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Abstract

We propose a n ovel technique to represent names and binders in
Haskell. The dynamic (run-time) representation is based on de
Bruijn indices, but it features an interface to write and manip-
ulate variables conviently, u sing Haskell-level lambdas and vari-
ables. The key idea is to use r ich types: a subterm with an addi-
tional free variable is viewed either as ∀ v.v → Term(a + v) or
t∃iov.nva ×f Teee vrmar (iaab l+e ivs) vdieepweendd ienigth eorn swh ∀evth.ver → →it iTs ecromns(taru+ ctev d) oorr
a∃nva.lvys× ed T. We rme d(aem+ ov ns)trad teep eonnd ian gnu omnbew rh oetfh heexrami tp islec s oh noswtr tchteisd ap-
proach permits to express term construction and manipulation in a
natural way, while retaining the good p roperties of representations
based on de Bruijn indices.

Categories and S ubjectD escriptors D.3.3 [Language Constructs
and F eatures]

Keywords name binding, p olymorphism, parametricity, type-
classes, nested types



1. Introduction
One of the main application areas of functional programming lan-
guages such as HASKELL is p rogramming language t echnology. In
particular, HASKELL programmers often find themselves manip-
ulating data structures representing some higher-order object lan-
guages, featuring binders and names.

Yet, the most commonly u sed representations for names and
binders yield code which is difficult to read, or error-prone to
write and maintain. The techniques in question are often referred as
“nominal”, “de Bruijn indices” and “Higher-Order Abstract Syntax
(HOAS)”.

In the nominal approach, one typically uses some atomic type
to represent names. Because a name is simply referred to the atom
representing it, the nominal style is natural. The main issues with
this technique are that variables must sometimes be renamed in or-
der to avoid name capture (that is, if a b inder refers to an already
used name, variables might end up referring to the wrong binder).
The need for renaming demands a way to generate fresh atoms.
This side effect can b e resolved with a supply for unique atoms
or u sing an abstraction such as a monad but is disturbing i f one
wishes to write functional code. A dditionally, nominal represen-
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tations are not canonical. (For instance, two α-equivalent repre-
sentations of the same term such as λx .x and λy .y may be dif-
ferent). Hence special care has to be taken to prevent u ser code
to violate the abstraction barrier. Furthermore fresh name gen-
eration is an observable effect breaking referential transparency
(fresh x in x ı fresh x in x). For instance a function gen-
(efrrateinsgh f rxes hin nnax mıe s a fnrde snoht px ro ipnerx ly) .u Fsionrgi nthstaemnc teoa cf ulonsect aiobnstg raecn--
tions becomes impure.

To avoid the problem of name capture, one can represent names
canonically, for example by the number of binders, typically λ,
to cross between an occurrence and its binding site (a de Bruijn
index). This has the added benefit of making α-equivalent terms
syntactically equal. In practice however, this representation makes
it hard to manipulate terms: instead of calling things by name,
programmers have to r ely on their arithmetic abilities, which turns
out to b e error-prone. As soon as one has to deal with more than
just a couple open b indings, it becomes easy to make mistakes.

Finally, one can use the binders of the host language (in our case
HASKELL) to represent binders of the object language. This tech-
nique (called H OAS) does not suffer from name-capture problems
nor does it involve arithmetic. However the presence of functions in



the term representation mean that it is difficult to manipulate, and
it may contain values which do not r epresent any term.

The contribution of this p aper is a new programming interface
for binders, which provides the ability to write terms in a natural
style close to concrete syntax. We can for example build the appli-
cation function of the untyped λ-calculus as follows:

-- Building the following term: : λ f x → f x
a-p-T mBu =i ldiamn g$ hλe ef →oll loawimn $g tλe rxm :→λ vaf r x xf →‘ Apf p x ‘x var x

and we are able to test if a term is eta-contractible using the
following function:

canEta (Lam e) = u npack e $ λ x t → case t of
AnEppt ae(1 (a Vmaer y =) u→n y ‘k kies Oc $cλ urex nct e→O f →‘ xa &e&

xy ‘‘ firsOeschcFuorre ‘n ee1O
→ False

canEt→a Fal= Fealse

All the while, neither do we require a name supply, nor is there
a r isk for name capture. Testing terms for α-equivalence remains
straightforward and r epresentable terms are exactly those intended.
The cost of t his achievement is the use of somewhat more involved
types for binders, and the use of extensions of the HASKELL type-
system. The new construction is informally described and moti-
vated in sec. 2. In sections 3 to 5 we present in detail the imple-
mentation of the technique as well as b asic applications. Larger
applications such as normalization (using hereditary substitutions),
closure conversion and CPS transformation are presented in sec. 6.

2. Overview



In this section we describe our interface, but before doing so we
describe a simple implementation which can support this interface.

2.1 de Bruijn Indices

De Bruijn (1972) proposed to r epresent an occurrence of some
variable x by counting the number of binders that one has to
cross between the occurrence and the binding site of x. A direct
implementation of the idea may yield the following r epresentation
of untyped λ-terms:

data Nat = O | S Nat
ddaattaa TNamBt w=hO ere|

VarB : : Nat → TmB
AVparpBB :: :: TNamBt →→ TTmmBB → TmB
LAappmBB :: :: TTmmBB →→ TTmmBB

Using this representation, the implementation of the application
function λ f x → f x is the following:

apB : : TmB
apB = LamB $ LamB $ VarB (S O ) ‘ AppB ‘ VarB O

However, such a direct implementation is cumbersome and
na¨ı ve. For instance it cannot statically distinguish b ound and free
variables. T hat is, a closed term has the same type as an open term.

Nested Abstract S yntax In functional programming languages
such as HASKELL, i t i s possible to r emedy to this situation by using
nested data types and polymorphic recursion. That is, one parame-



terizes the type of t erms by a type that can representf ree variables.
If the parameter is the empty type, terms are closed. If the param-
eter is the unit type, there is at most one free variable, etc. This
representation is known as Nested Abstract Syntax (Bellegarde and
Hook 1994; Bird and Paterson 1999; Altenkirch and Reus 1999).

data Tm a where
Var : : a → Tm a
AVappr :: :: Tam →a T→m Tam a → Tm a
LApamp :: :: TTmm (a aS→u cc am m) →→ T Tmm maa

The r ecursive case Lam changes the type p arameter, increas-
ing its cardinality b y one, since the b ody can refer to one more
variable. Anticipating the amendments we propose, we define the
type Succ a as a p roper sum of a and the unit type ( ) instead
of M aybe a as customary. Because the sum is u sed in an asym-
metric fashion (the left-hand-side corresponds to variables bound
earlier and the r ight-hand-side to the freshly b ound one), we give
a special definition of sum written B, whose syntax reflects the in-
tended semantics.

type Succ a = a B ( )

data a B v = Old a | New v

mapOld : : ( a → a’ ) → ( a B v ) → (a ’ B v )
mmaappOOlldd f: :( (Olad →x →) =’ )O→l d (( fa xB B)
mapOld (New x ) = New x

mapNew : : (v → v ’ ) → (a B v ) → (a B v ’ )
mmaappNNeeww ::( (Olvd →x →) =’ )O→l d (xa

mapNew f (New x ) = New (f x )



Using the Tm representation, the implementation of the applica-
tion function λ f x → f x is the following:

apNested : : Tm Zero
apNested = Lam $ Lam $ Var ( Old $ New ( ) )

‘ App ‘ Var ( New ( ) )

As promised, the type is explicit about apNested b eing a closed
term: this is ensured by using the empty type Zero as an argument
to Tm.

data Zero -- no constructors

In passing, we r emark that another t ype which faithfully cap-
tures closed terms is ∀ a. . Tm a — literally: the type of terms
twurhiecshc alores emdet aenrmingsfiu sl i∀n any Tcmon taex— t. In lidteereadll,y b:et chaeust ey pae ios f un teivremr-s
sally quantified, there is no way to construct an inhabitant of it;
therefore one cannot possibly refer to any free variable. In particu-
lar one can instantiate a to be the type Zero.

However the main drawback of using de Bruijn indices remains:
one must still count the number of binders between the declaration
of a variable and its occurrences.

