which use their argument
for substitution.

It has been observed before that one can implement this restric-
tion by using polymorphism. This observation also underlies the
safety of our UnivScope representation.

Another disadvantage of HOAS is the negative occurrence of
the recursive type, which makes it tricky to analyze terms (Wash-
burn and Weirich 2003).

7.3 Syntax for free
Atkey (2009) revisited the polymorphic encoding of the HOAS
representation of the untyped lambda calculus. By constructing a
model of System F’s parametricity in COQ he could formally prove
that polymorphism rules out the exotic terms. Name abstractions,
while represented by computational functions, cannot react to the
shape of their argument and thus behave as substitutions. Here is
this representation in HASKELL:

type TmF = ∀ a. ({-lam:-} (a → a ) → a )
→ ({-app:-} a → a → a ) → a

And our familiar application function:

apTmF :: TmF
apTmF lam app = lam $ λ f → lam $ λ x → f ‘app‘ x

Being a polymorphic encoding, this technique is limited to
analyze terms via folds (catamorphism). Indeed, there is no known
safe way to convert a term of this polymorphic encoding to another
safe representation of names. As Atkey shows, this conversion
relies on the Kripke version of the parametricity result of this
type. (At the moment, the attempts to integrate parametricity in a
programming language only support non-Kripke versions (Keller
and Lasson 2012; Bernardy and Moulin 2012, 2013).)

7.4 Parametric Higher-Order Abstract Syntax (PHOAS)
Chlipala (2008) describes a way to represent binders using poly-
morphism and functions. Using that technique, called Parametric
Higher-Order Abstract Syntax (PHOAS), terms of the untyped λ-
calculus are represented as follows:

data TmP a where
VarP :: a → TmP a
LamP :: (a → TmP a ) → TmP a
AppP :: TmP a → TmP a → TmP a

type TmP’ = ∀ a. TmP a

Only universally quantified terms (TmP’) are guaranteed to cor-
respond to terms of the λ-calculus.

The representation of binders used by Chlipala can be seen as a
special version of UnivScope, where all variables are assigned the
same type. This specialization has pros and cons. On the plus side,
substitution is easier to implement with PHOAS: fresh variables do

not need special treatment. The corresponding implementation of
the monadic join is as follows:

joinP (VarP x ) = x
joinP (LamP f ) = LamP (λ x → joinP (f (VarP x ) ) )
joinP (AppP t u ) = AppP (joinP t ) (joinP u )

On the minus side, all the variables (bound and free) have the
same representation. This means that they cannot be told apart
within a term of type ∀ a. TmP a. Additionally, once the type
variable a is instantiated to a closed type, one cannot recover the
polymorphic version. Furthermore while Tm Zero denotes a closed
term, TmP Zero denotes a term without variables, hence no term
at all. Therefore, whenever a user of PHOAS needs to perform
some manipulation on terms, they must make an upfront choice
of a particular instance for the parameter of TmP that supports all
the required operations on free variables. This limitation is not
good for modularity, and for code clarity in general. Another issue
arises from the negative occurrence of the variable type. Indeed
this makes the type TmP invariant: it cannot be made a Functor
nor a Traversable and this not a proper Monad either.

The use-case of PHOAS presented by Chlipala is the representa-
tion of well-typed terms. That is, the parameter to TmP can be made
a type-function, to capture the type associated with each variable.
This is not our concern here, but we have no reason to believe that
our technique cannot support this, beyond the lack of proper for
type-level computation in HASKELL — Chlipala uses COQ for his
development.

7.5 HYBRID

In HYBRID, Ambler et al. define a way to define and reason about
higher-order abstract syntax in the ISABELLE (Ambler et al. 2002)
and COQ (Capretta and Felty 2007) proof assistants. To do so, as a
first level they build a representation for λ-terms (plus constructors)
using de Brujin indices. Then as a second level they represent
HOAS terms using the λ-terms of the first level. In this second level
name abstraction is represented using λ-abstractions of the first
level. Finally HOAS terms can be built using λ-abstractions from
the host language (ISABELLE or COQ) as long as these functions
are accompanied with uniformity proofs. These uniformity proofs
rule out the exotic terms. Using our approach, parametricity would
discharge these uniformity proofs.

7.6 McBride’s “Classy Hack”
McBride (2010) has devised a set of combinators to construct
λ-terms in de Brujin representation, with the ability to refer to
bound variables by name. Terms constructed using McBride’s tech-
nique are textually identical to terms constructed using ours. An-
other point of similarity is the use of instance search to recover
the indices from a host-language variable name. A difference is
that McBride integrates the injection in the abstraction constructor
rather than the variable constructor. The type of the var combinator
then becomes simpler, at the expense of lam:

lam :: ( (∀ n. (Leq (S m ) n ⇒ Fin n ) ) → Tm (S m ) )
→ Tm m

var :: Fin n → Tm n

An advantage of McBride’s interface is that it does not require
the “incoherent instances” extension.

However, because McBride represents variables as Fin, the
types of his combinators are less precise than ours. Notably, the Leq
class captures only one aspect of context inclusion (captured by
the class ⊆ in our development), namely that one context should
be smaller than another. This means, for example, that the class



constraint a ⊆ b can be meaningfully resolved in more cases
than Leq m n, in turn making functions such as wk more useful in
practice. Additionally, our unpack and pack combinators extend
the technique to term analysis and manipulation.

7.7 NOMPA (nominal fragment)
Pouillard and Pottier (2012) describe an interface for names and
binders which provides maximum safety. The library NOMPA is
written in AGDA, using dependent types. The interface makes use
of a notion of Worlds (intuitively a set of names), Binders (name
declaration), and Names (the occurrence of a name). A World can
either be Empty (called ∅ in the library NOMPA) in or result of the
addition of a Binder to an existing World, using the operator (/ ).
The type Name is indexed by Worlds: this ties occurrences to the
context where they make sense.

World :: *
Binder :: *
Empty :: World
(/ ) :: Binder → World → World
Name :: World → *

On top of these abstract notions, one can construct the follow-
ing representation of terms (we use a HASKELL-style syntax for
dependent types, similar to that of IDRIS):

data Tm α where
Var :: Name α → Tm α
App :: Tm α → Tm α → Tm α
Lam :: (b :: Binder ) → Tm (b / α) → Tm α

The safety of the technique comes from the abstract character of
the interface. If one were to give concrete definitions for Binder,
World and their related operations, it would become possible for
user code to cheat the system. A drawback of the interface be-
ing abstract is that some subterms do not evaluate. This point is
of prime concern in the context of reasoning about programs in-
volving binders. In contrast, our interfaces are concrete (code using
it always evaluates), but it requires the user to choose the represen-
tation appropriate to the current use (SuccScope, UnivScope or
ExistScope).

8. Discussion
8.1 Binding Many Variables
In SuccScope, there is exactly one more free variable available in
the sub-term. However, it might be useful to bind multiple names
at once in a binder. This can be done by using a type n of the
appropriate cardinality instead of ( ). This technique has been used
for example by Kmett (2012).

type NScope n tm a = tm (a B n )

Adapting the idea to our framework would mean to quantify
over a family of types, indexed by a type n of the appropriate
cardinality:

type NUnivScope n tm a = ∀v. (n → v ) → tm (a B v )
type NExistScope n tm a = ∃v.( (n → v ) , tm (a B v ) )

8.2 Delayed Substitutions
The main performance issue with de Brujn indices comes from the
cost of importing terms into scopes without capture, which requires
to increment free variables in the substituted term (see fmap Old in

the definition of liftSubst). This transformation incurs not only
a direct cost proportional to the size of terms, but also an indirect
cost in the form of loss of sharing.