2.2 Referring to B ound V ariables by Name

To address the issues j ust touched u pon, we propose to build λ-
abstractions with a function called lam. What matters the most is
its type:

lam : : (∀ v . v → Tm ( a B v ) ) → Tm a
llaamm f: := L∀avm .( fv (→ →) →)

That is, instead of adding a concrete u nique type (namely ( )) in



the recursive p arameter of Tm, we quantify universally over a type
variable v and add this type variable to the type of free variables.
The body of the lambda-abstraction receives an arbitrary value of
type v, to b e u sed at occurrences of the variable bound by lam.

The application function is then b uilt as follows:

apTm : : Tm Zero
apTm = lam $ λ f → lam $ λ x →

Vma$r (λ λOfl d →( N lewa mf )$ $) λ‘ A xpp → →‘ Var (New x )

By unfolding the definition of lam in apTm one recovers the
definition of apNested.

Safety Using our approach, the binding structure, which can be
identified as the s pecification, is written using the host language
binders. However at variable occurrences, de Bruijn indices are still
present in the form of the constructors New and Old, and are purely
part of the implementation.

The type-checker t hen makes sure that the implementation
matches the specification: for example if one now makes a mis-
take and forgets one Old when entering the term, the HASKELL
type system rejects the definition.

oops = lam $ λ f → lam $ λ x →

Vma$r (λ λNfe w →f →) ‘a Amp$p $‘ λVax r →( New x )
-- Couldn ’ t m atch expected type ‘ v1’
-- with actual type ‘ v ’

In fact, if all variables are introduced with the lam combinator
the possibility of making a mistake in the implementation is n onex-
istent, if we ignore obviously diverging terms. Indeed, because the
type v corresponding to a bound variable is universally quantified,



the only way to c onstruct a value of its type is t o use the variable
bound b y lam. (In HASKELL one can use a diverging program;
however one has to make a conscious decision to produce a value
of such an obviously empty type.)

In general, in a closed context, if one considers the expres-
sion Var ( ( Old )n (New x ) ), only one possible value of n is
admissible. Indeed, anywhere in the formation of a term us-
ing lam, the type of variables is a = a0 B v0 B v1 B · · · B vn
where v0, v1, . . . , vnare all distinct and universally quBan· tif·i·edB , Banv d
none of them occurs as part of a0. Hence, there is only one injection
function from a given vi to a.

Auto-Inject Knowing that the injection functions are uniquely
determined by their t ype, one may wish to infer them mechanically.
Thanks the powerful instance search mechanism implemented in
GHC, this is feasible. To this effect, we define a class v ∈ a
cGaHptCu,rit nhgi sthi ast v fe oacsicbulres. a Ts opat rhti osfe eaf fceocntt,ex wte ead:

class v ∈ a where
iasnjs :v v: ∈v a→w ae

We can then wrap the injection function and Var in a convenient
package:

var : : ∀ v a. . ( v ∈ a ) ⇒ v → Tm a
vvaarr =: :V∀a r . i.n(j

and the application function can be conveniently written:

-- Building the following term : λ f x → f x
a-p-T mBu =i ldainmg g$ hλe ef o→l loawimn $g tλe rxm :→λ v afr xf →‘ Apf p x ‘x var x

In a nutshell, our de Bruijn indices are typed with the context



where they are valid. If that context is sufficiently polymorphic,
they can not b e mistakenly used in a wrong context. Another intu-
ition is that New and Old are building p roofs of “context member-
ship”. Thus, when a de Bruijn index is given a maximally polymor-
phic context, it is similar to a well-scoped name.

So far, we have seen that by taking advantage of polymorphism,
our interface allows to construct terms with de Bruijn indices,
combined with the safety and convenience of named variables. In
the next section we show how to use the same idea to provide the
same advantages for the analysis and manipulation of terms.

2.3 Referring to Free Variables by Name

Often, one wants to b e able to check if an occurrence of a variable
is a reference to some p reviously bound variable. With de Bruijn
indices, one must (yet again) count the number of binders tra-
versed between the variable bindings and its p otential occur-
rences —  an error prone task. Here as well, we can take ad-
vantage of polymorphism to ensure that no mistake happens.
We provide a combinator unpack, which hides the type of the
newly bound variables (the type ( )) as an existentially quanti-
fied type v. The combinator u npack takes a binding structure (of
type Tm (Succ a )) and gives a pair of a value x of type v and a
sub-term of type Tm (a B v ). Here we represent the existential
using continuation-passing style instead of a data-type, as it ap-
pears more convenient to use this way. Because this combinator is
not specific to our type Tm we generalize it to any type construc-
tor f:

unpack : : f (Succ a ) →
(f∀( vS . vc a→) f→ (a B v ) → r ) → r

unpack e k =∀ kv .( v) e→



Because v is existentially b ound, x can never be used in a
computation. It only acts as a r eference to a variable in a context,
in a way which is only accessible to the type-checker. For instance,
when facing a term t of type Tm (a B v0 B v1 B v ), x r efers to
the last introduced free variable in t.Using unpack, one can write
a function which can recognize an eta-contractible term as follows:
(Recall that an eta-contractible term has the form λ x → e x,
w(Rheecreal xl thdaotesa nnoet otac-ccounr tfrraecet iibnl ee.t )e

canEta : : Tm Zero → Bool
ccaannEEttaa (:L:a mT meZ ) =r ou →n pacB koo el $ λ x t → case t of

AnEppt ae(1 (a Vmaer y =) u→n y ‘k kies Oc $cλ urex nct e→O f →‘ xa &e&
xy ‘‘ firsOeschcFuorre ‘n ee1O

→ False
canEt→a =l Fealse

In the above example, the two functions isOccurenceOf
and freshFor use the inj function to lift x to a reference in the
right context before comparing it to the occurrences. The c alls to
these functions do not get more complicated in the presence of
multiple binders. For example, the code which recognizes the pat-
tern λ x y → e x is as follows:

recognizeExample : : Tm Zero → Bool
rreeccooggnniizzeeEExxaammppllee :t0: =T ca Zeser ot→0 oBf

Lam f → unpack f $ λ x t1 → case t1 of
Lmafm g →u puancpakckf g $λ xλ y 1t→2 →→c csaes et 1to2 of

Ampgp e→1 (u Vnpara zk k) →$ zλ ‘y yist 2Oc →cur ecnacseeOft ‘2 ox &&
xz ‘‘ firsOeschcFuorre ‘n ee1O &‘&
y ‘ freshFor ‘ e1

→ False
→ →FaF lsael



→ →FaF lsael

Again, even though variables are r epresented b y mere indices,
the use of p olymorphism allows the u ser to refer to them b y name,
using the instance search mechanism to fill in the details of imple-
mentation.

Pack It is easy to invert thejob ofunpack. Indeed, given a value x
of type v and a term of type Tm (a B v ) one can r econstruct a
binder as follows:

pack : : Functor tm ⇒ v → tm (a B v) → tm ( Succ a)
ppaacckk x: := fumncapt (rm tapmN⇒e w (v co→ ns tt m( () a) a)

(The Functor constraint is harmless, as we will see in sec. 4.)
As we can see, the value x is not u sed b y p ack. However it statically
helps as a specification of the user intention: it makes sure the
programmer r elies on host-level variable names, and not indices.

A production-quality version of p ack would allow to bind any
free variable. Writing the constraint Insert v a b to mean that
by removing the variable v from the context b one obtains a, then
a generic p ack would have the following type:

packGen : : ∀ f v a b w . (Functor f , Insert v a b ) ⇒

v∀ →f vf ab b→w .( (w u→n ft (r ra B, I wn n)s s)e

The implementation of packGen and Insert is a straightfor-
ward extension of inj and (∈ ), but it does not fit here, so we defer
iwt tarod dthe ex tdenevsieolonpo mfei nntj jo nalnidne( ∈(?)),.

In sum, the p ack combinator makes it possible to give a
nominal-style interface to binders. For example an alternative way
to build the Lam constructor is the f ollowing:



lamP : : v → Tm (a B v ) → Tm a
llaammPP x: :t v= →LaT mm (p( aackB xv )t→)

3. Contexts

Having introduced our interface informally, we now begin a sys-
tematic description of is r ealization and the concepts it b uilds upon.

We have seen that the type of free variables essentially describes
the context where they are meaningful. A context can either be
empty (and we represent it by the type Zero) or not (which we
can r epresent by the type a B v).

An important function of the v type variable is to make sure
programmers r efer to the variable they intend to. For example, con-
sider the following function, which takes a list of (free) variables
and removes one of them from the list. It takes a list of variables
in the context a B v and returns a list in the context a. For extra
safety, it also takes the name of the variable b eing removed, which
is used only for type-checking purposes.

remove : : v → [a B v] → [a]
rreemmoovvee ::x sv =→ [[x a| BOlv d] x→ →←[ ax]s]

The function which computes the list of occurrences of free
variables in a term can be directly transcribed from its nominal-
style definition, thanks to the unpack combinator.

freeVars : : Tm a → [a]
freeVars (: V:aTr mx a) =→ [ [x]a
freeVars (Lam b ) = u npack b $ λ x t →

remove x( a(mfre be)V= arsu n atc)
freeVars (App f a ) = freeVars f ++ freeVars a



3.1 Names Are Polymorphic Indices

Checking whether two names are equal or not is necessary to im-
plement a large class of term manipulation functions. To implement
comparison between names, we provide the following two Eq in-
stances. First, the Zero type is vacuously equipped with equality:

instance Eq Zero where
( == ) = m agic

magic : : Zero → a
mmaaggiicc := eerroror→ →" iampossible "

Second, if two indices refer to the first variable they are equal;
otherwise we recurse. We stress that this equality inspects only
the indices, not the values contained in the type. For exam-
ple New 0 == New 1is True:

instance Eq a ⇒ Eq ( a B v ) where
Nstewa ce= =E qNae w ⇒E= qT( ruae
Old x == Old y = x == y

== = False

Comparing naked de Bruijn indices for equality is an error prone
operation, because one index might be valid in a context different
from the other, and thus an arbitrary adjustment might be required.
With Nested Abstract Syntax, the situation improves: by requiring
equality to b e p erformed between indices of the same type, a whole
class of errors are p revented by type-checking. Some mistakes are
possible though: given an index of type a B ( ) B ( ), a swap
of the last two variables might be the right thing to do, but one



cannot decide if it is so from the types only. By making the contexts
fully p olymorphic as we propose, no mistake is p ossible. Hence the
slogan: names are p olymorphic indices.

Consequently, the derived equality instance of Tm gives α-

equality, and is guaranteed safe in fully-polymorphic contexts.

3.2 Membership

Given the above r epresentation of contexts, we can implement
the relation of context membership by a type class ∈, whose sole
tmheethr eolda ip oenrfoo frm cso ttheex ti mnjeecmtiboenr fhriopmb ay maet ympbee crl aosfs ∈ th,e wchoonsteexs to ltoe
the full context. The relation is defined b y two inference rules,
corresponding to finding the variable in the first position of the
context, or further away in it, with the necessary injections:

instance v ∈ (a B v ) where
istnja =c eNv ew∈

instance (v ∈ a ) ⇒ v ∈ ( a B v ’ ) where
istnja =c eO( ldv . ain)j

The cognoscenti will r ecognize the two above instances as inco-
herent, that is, if v and v ’ were instantiated to the same type, both
instances would apply, but the injections would b e different. For-
tunately, this incoherence never triggers as long as one keeps the
contexts maximally p olymorphic contexts: v and v ’ will always be
different.

We have seen b efore that the overloading of the inj function
in the type class ∈ allows to automatically convert a type-level
rienf terheen ctyep teo cal atessrm∈ ∈ina tollo aw psro tpoera luyt otmagagteicda dllye Bc orunijvne ritnd aext y, pnea-mleveelyl
the function var.

Conversely, one can implement occurrence-check by combining
inj with (== ): one first lifts the bound variable to the context of



the chosen occurrence and then tests for equality.

isOccurenceOf : : (Eq a, v ∈ a ) ⇒ a → v → Bool
xi ‘O iccsuOrcecnucreenOcfeO: f: :‘ y q= x, =v=∈ i anj) y

One can test if a variable is fresh for a given term as follows:

freshFor : : (Eq a, , v ∈ a ) ⇒ v → Tm a → Bool
x ‘ freshFor::‘ tE q= n,ovt (∈ i anj) x⇒ ⇒‘ vele →m‘ fmrae eV→ arB so oolt )

3.3 Inclusion

Another useful relation is context inclusion between contexts,
which we also represent by a type class, n amed ⊆. The sole method
wofh tihceh wtyepe aclslaossr e ips eagseainnt bany aint yjepceti ocnla,s sfr,o nmam mtehed s⊆m.a Tllh ecos notleex mt etot htohed
bigger one. The main application of ⊆ is in term weakening, p re-
sbeigntgeedr oant teh.e T ehned mofa isnec a.p 4p.1li .

class a ⊆ b where
ianssjMaa ny⊆ ⊆:b b: wah e→re b

This time we have four instances: inclusion is r eflexive; the
empty context is the smallest one; adding a variable m akes the con-
text larger; and variable append ( B v ) is monotonic for inclusion.

instance a ⊆ a where inj Many = id

instance Zero ⊆ a where injMany = m agic

instance (a ⊆ b ) ⇒ a ⊆ (b B v ) where



isntajMnaceny =a O⊆ldb . ⇒inja Ma⊆ ny(

instance (a ⊆ b ) ⇒ ( a B v ) ⊆ (b B v ) where
isntajMnaceny =a ⊆map bO)ld⇒ ⇒in( jaMaB ny v

This last case uses the fact that ( B ) is functorial in its first
argument.

4. Term Structure

It is well-known that every term representation p arameterized on
the type of free variables should exhibit monadic structure, with
substitution corresponding to the binding operator (Bellegarde and
Hook 1994; B ird and Paterson 1999; Altenkirch and Reus 1999).
That is, a Monad tm constraint means that a term representation tm
is stable under substitution. In this section we review this structure,
as well as other standard related structures on terms. These struc-
tures are perhaps easier to implement directly on a concrete term
representation, rather than our interface. However, we give an im-
plementation solely b ased on it, t o demonstrate that it is complete
with respect to these structures. By doing so, we also illustrate how
to work with our interface in p ractice.

4.1 Renaming and Functors

The first, perhaps simplest, property of terms is that free variables
can b e renamed. T his property is captured b y the Functor struc-
ture.

The “renaming” to apply is given as a function f from a to b
where a is the type of free variables of the input term (Tm a) and b
is the type of free variables of the “renamed” term (Tm b). W hile
the function f should b e injective to b e considered a renaming,



the functor instance works well for any function f. The renaming
operation then simply p reserves the structure of the i nput term. At
occurrence sites it uses f to rename f ree variables. At binding sites,
f is upgraded from (a → b ) to ( a B v → b B v ) using the
ffuin sc utoprigarlaitdye doff r(o Bm (v )a w →ith bm a)p tOol( da f B. Av da →ptinb g tB he fvu)n cutsiionng ft hise
necessary to protect the b ound name from being altered by f, and
thanks to our use of p olymorphism, the type-checker ensures that
we make no mistake in doing so.

instance Functor Tm where
fmap f (Var x ) = Var ( f x )
fmap f (Lam b) = unpack b $ λ x t →

lpaacmPk xb $$ fλma xp t(→ mapOld f ) t
fmap f (App t u ) = App (fmap f t ) (fmap f u )

As u sual satisfying functor laws implies that the structure is
preserved b y the functor action (fmap). The type for terms being
a functor therefore means that applying a renaming is going to
only affect the free variables and leave the structure untouched.
That is, whatever the function f is doing, the bound names are not
changing. The Functor laws are the following:

fmap id ≡ id
ffmmaapp i(fd . g i)d ≡ fmap f . fmap g

In terms of r enaming, they mean that the identity function cor-
responds to not renaming anything and compositions of renaming
functions corresponds to two sequential renaming operations.

Assuming only a functor structure, it is possible to write useful
functions on terms which involve only renaming. A couple of
examples follow.