Bird and Paterson (1999) propose a solution to this issue, which
can be expressed simply as another implementation of binders,
where free variables of the inner term stand for whole terms with
one less free variable:

type DelayedScope tm a = tm (tm a B ( ) )

This means that the parallel substitution for a term representa-
tion based on DelayedScope does not require lifting of substitu-
tions.

data TmD a where
VarD :: a → TmD a
LamD :: DelayedScope TmD a → TmD a
AppD :: TmD a → TmD a → TmD a

instance Monad TmD where
return = VarD
VarD a >>= θ = θ a
AppD a b >>= θ = AppD (a >>= θ ) (b >>= θ )
LamD t >>= θ = LamD (mapOld (>>= θ ) <$> t )

Because idea of delayed substitutions is concerned with free
variables, and the concepts we present here is concerned with
bound variables, one can easily define scopes which are both de-
layed and safe. Hence the performance gain is compatible with our
safe interface.

type UnivScope’ tm a = ∀v. (v → tm (tm a B v ) )
type ExistScope’ tm a = ∃v. (v , tm (tm a B v ) )

8.3 Future Work: Improving Safety
As it stands our interface prevents mistakes in the manipulation
of de Bruijn indices, but requires a collaboration from the user.
Indeed, a malicious user can instantiate v to a monotype either
in the analysis of ∀ v. v → tm (a B v ) or in the construction
of ∃ v. (v, tm (a B v ) ). This situation can be improved by
providing a quantifier which allows to substitute for type variables
other type variables only. This quantifier can be understood as
being at the same time existential and universal, and hence is self
dual. We use the notation ∇ (pronounced nabla) for it, due to the
similarity with the quantifier of the same name introduced by Miller
and Tiu (2003). We would then have the following definitions, and
safety could not be compromised.

type UnivScope tm a = ∇ v. v → tm (a B v )
type ExistScope tm a = ∇ v. (v , tm (a B v ) )

These definitions would preclude using SuccScope as an im-
plementation, however this should not cause any issue: either of
the above could be used directly as an implementation. Supporting
our version of ∇ in a type-checker seems a rather modest exten-
sion, therefore we wish to investigate how some future version of
GHC could support it.

8.4 Future Work: Improve Performance
An apparent issue with the presented conversion functions be-
tween UnivScope or ExistScope on one side and SuccScope
on the other side is that all but succToExist cost a time pro-
portional to the size of the term converted. In the current state of
affairs, we might be able to use a system of rewrite rules, such



as that implemented in GHC, to eliminate the conversions to and
from the safe interfaces. However, within a system which sup-
ports ∇-quantification, a better option offers itself: the machine-
representation of the type v should be nil (nothing at all) if v is
a ∇-bound variable; therefore the machine-implementation of the
conversions can be the identity.

8.5 Future Work: No Injections
We use the instance search of GHC in a very specific way: only
to discover in injections. This suggests that a special-purpose type-
system (featuring a form of subtyping) could be built to take care of
those injections automatically. An obvious benefit would be some
additional shortening of programs manipulating terms. Addition-
ally, this simplification of programs would imply an even greater
simplification of the proofs about them; indeed, a variation in com-
plexity in an object usually yields a greater variation in complexity
in proofs about it.

8.6 Conclusion
We have shown how to make de Bruijn indices safe, by typing
them precisely with the context where they make sense. Such pre-
cise contexts are obtained is by using (appropriately) either of the
interfaces UnivScope or ExistScope. These two interfaces can
be seen as the both sides of the ∇ quantifier of Miller and Tiu
(2003). Essentially, we have deconstructed that flavor of quantifi-
cation over names, and implemented it in HASKELL. The result is a
safe method to manipulate names and binders, which is supported
by today’s Glasgow Haskell Compiler.

The method preserves the good properties of de Bruijn indices,
while providing a convenient interface to program with multiple
open binders. We have illustrated these properties by exhibiting the
implementation of a number of examples.
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