First, let us assume an equality test on free variables. We can



then write a function rename (x ,y ) t which replaces free occur-
rences of x in t b y y and swap (x ,y ) t which exchanges free
occurrences of x and y in t.

rename0 : : Eq a ⇒ (a, a) → a → a
rreennaammee00 (: x: ,y q) za ⇒| ⇒z a==, xa →= y

|| ozt h=e=rxw ise = z

rename : : (Functor f , Eq a ) ⇒ (a , a ) → f a → f a
rreennaammee =: :f( maFup . roren afm,e0E
swap0 : : Eq a ⇒ ( a , a ) → a → a
sswwaapp00 (: x: ,y q) za ⇒| ⇒z a==, y →=a ax→

|| zz ==== xy = y

|| ozt h=e=rxw ise = z

swap : : (Functor f , Eq a) ⇒ ( a , a) → f a → f a
swap =: :f( maFup . sowra pf0,

Second, let us assume two arguments a and b related by the type
class ⊆. Thus we have injMany of type a → b , which can b e seen
aclsa as sr e⊆ na.mT hinugs wofe fh raeev eva irniajbMlaesn yvo iaf t thyep efua nc→ torib al, w strhuiccthu rcea nobf etesr meesn.
By applying fmap to it, one obtains an arbitrary weakening from
the context a to the b igger context b.

wk : : (Functor f , a ⊆ b ) ⇒ f a → f b
wwkk =: :f( maFup citnjoMranf y,

Again, this arbitrary weakening function relieves the program-
mer from tediously counting indices and constructing an appropri-
ate renaming function. We demonstrate this feature in sec. 6.



4.2 Substitution and Monads

Another useful property of terms is that they can be substituted for
free variables inother terms. This property is captured algebraically
by asserting that terms form a Monad, where return is the variable
constructor and >> = acts as parallel substitution. Indeed, one can
see a substitution from a context a to a context b as mapping from a
to Tm b, (technically a morphism in the associated Kleisli category)
and (> >= ) applies a substitution everywhere in a term.

The definition of the Monad instance is straightforward for vari-
able and application, and we isolate the handling of binders in
the (>> > = ) function.

instance Monad Tm where
return = Var
Var x >> = θ = θ x
Lam s >> = θ = Lam ( s >> > = θ )
App t u >> = θ = App (t >> = θ ) (u >> = θ )

At binding sites, one needs t o lift the substitution so that it
does not act on the newly bound variables, a behavior isolated in
the h elper >> > =. As for the Functor instance, the type system
guarantees that no mistake is made. Perhaps noteworthy is that this
operation is independent of the concrete term structure: we only
“rename” with fmap and inject variables with return.

liftSubst : : (Functor tm, Monad tm) ⇒
v: :→( (u an t→o rttm b, ,) o→n (d da Bm )v⇒ ⇒) → tm (b B v )

liftSubst θ→ →( O(lad → →x →) =m fbm)a p→ O (lda (B Bθ vx) ))
liftSubst θ (New x ) = return (New x )

Substitution under a b inder (>> > = ) is then the wrapping



of liftSubst between u npack and p ack. It is uniform as well,
and thus can be reused for every structure with binders.

(>> > = ) : : (Functor tm, Monad tm ) ⇒
(tmF (n Scutoccr at m) ,→M (n aa d→t t)m ⇒b ) → tm (Succ b )

s >> > = θ = m un( paScukc cs $) λ→ →x( ta →→
ppaacckk xs ($ $t λ>> x = tli→ ftSubst x θ )

For terms, the meaning of the monad laws can b e interpreted as
follows. The associativity law ensures that applying a composition
of substitutions is equivalent to sequentially applying them, while
the identity laws ensure that variables act indeed as such.

We can write useful functions for terms based only on the Monad
structure. For example, given the membership (∈), one can provide
tshtreu ac gureen.eFr iocr rce oxmambipnaleto,gr vtoe nretf ehreem nceem t boe ar svhaipria( b∈)le, woniethc inan any tveirdme
structure:

var : : (Monad tm, v ∈ a) ⇒ v → tm a
vvaarr =: :r e(tMuornan . min,j

One can also substitute an arbitrary variable:

substitute : : (Monad tm , Eq a, v ∈ a) ⇒
v( o→n tdm am ,→E qtam ,a →∈ a tm) ⇒a

substitute x t vu→ →= tum m>> a = →λ y →a
iift y e‘ ixst Ocu cu= renu c> e> O=f =‘ λx yt→h en t else return y

One might however also want to remove the substituted variable
from the context while performing the substitution:

substituteOut : : M onad tm ⇒
vM n→a dttm ma ⇒→ tm (a B v) → tm a



substituteOut x t vu →= t um m>> a =→ →λ y → (a ca Bse v y →of
Nitewu u→t xt
Old x →→ rteturn x

4.3 Traversable

Functors enable to apply any p ure function f : : a → b to
tFhuen cetloemrsee nntsa bolef at ostra upcptlyurea ntoy g peutr ea fnuenwc ostnrucf tur: e: ha ol d→ingb th teo
images of f. Traversable structures enable to apply an effect-
ful function f : : a → m b where m can b e any Applicative
ffuunlcf utonr.c tAi onn A fpp :l:ica at→ ivem fbu n wcthoerr ies mstrc iacntlyb em aonrye pAoppwleirfcual tihavne
a Functor and strictly less powerful t han a Monad. Any Monad is
an Applicative and any Applicative is a Functor. To be tra-
versed a structure only needs an applicative and therefore support
monadic actions directly (McBride and Paterson 2007).

instance Traversable Tm w here
traverse f (Var x ) = Var <$> f x
traverse f (App t u) =

App <$> traverse f t <*> traverse f u
traverse f (Lam t ) =

unpack t $ λ x b →
lpaacmPk xt < $$> λ xt r bav→e rse (bitraverse f p ure ) b

In order to traverse name abstractions, indices need to b e t ra-
versed as well. The type ( B ) is a bi-functor and is bi-traversable.
The function b itraverse is given two effectful functions, one for
each case:

bitraverse : : Functor f ⇒ ( a → f a’ )
→⇒ (( ba →→ ff a b ’’ ))



→→ (( ab B b →→ ff b(’ ’a) )’ B b ’ ) )
bitraverse f ( Old x ) = →Ol( da a<B$ > bf →x

bitraverse g (New x ) = New <$> g x

An example of a useful effect to apply is throwing an exception,
implemented for example as the M aybe monad. I f a term has no free
variable, then it can be converted from the type Tm a to Tm Zero
(or equivalently ∀ b . Tm b), but this requires a dynamic check. It
may qseuievmal elinktely ya∀ ∀co bm.pT limcatb e)d, biumtpt hleimser neqtautiiroens iasd n ecessary, ebcukt i Int
fact it is a direct application of the traverse function.

closed : : Traversable tm ⇒ tm a → M aybe ( tm b )
cclloosseedd =: :trT arvaevrersse (b cloen sttm ⇒Nott himnga a)

Thanks to terms being an instance of Traversable they are
also Foldable meaning that we can combine all the elements of
the structure (i.e. the occurrences of free variables in the term)
using any Monoid. One p articular monoid is the free monoid of
lists. Consequently, Data. .Foldable . toList is computing the
free v ariables of a term and Data. .Foldable .elem can b e used to
build freshFor:

freeVars : : Tm a → [a]
ffrreeeeVVaarrss =: :tT omLias t

freshFor : : (Eq a, v ∈ a) ⇒ v → Tm a → Bool
xf ‘e fsrhFesohrF: or: :‘ tE q= n,ovt (∈ i anj) x⇒ ⇒‘ evle →m →‘ tm m)

5. Scopes

Armed with an intuitive understanding of safe interfaces to manipu-
late de Bruijn indices, and the knowledge that one can abstract over



any substitutive structure by u sing standard type-classes, we can re-
capitulate and succinctly describe the essence of our constructions.

In Nested Abstract Syntax, a b inder introducing one variable in
scope, for an arbitrary term structure tm is represented as follows:

type SuccScope tm a = tm ( Succ a )

In essence, we propose two new, dual representations ofbinders,
one b ased on universal quantification, the other one b ased on exis-
tential quantification.

type U nivScope tm a = ∀ v . v → tm (a B v )
type ExistScope ttmm aa == ∃∀ vv. . ( vv , ttmm (( aa BB vv )) )

The above syntax for existentials is not supported in HASKELL,
so we must use one of the lightweight encodings available. In
the absence of view p atterns, a CPS encoding is convenient for
programming (so we used this so far), but a datatype r epresentation
is more convenient when dealing with scopes only:

data E xistScope tm a where
E : : v → tm ( a B v ) → ExistScope tm a

As we have observed on a number of examples, these represen-
tations are dual from a usage p erspective: the universal-based rep-
resentation allows safe construction of terms, while the existential-
based r epresentation allows safe analysis of terms. Strictly speak-
ing, safety holds only if one disregards non-termination and seq,
but because the values of type v are never used for computation,
mistakenly using a diverging term in place of a witness of variable
name is far-fetched.

For the above reason, we do not commit to either side, and use



the suitable r epresentation on a case-by-case basis. This flexibil-
ity is possible because t hese scope representations (SuccScope,
UnivScope and ExistScope) are isomorphic. In the following we
exhibit the conversion functions between SuccScope one side and
either UnivScope or ExistScope on the other. We then p rove that
they form isomorphisms, assuming an idealized HASKELL lacking
non-termination and seq.

5.1 UnivScope tm a =∼ SuccScope tm a

The conversion functions witnessing the isomorphism are the fol-
lowing.
succToUniv : : Functor tm ⇒

SFuucnccStcoropet mt⇒m a → U nivScope tm a
succToUniv t = uλc cxS c→o e mat pNmewa (→ →coUn sntiv Sxc c) <p$e> t tm

univToSucc : : U nivScope tm a → SuccScope tm a
uunniivvTTooSSuucccc f: := fn (v S)

The univToSucc function has not been given a n ame in the
previous sections, but was implicitly used in the definition of lam.
This is the first occurrence of the succToUniv function.

We p rove first that U nivScope is a proper r epresentation
of SuccScope, that is univToSucc . succToUniv ≡ id. This
coafn S u bec dcoScneo pbey, st himaptil es eu qnuiavtiToonSalu rcecas .onis nugc:

univToSucc (succToUniv t)
≡ {- b y def -}

u {n-ivb TyoS duecfc -(} }λ x → m apNew ( const x ) <$> t )
≡ u{n-i vb Tyo Sduecfc - (}λ

m {a-pNb eyw d(e ecfon -s}t ( ) ) <$> t
≡ {- b y ( ) h aving just one element -}

m {a-pNb eyw (i) d h<a$v>i ntg



≡ {- b y (bi )functor laws -}
≡t{

The second property (succToUniv . u nivToSucc ≡ id)
meaTnhse eths aetc othnedre irso npeor “yju( nsku”c cinT otUhen ir evp .resu enntiavtiToon:S uocnce ≡cani nodt)
represent more terms in U nivScope than in SuccScope. It is
more difficult to prove, as it r elies on parametricity and in turn
on the lack of j unk (non-termination or seq) in the host lan-
guage. Hence we need to use the free theorem for a value f of
type U nivScope tm a. Transcoding U nivScope tm a to a r ela-
tion b y u sing Paterson’s version (Fegaras and Sheard 1996) of the
abstraction theorem (Reynolds 1983; Bernardy et al. 2012), as-
suming additionally that tm is a functor. We obtain the following
lemma:

∀ v1: * . ∀ v2: * . ∀ v :v1 → v2.

∀∀ vx1: v1. ∀∀ v x2:: ** . ∀v vx:1 v≡ →x2.

∀∀ g : ( a .B∀ vx 1) → ( a B≡ ≡vx2 ) .
(∀∀g y :( va1.B N vew) )(→ →v y )a ≡B g (New y ) ) →
((∀∀ ny :: av . ONeldw ( nv ≡≡ g (( ONeldw ny )) )) →→
f( ∀xn2 ≡a g <$> f x1

We can then specialize v1and x1to ( ), v to const x2, and g
to m apNew v. By definition, g satisfies the conditions of the lemma
and we get:

f x ≡ m apNew (const x ) <$> f ( )

We can then reason equationally:

f
≡ {- b y the above -}



λ{ -x →y tm haepNa ebwo v(e eco- n}st x ) <$> f ( )
≡ λ{-x b  →y d meafp N-e}w

s {u-ccb TyoU dneifv -(} }f ( ) )
≡ {- b y def -}

s {u-ccb TyoU dneifv -(}univToSucc f )

5.2 ExistScope tm a =∼ SuccScope tm a

The conversion functions witnessing the isomorphism are the fol-
lowing.
succToExist : : SuccScope tm a → ExistScope tm a
ssuuccccTTooEExxiisstt =: :E (u c)

existToSucc : : Functor tm ⇒
EFuxinscttoSrcopt em t⇒m a → SuccScope tm a

existToSucc (E Exit s) =S o mapepNet wm (a ac→ onstS (c c) S) <op$>e tt

One can r ecognise the functions p ack and unpack as CPS
versions of existToSucc and succToExist.

The p roof of existToSucc . succToExist ≡ id (no j unk)
is nTehaerlyp iodoefno tifc aelx itos tt hTeo Sfirucstc c pr. oos fu uacbcoTuot E UxniisvtSc≡ opei da( nndo h juenncke)
omitted. To p rove succToExist . existToSucc ≡ id, we first
roemmiattrekd t.hT aot bpryo vdeefis nuicticonT:o

succToExist ( existToSucc (E y t ) ) ≡

Ec (T o) (x fismatp (e mxaispNteTwo (u ccocn s(tE (y y) t) )) )t ≡)

It remains to show that E y t is equivalent to the r ight-hand
side of the above equation. To do so, we consider any observation
function o of type ∀ v . v → tm ( a B v ) → K for some con-
sftuannctt itoynpeo K o, fat nydp seh∀ owv .thav t i→t →rett urmns( taheB Bsav me) r→ esu lKt fiof raps oplmieed ctoon y
and t or ( ) and fmap (mapNew ( const ( ) ) )



t. This fact is a consequence of the free theorem associated
with o:

∀ v1: * . ∀ v2: * . ∀ v :v1 → v2.

∀∀ vx1: v1. ∀∀ v x2:: ** . ∀v vx:1 v≡ →x2.

∀∀ xt1: tm. .(∀ ∀a B v1) . ∀ t≡2: t xm ( a B v2) .
(∀∀t g : (a B v1) →). .(∀ ∀a tB v2) .

(∀∀g y :( va1.B N vew) )(→ →v y )a ≡B g (New y ) ) →

((∀∀ ny :: av. . NOelwd ( nv ≡≡ g ((N NOelwd y n) ))) )) →→
(t2∀ ≡n fam.ap g t1) →

o x2≡ ≡t2f m≡a po gx1t t)1

Indeed, after specializing x2 to ( ) and v to const ( ), the last
condition amounts t o t2 ≡ fmap (mapNew ( const ( ) ) ) t1,
and we get the desired result≡.

5.3 A Matter of Style

We have seen that ExistScope is well-suited for term analysis,
while U nivScope is well-suited for t erm construction. W hat about
term transformations, which combine b oth aspects? In this case,
one is free to choose either interface. T his can b e illustrated b y
showing b oth alternatives for the Lam case of the fmap function.
(The App and Var cases are identical.) Because the second version
is more concise, we prefer it in the upcoming examples, but the
other choice is equally valid.

fmap ’ f (Lam b )
= unpack b $ λ x t → lamP x (mapOld f <$> t )

fmap= =’ fn (a Lcakm b bb $)
= lam ( λ x → m apOld f <$> (b ‘ atVar ‘ x ) )

When using succToUniv, the type of the second argument of



succToUniv should always b e a type variable in order to have
maximally polymorphic contexts. To remind us of this r equirement
when writing code, we give the alias atVar for succToUniv. (Sim-
ilarly, to guarantee safety, the first argument of p ack (encapsulated
here in lamP) must be maximally p olymorphic.)

5.4 Scope Representations and Term Representations

By u sing an interface such as ours, term r epresentations can be
made agnostic to the p articular scope r epresentation one might
choose. In other words, if some interface appears well-suited to a
given application domain, one might choose it as the scope repre-
sentation in the implementation. Typically, this choice is b e guided
by performance considerations. Within this p aper we favor code
concision instead, and therefore in sec. 6.1 we use ExistScope,
and in sections 6.2 and 6.3 we use U nivScope.

6. Bigger Examples

6.1 Normalization using h ereditary substitution

A standard test of binder representations is how well they support
normalization. In this section we show how to implement normal-
ization using our constructions.

The following type captures normal forms of the untyped λ-
calculus: a normal form is either an abstraction over a normal form
or a neutral term (a variable applied to some normal forms). In this
definition we use an existential-based version of scopes, which we
splice in the LamNo constructor.

data No a where
LamNo : : v → No (a B v) → No a



LNeamutNro :: :: av →→ N[Noo aa] B→v )No→ →a

The key to this normalization procedure is that normal forms
are stable under hereditary substitution (Nanevski et al. 2008). The
function p erforming a hereditary substitution substitutes variables
for their value, while reducing redexes on the fly.

instance M onad No where
return x = Neutr x []
LamNo x t >> = θ = LamNo x (t >> = liftSubst x θ )
Neutr f ts >> = θ = foldl app (θ f )( (> >= θ )<$>ts )

The most notable feature of this substitution is the use of app to
normalize redexes:

app : : No a → No a → No a
app (: :LaN moNo ax →t →) oua a= →suN bsotai tuteOut x u t
app (Neutr f ts ) u = Neutr f ( ts++ [u] )

The normalize is then a simple recursion on the term structure:

norm : : Tm a → No a
nnoorrmm (:V:a rT mxa ) →= roet aurn x
norm (App t u) = app (norm t ) (norm u)
norm (Lam b ) = unpack b $ λ x t →

LpaacmkNo bx $(λ noxr m tt )→

6.2 Closure Conversion

A common p hase in the compilation of functional languages is clo-



sure conversion. The goal of closure conversion is m ake explicit the
creation and opening of closures, essentially implementing lexical
scope. W hat follows is a definition of closure conversion, as can
be found in a textbook (in fact this version is slightly adapted from
Guillemette and Monnier (2007)). In it, we use a hat to distinguish
object-level abstractions (λˆ) from host-level ones. Similarly, the @
sign is used for object-level applications.

The characteristic that interests us in this definition is that it is
written in nominal style. For instance, it pretends that b y match-
ing on a λˆ-abstraction, one obtains a name x and an expression e,
and it is silent about the issues of freshness and transport of names
between contexts. In the r est of the section, we construct an imple-
mentation which essentially retains these characteristics.

ˆJxK=x λˆxx env.ebody)eenv
owsuherere( y1, . . . ,yn = FV (e) −{ x}

ebody == FJeKV [ x(een)−v −.i{ /yx}i]
eenv == hJey1K ,[ x. . . ,yni

Je1@e2K = let (xf , xenv) = open= JhJ  eye1KK ixn xf hJei2K ,xenvi

TJhee first Ks=tep l itn( ximpleme)nt =ingo tpheen a JbeovKein nfxu nchtJioenK ,isx to define
the target language. It features variables and applications as usual.
Most importantly, it has a constructor for Closures, composed of
a b ody and an environment. The body of closures have exactly two
free variables: vx for the parameter of the closure and venv for its
environment. T hese variables are represented b y two U nivScopes,
which we splice in the type of the constructor. An environment is
realized b y a Tuple. Inside the closure, elements of the environ-
ment are accessed via their Index in the tuple. Finally, the LetOpen
construction allows to access the components of a closure (its first
argument) in an arbitrary expression (its second argument). This



arbitrary expression has two extra free variables: vf for the code of
the closure and venv for its environment.

data LC a where
VarLC : : a → LC a
VAparpLLCC :: :: LaC →a L→C LaC a → LC a
CAplposLuCre: :: :L C(a∀ v→x vLeCn va . →vxL →C venv →

L:C (∀ ∀Zv erxo eBn vv.en vvx B→ →vvx e) n) v→→
LLCC a( e→r oLBC av

Tuple : : L[LCC aa→] →L CLaC a
TInupdelxe :: :: [LCL Caa →] →InLt C→a LC a
LInedtOepxen: :: :L CLaC a→ →I (t∀→ →vf vCen av . vf → venv →

(LC∀ (v af vBe nvvf. Bv fv→e nv v) e) →v →LC a

This r epresentation is an instance of Functor and Monad, and
the corresponding code offers no surprise. W e give an infix alias
for AppLC, named $$.

Closure conversion can then be implemented as a function
from Tm a to LC a. The case of variables is trivial. For an abstrac-
tion, one must construct a closure, whose environment contains
each of the free variables in the body. The application must open
the closure, explicitly applying the argument and the environment.

The implementation closely follows the mathematical definition
given above. The work to manage variables explicitly is limited
to the lifting of the substitution [xenv .i/yi] , and an application
of wk. Additionally, the substitution performed b y wk is inferred
automatically b y GHC.

cc : : Eq a ⇒ Tm a → LC a
cccc (:V:a rE qxa ) =⇒ VaT mrLCa x→

cc t0@( Lam b ) =
let yn = nub $ freeVars t0



in Closure (λ x env → cc (b ‘ atVar ‘ x ) >> =
lnvif t→Subc sct xb (‘ iadtVxFarr‘om yn >en=v ) )

(Tuple $ map VarLC yn )
cc (App e1 e2 ) =

LetOpen ( cc e1)
(λ f x → var f $$ wk ( cc e2 ) $$ var x )

A notable difference between the above implementation and
that of Guillemette and Monnier is the following. T hey first modify
the function to take an additional substitution argument, citing the
difficulty to support a direct i mplementation with de Bruijn indices.
We need not do any such modification: our interface is natural
enough to support a direct implementation of the algorithm.

6.3 CPS Transform

The next example is a transformation to continuation-passing style
(CPS) based p artially on work by Chlipala (2008) and Guillemette
and Monnier (2008). The main objective of the transformation
is to make the order of evaluation explicit, by let-binding every
intermediate Value in a specific order. To this end, we target a
special representation, where every intermediate result is named.
We allow for Values to b e p airs, so we can easily replace each
argument with a p air of an argument and a continuation.

data TmC a where
HaltC : : Value a → TmC a
AHpalpCt :: :: VVaalluuee aa →→ TVmaCluea a → TmC a
LetC :: :: VVaalluuee aa →→ TVamCl (e eSa uc→c →aT T) →C TmC a

data Value a where
LamC : : TmC (Succ a) → Value a
PairC :: :: TVmaClue( uac →c V)al →ue aal u→e aV alue a



VPaairCr :: :: aV l→u eV a alu →e aV

FstC :: :: aa →→ VVaalluuee aa
SndC :: :: aa →→ VVaalluuee aa

We do not use Values directly, but instead their composition
with injection.

varC : : (v ∈ a ) ⇒ v → Value a
lveartCC :: :: V(avl ∈ue a) →⇒ U vn i→vSV caopleu eTam C a → TmC a
llaetmCC :: :: U V anlivueSc oape→ T UmCn vaS c→o eVaT lumeC aa
flsamtCC :: :: (U vn ∈v cao o) ⇒e vm C→a V →al uVea au
sfnstdCC :: :: (( vv ∈∈ aa )) ⇒⇒ vv →→ VVaalluuee aa

Free variables in TmC can be renamed, thus i t enjoys a functor
structure, with a straightforward implementation found our online
development (?). However, this new syntax TmC is not stable under
substitution. Building a monadic structure would be more involved,
and is directly tied to the transformation we perform and the oper-
ational semantics of the language, so we omit it.

We implement a one-pass CPS transform (administrative re-
dexes are not created). This is done by passing a host-language con-
tinuation to the transformation. At the top-level the halting continu-
ation is used. A definition of the transformation using mathematical
notation could be written as follows.

Je1@Jex2KKκκ==κ J ex1K(λf.Je2K(λx.f@ hx,κi))
JˆλxJ.xeKKKκκκ === Jlκeetx Kf( λ=f .λˆpJe. Kle(λtxx1. f=@ @fshtxp, κini

lKe(tλ xx2. f=@ @shndx ,pκ iin)



inκf Je[x1/x]K(λr.x2@r)

The implementation follows the above definition, except for
the following minor differences. For the Lam case, the only de-
viation is an occurrence of wk. In the App case, we have an
additional reification of the host-level continuation as a proper
Value using the lamC function. In the variable case, we must
pass the variable v to the continuation. Doing so yields a value
of type TmC (a B a ). To obtain a r esult of the right type it suf-
fices to r emove the extra tagging introduced by a B a everywhere
in the term, using (untag <$>). The function u ntag simply re-
moves the Old/New tags and t hus has type a B a → a. Besides,
we use a number of instances of wk, and for each of them GHC is
able to infer the substitution to perform.

cps : : Tm a → (∀ v . v → TmC (a B v ) ) → TmC a
cps (: V:aTr mx a) k∀ =v .u v nta →g <Tm$>C (ka axB

cps (App e1 e2 ) k =
cps e1 $ λ x1 →
cps (e w1k $eλ2 λ) $1 →λ x2 →
vcparsC wx1k ‘e A2p)p C$ $‘ λ( vx 2ar→C x2 ‘ PairC ‘

lamC ( λ x → wk $ k x ) )
cps (Lam e) k =

letC
( lamC $ λp →

lmeCt C$ (λ fpst →C p ) $ λ x1 →
lleettCC (( sfnstdCC p )) $$ λλ xx21 →→
cps C( (wsk $d Ce ‘) )a$ tVλa r ‘x 2x→1 →) $ λr →
vcparsC wx2k ‘$ $Ae pp‘C ‘a vVaarrC‘ rx 1) )k



It is folklore that a CPS transformation is easier to implement
with higher-order abstract syntax (Guillemette and Monnier 2008;
Washburn and Weirich 2003). Our interface for name abstractions
features a form of higher-order representation. (Namely, a quantifi-
cation, over a universally quantified type.) However limited, this
higher-order aspect is enough to allow an easy implementation of
the CPS transform.

7. Related Work

Representing names and binders in a safe and convenient manner
is a long-standing issue, with an extensive body of work devoted to
it. A survey is far beyond the scope of this p aper. Hence, we limit
our comparison to the work that we j udge most relevant, or whose
contrasts with our proposal is the most revealing.

However, we do not limit our comparison to interfaces for
names and binders, but also look at terms representations. Indeed,
we h ave noted in sec. 5.3 that every term representation embodies
an interface for binders.

7.1 Fin

Another approach already used and described by Altenkirch (1993);
McBride and McKinna (2004) is to index terms, names, etc. by a
number, a b ound. T his bound is the maximum number of distinct
free variables allowed i n the value. T his r ule is enforced in two



parts: variables have to be strictly lower than their bound, and the
bound is incremented b y one when crossing a name abstraction (a
λ-abstraction for instance).

The t ype Fin n is used for variables and represents natural
numbers strictly lower than n . The name Fin n comes f rom the
fact that it defines finite sets of size n.

We can draw a link with Nested Abstract Syntax. Indeed, as
with the type Succ (( B ( ) ) or Maybe), the type Fin ( suc n)
has exactly one more element than the type Fin n. However, these
approaches are not equivalent for at least two reasons. Nested
Abstract Syntax can accept any type to r epresent variables. This
makes the structure more like a container and this allows to exhibit
the substitutive structure of terms as monads. The Fin approach
has advantages as well: the representation is concrete and closer to
the original approach of de Brujin. In p articular the r epresentation
of free and b ound variables is more regular, and it may be more
amenable to the optimization of variables as machine integers.

7.2 Higher-Order Abstract Syntax (HOAS)

A way to represent bindings of an object language is via the b ind-
ings of the host language. One naive translation of this idea yields
the following term representation:

data TmH = LamH (TmH → TmH ) | AppH TmH TmH

An issue with this kind of representation is the presence of
so-called “exotic terms”: a function of type TmH → TmH which
pseor-fcoarllmeds “peatxtoertinc mteartmchs”in:ga o funn ictsti oanrg oufmt eynpte dT omesH n→ ot TnmecHesw shariiclyh
represent a term of the object language. A p roper realization of the
HOAS idea should only allow functions which use their argument
for substitution.

It has been observed b efore that one can implement this restric-



tion by using polymorphism. This observation also underlies the
safety of our U nivScope representation.

Another disadvantage of HOAS is the negative occurrence of
the recursive type, which makes it tricky to analyze terms (Wash-
burn and Weirich 2003).

7.3 Syntax for free

Atkey (2009) revisited the polymorphic encoding of the HOAS
representation of the untyped lambda calculus. By constructing a
model of System F’s parametricity in COQ he could formally p rove
that polymorphism r ules out the exotic terms. N ame abstractions,
while represented by computational functions, cannot react to the
shape of their argument and thus behave as substitutions. Here is
this r epresentation in HASKELL:

type TmF = ∀ a. . ( {-lam: : -} (a → a) → a )
a→. (( {{--lapapm :: --}} aa →→ aa →→ aa)) → a

And our familiar application f unction:

apTmF : : TmF
apTmF lam app = lam $ λ f → lam $ λ x → f ‘ app ‘ x

Being a polymorphic encoding, this technique is limited to
analyze terms via folds (catamorphism). Indeed, there is no known
safe way to convert a term of this polymorphic encoding to another
safe r epresentation of names. As Atkey shows, this conversion
relies on the Kripke version of the parametricity result of this
type. (At the moment, the attempts to integrate p arametricity in a
programming language only support non-Kripke versions (Keller
and L asson 2012; Bernardy and Moulin 2012, 2013).)



7.4 Parametric Higher-Order Abstract Syntax (PHOAS)

Chlipala (2008) describes a way to r epresent binders u sing p oly-
morphism and functions. Using that technique, called Parametric
Higher-Order Abstract Syntax (PHOAS), terms of the untyped λ-
calculus are represented as follows:

data TmP a w here
VarP : : a → TmP a
LVaarmPP :: :: (a aa →→ mTmPP a ) → TmP a
ALpampPP :: :: (TmaP →a T→m PTa mP) a→ →T TPmaP a

type TmP ’ = ∀ a. . TmP a

Only universally quantified terms (TmP ’ ) are guaranteed to cor-
respond to terms of the λ-calculus.

The representation of binders used by Chlipala can b e seen as a
special version of U nivScope, where all variables are assigned the
same type. This specialization has pros and cons. On the p lus side,
substitution is easier to implement with PHOAS: fresh variables do
not need special treatment. The corresponding implementation of
the monadic join is as follows:

joinP (VarP x ) = x
joinP (LamP f ) = LamP (λ x → joinP (f (VarP x ) ) )
joinP (AppP t u) == ALpampPP (( jλ λox in→P →t )j (i jn Poi( nPf ( u )V

On the minus side, all the variables (bound and free) have the
same representation. This means that they cannot be told apart
within a term of type ∀ a. . TmP a. Additionally, once the type
wvaitrihaibnle a aat eirsm minso tfat nytipaeted∀ t ao. .a TclmoPseda . .tA ypded, toionen aclalyn,noo tn c reeco thveer t ytphee
polymorphic version. Furthermore while Tm Zero denotes a closed



term, TmP Zero denotes a term without variables, hence n o term
at all. Therefore, whenever a user of PHOAS n eeds to perform
some manipulation on terms, they must make an upfront choice
of a p articular instance for the parameter of TmP that supports all
the required operations on free variables. This limitation is not
good for modularity, and for code clarity in general. Another issue
arises from the negative occurrence of the variable type. Indeed
this makes the type TmP invariant: it cannot b e made a Functor
nor a Traversable and this not a proper Monad either.

The use-case ofPHOAS presented by Chlipala is the representa-
tion of well-typed terms. That is, the parameter to TmP can be made
a type-function, to capture the type associated with each variable.
This is not our concern h ere, but we have no r eason to believe that
our technique cannot support this, beyond the lack of proper for
type-level computation in HASKELL — Chlipala uses COQ for his
development.

7.5 HYBRID

In HYBRID, Ambler et al. define a way to define and r eason about
higher-order abstract syntax in the ISABELLE (Ambler et al. 2002)
and COQ (Capretta and Felty 2007) proof assistants. To do so, as a
first level they build a representation for λ-terms (plus constructors)
using de Brujin indices. T hen as a second level they r epresent
HOAS terms using the λ-terms of the first level. In this second level
name abstraction is represented using λ-abstractions of the first
level. Finally HOAS terms can b e b uilt using λ-abstractions from
the h ost language (ISABELLE or COQ) as long as these functions
are accompanied with uniformity proofs. These u niformity p roofs
rule out the exotic terms. Using our approach, parametricity would
discharge these uniformity proofs.

7.6 McBride’s “Classy Hack”



McBride (2010) has devised a set of combinators to construct
λ-terms in de Brujin r epresentation, with the ability to r efer to
bound variables by n ame. T erms constructed using McBride’s tech-
nique are textually identical to terms constructed using ours. An-
other point of similarity is the use of instance search to recover
the indices from a h ost-language variable name. A difference is
that McBride integrates the injection in the abstraction constructor
rather than the variable constructor. The type of the var combinator
then becomes simpler, at the expense of lam:

lam : : ( (∀ n. (Leq ( S m ) n ⇒ Fin n) ) → Tm (S m ) )
(→( ∀Tnm .m

var : : F→inT nm →m Tm n

An advantage of McBride’s interface is that it does not require
the “incoherent instances” extension.

However, because McBride r epresents variables as Fin, the
types ofhis combinators are less precise than ours. Notably, the Leq
class captures only one aspect of context inclusion (captured b y
the class ⊆ in our development), namely that one context should
bthee s cmlaaslsler ⊆ thi nano uanr odtehveer.l Tphmies mt),ena nams, efloyr tehxaatmo pnlee,c tohnatte xtht es colaulssd
constraint a ⊆ b can be meaningfully resolved in more cases
tchoanns tLraeiqn tm a n, ⊆inb btuc rnan nm baekinm ge fanuinnctgifounlsly ysur echso alsv ewdk imno mreo urese fcuals eins
practice. Additionally, our u npack and p ack combinators extend
the technique to term analysis and manipulation.

7.7 NOMPA (nominal fragment)

Pouillard and Pottier (2012) describe an interface for names and
binders which provides maximum safety. The library NOMPA is
written in AGDA, using dependent types. The interface makes use
of a notion of Worlds (intuitively a set of names), Binders (name
declaration), and Names (the occurrence of a name). A World can



either be Empty (called ∅ in the library NOMPA) in or result of the
aeidtdhietiro bne o Efm ap tBiyn (dcaerll tod a∅ni next ihsetil nigbr aWroyrNl d, using the operator ( / ).
The type Name is indexed b y Worlds: this ties occurrences to the
context where they make sense.

World : : *
Binder : : *
Empty : : W orld
(/) : : Binder → W orld → World
N(/am)e :: :: iW nodrledr →→ *W

On top of these abstract notions, one can construct the follow-
ing r epresentation of terms (we use a HASKELL-style syntax for
dependent types, similar to that of IDRIS):

data Tm α where
Var : : Name α → Tm α

AVappr :: :: NTma αe →α →Tm αm →α Tm α

LApamp :: :: (T bm :α α: →Bi Tndmerα α) →→ Tmmα ( b / α) → Tm α

The safety of the technique comes from the abstract character of
the interface. If one were to give concrete definitions for Binder,
World and their related operations, it would b ecome possible for
user code to cheat the system. A drawback of the interface be-
ing abstract is that some subterms do not evaluate. This p oint is
of prime concern in the context of reasoning about programs in-
volving binders. In contrast, our interfaces are concrete (code using
it always evaluates), but it requires the user to choose the r epresen-
tation appropriate to the current use (SuccScope, UnivScope or
ExistScope).

8. Discussion



8.1 Binding Many Variables

In SuccScope, there is exactly one more free variable available i n
the sub-term. However, it might be useful to b ind multiple names
at once in a binder. This can be done b y using a type n of the
appropriate cardinality instead of ( ). This technique has been used
for example by Kmett (2012).

type NScope n tm a = tm ( a B n)

Adapting the idea to our framework would mean to quantify
over a family of types, indexed by a type n of the appropriate
cardinality:

type NUnivScope n tm a = ∀ v . (n → v ) → tm (a B v )
type NExistScope nn ttmm aa == ∃∀vv. . .( (( nn →→ vv )) , t tmm m( (aa aBB Bvv v) ))

8.2 Delayed Substitutions

The main p erformance issue with de Brujn indices comes from the
cost of importing terms into scopes without capture, which requires
to increment free variables in the substituted term (see fmap Old in
the definition of liftSubst). This transformation incurs not only
a direct cost proportional to the size of terms, but also an indirect
cost in the f orm of loss of sharing.

Bird and Paterson (1999) propose a solution to t his issue, which
can be expressed simply as another implementation of binders,
where free variables of the inner term stand for whole terms with
one less free variable:

type D elayedScope tm a = tm ( tm a B ( ) )



This means that the parallel substitution for a term r epresenta-
tion based on DelayedScope does not require lifting of substitu-
tions.

data TmD a where
VarD : : a → TmD a
LVaarmDD :: :: aDe l→ayeT mdDScoa pe TmD a → TmD a
ALpampDD :: :: TDemDl yae d→S TopmDe aT →D aT→m D aT

instance M onad TmD where
return = VarD
VarD a >> = θ = θ a
AppD a b >> = θ = AppD ( a >> = θ ) (b >> = θ )
LamD t >> = θ = LamD (mapOld (> >= θ ) <$> t )

Because idea of delayed substitutions is concerned with free
variables, and the concepts we present here is concerned with
bound variables, one can easily define scopes which are both de-
layed and safe. Hence the performance gain is compatible with our
safe interface.

type U nivScope ’ tm a = ∀ v . (v → tm (tm a B v ) )
type E xistScope ’ ttmm aa == ∃∀vv. . (( vv , ttmm (( ttmm aa BB vv )) ))

8.3 Future Work: Improving Safety

As it stands our interface prevents mistakes in the manipulation
of de B ruijn indices, but requires a collaboration from the u ser.
Indeed, a malicious u ser can instantiate v to a monotype either
in the analysis of ∀ v . v → tm (a B v ) or in the construction
ionf t∃h va . l(y yvs , otfm ∀( va .Bv vv→ →) →). tTmhi s( asitB uativ o)n o rcai nn bthee im copnsrotrvuecdt o byn



oprfo ∃vidv in.g av q,uat nmtifi( ear w Bhi cvh) a).ll oTwhiss t soi usuabtsiotintu ctea nfob re etyi pmep rvoavrieadbb leys
other type variables only. This quantifier can b e understood as
being at the same time existential and universal, and hence is self
dual. We use the notation ∇ (pronounced nabla) for it, due to the
sdiumaill.aW ritey uwseitht hthee n qoutaantitoinfie∇ r o (fpthroen soaumnec endam naeb ilna)trof odruci et,dd buye Mt oil thleer
and Tiu (2003). W e would then have the following definitions, and
safety could not b e compromised.

type U nivScope tm a = ∇ v . v → tm (a B v )
type E xistScope ttmm aa == ∇∇ vv . ( vv , ttmm (( aa BB vv )) )

These definitions would preclude using SuccScope as an im-
plementation, however this should not cause any issue: either of
the above could be used directly as an implementation. Supporting
our version of ∇ in a type-checker seems a rather modest exten-
osiuorn,v tehresiroenfo oref w∇e nwa isht y tpoe -inchveecstkiegartes e eh omws asor maeth efurt umroed vesetrsie oxnte nof-
GHC could support it.

8.4 Future Work: Improve Performance

An apparent issue with the presented conversion functions be-
tween U nivScope or ExistScope on one side and SuccScope
on the other side is that all but succToExist cost a t ime pro-
portional to the size of the term converted. In the current state of
affairs, we might be able t o use a system of rewrite rules, such
as that implemented in GHC, to eliminate the conversions to and
from the safe interfaces. However, within a system which sup-
ports ∇-quantification, a b etter option offers itself: the machine-
preoprtrses∇ en-taqtuioannt oficf athtieo nty, apeb ve stehrouo pldti obne onfifle r(nso itthseinlgf: taht eam ll)a cifh ivn eis-
a ∇-bound variable; therefore the machine-implementation of the
cao∇ nv-berosuionnds vcaarnia bbele t;ht eh eidreenfotirtey.

8.5 Future Work: No Injections



We use the instance search of GHC in a very specific way: only
to discover in injections. This suggests that a special-purpose type-
system (featuring a form of subtyping) could be built to take care of
those injections automatically. An obvious benefit would be some
additional shortening of programs manipulating terms. A ddition-
ally, this simplification of programs would imply an even greater
simplification of the proofs about them; indeed, a variation in com-
plexity in an object usually yields a greater variation in complexity
in p roofs about it.

8.6 Conclusion

We have shown how t o make de Bruijn indices safe, by typing
them precisely with the context where they make sense. Such p re-
cise contexts are obtained is b y using (appropriately) either of the
interfaces UnivScope or ExistScope. These two interfaces can
be seen as the both sides of the ∇ quantifier of Miller and Tiu
(b2e0 0s3ee).n Ea ssset hnetiab lloyt,h hws eid heasv eo fdt ehceon∇ struq cutaendti tfhieart offla vMoril loerf q aunadnTt ifiui-
cation over names, and implemented it in HASKELL. The r esult is a
safe method to manipulate names and binders, which is supported
by today’s Glasgow Haskell Compiler.

The method preserves the good p roperties of de Bruijn indices,
while providing a convenient i nterface to program with multiple
open binders. W e have i llustrated these properties b y exhibiting the
implementation of a number of examples.
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