
Under preparation for ICFP 2014

Auto in Agda

Programming proof search

Pepijn Kokke Wouter Swierstra

Universiteit Utrecht

pepijn.kokke@gmail.com

Abstract

We present the reader with an implementation of Prolog-style proof
search in Agda. We then use this implementation, together with
Agda’s Reflection mechanism, to implement an auto tactic for first-
order Agda terms. Last, we demonstrate one possible usage of this
tactic, by implementing modular instance search for Agda-style
type classes.

Wouter: Still need to finalize the abstract

1. Introduction

Writing proof terms in type theory is hard and often tedious. Inter-
active proof assistants based on type theory, such as Agda [14] or
Coq [9], take very different approaches to facilitating this process.

The Coq proof assistant has two distinct language fragments.
Besides the p rogramming language Gallina, there is a separate tac-
tic language for writing and programming p roof scripts. Together
with several highly customizable tactics, the tactic language Ltac
can provide powerful proof automation [7]. Having to introduce
a separate tactic language, however, seems at odds with the spirit
of type theory, where a single language is u sed for b oth proof and
computation. Having a separate language for p rogramming proofs
has its drawbacks. Programmers need to learn another language to
automate proofs. Debugging Ltac programs can b e difficult and the
resulting proof automation may b e inefficient [5].

Agda does not have Coq’s segregation of p roof and program-
ming language. Instead, programmers are encouraged t o automate
proofs by writing their own solvers [15]. In combination with
Agda’s reflection mechanism [22], developers can write powerful
automatic decision p rocedures [2]. Unfortunately, not all proofs are
easily automated in this fashion. When this is the case, the user is
forced to interact with the integrated development environment and
manually construct a proof term step b y step.

This p aper tries to combine the b est of both worlds b y imple-
menting a library for p roof search within Agda itself. More specif-
ically, this paper makes the following novel contributions:

• After illustrating the usage of our library with several motivat-
ing examples (Section 2), we show how to implement a Prolog
interpreter in the style of Stutterheim et al. [20] in Agda (Sec-
tion 3). Note that, in contrast to Agda, resolving a Prolog query

[Copyright notice will appear here once ’preprint’ option is removed.]

1

w.s.swierstra@uu.nl

need not terminate. Using coinduction, however, we can write
an interpreter for Prolog that is total.

• Resolving a Prolog query results in a substitution that, when
applied to the goal, produces a term that can be derived from
the given r ules. We extend our interpreter t o produce a proof
term that witnesses the validity of the resulting substitution
(Section 4).

• We integrate this p roof search algorithm with Agda’s reflection
mechanism (Section 5). T his enables us to quote the type of a
lemma we would like to prove, p ass this term as the goal of our
proof search algorithm, and finally, unquote the resulting proof
term, thereby proving the desired lemma.

• Finally, we show how we can use our p roof search together
with A gda’s instance arguments [10] to implement lightweight
type classes in Agda (Section 6). T his resolves one of the major
restrictions of instance arguments: the lack of a r ecursive search

procedure for their construction.

All the code described in this paper is freely available from
GitHub1 .It is important to emphasize that all our code is written in
the safe fragment of Agda: it does not depend on any postulates or
foreign functions; all definitions pass Agda’s termination checker;
and all metavariables are resolved.

2. Motivation

Before describing the implementation of our library, we will pro-
vide a brief introduction to Agda’s reflection mechanism and il-
lustrate how the proof automation described in this paper may be
used.

Reflection in A gda

Agda has a reflection mechanism2 for compile time metapro-
gramming in the style of Lisp [17], MetaML [21], and Template
Haskell [18]. This reflection mechanisms make it possible to con-
vert a program fragment into its corresponding abstract syntax tree
and vice versa. We will introduce Agda’s r eflection mechanism
here with several short examples, b ased on the explanation in p re-
vious work [22]. A more complete overview can be found in the
Agda release notes [1] and Van der W alt’s thesis [23].

The central type in the r eflection mechanism is a type Term :
Set that defines an abstract syntax tree for Agda terms. There are
several language constructs for quoting and unquoting program
fragments. The simplest example of the r eflection mechanism is

1 See https ://github .com/pepijnkokke/AutoInAgda.
2 Note that Agda’s reflection mechanism should not b e confused with ‘proof

by reflection’ – the technique of writing a verified decision p rocedure for
some class of problems.

2014/2/24
the quotation of a single term. I n the definition of idTerm b elow,
we quote the identity function on Boolean values.

idTerm : Term
idTerm = quoteTerm (λ (x : Bool) → x)

When evaluated, the idTerm yields the following value:

lam visible (var 0 [])

On the outermost level, the lam constructor produces a lambda
abstraction. It has a single argument that is passed explicitly (as
opposed to Agda’s implicit arguments). The body of the lambda
consists of the variable identified b y the De Bruijn index 0, applied
to an empty list of arguments.

More generally, the quote language construct allows users to
access the internal representation of an identifier, a value of a built-
in type Name. Users can subsequently request the type or definition
of such names.

Dual to quotation, the unquote mechanism allows users to
splice in a Term, r eplacing it with a its concrete syntax. For ex-
ample, we could give a convoluted definition of the K combinator
as follows:

const : ∀ {a b} → a → b → a
ccoonnsstt :=∀ unquote (l aam → vb is i→blea (lam visible (var 1[])))

The language construct unquote is followed b y a value of type
Term. In this example, we manually construct a Term representing
the K combinator and splice it in the definition of const.

The final p iece of the r eflection mechanism that we will use

is the quoteGoal construct. The usage of quoteGoal is b est illus-
trated with an example:

goalInHole : N
goalInHole = quoteGoal g in { }0

In this example, the construct quoteGoal g binds the Term r ep-
resenting the type of the current goal, N, to the variable g. W hen
completing this definition b y filling in the hole labelled 0, we may
now refer to the variable g. This variable is b ound to to def N [],
the Term r epresenting the type N.

Using proof automation

To illustrate the usage of our p roof automation, we begin by defin-
ing a p redicate Even on natural numbers as follows:

data Even : N → Set where
tBaa sEev e: E: ve Nn 0→
Step : ∀ {n } → Even n → Even (suc (suc n))

Next we may want to p rove p roperties of this definition:

even+ : Even n → Even m → Even (n + m)
eevveenn++ B :a Esve e→2 E=v ne2m
even+ (Step e1) e2 = Step (even+ e1 e2)

Note t hat we omit universally quantified implicit arguments from
the typeset version of this paper, in accordance with convention
used b y Haskell [16] and Idris [3].

As shown by Van der Walt and Swierstra [22], it is easy to
decide the Even property for closed terms using proofb y r eflection.
The interesting terms, however, are seldom closed. For instance, if
we would like to use the even+ lemma in the p roof below, we need
to call i t explicitly.

simple : Even n → Even (n + 2)

ssiimmppllee ee: E=v eenv nen→+ eE (vSente(pn B +as 2e))

Manually constructing explicit proof objects in this fashion is not
easy. The proof is brittle. We cannot easily reuse it to p rove similar
statements such as Even (n + 4). If we need to reformulate our

2

statement slightly, proving Even (2 + n) instead, we need to
rewrite our proof. Proof automation can make p ropositions more
robust against such changes.

Coq’s proof search tactics, such as auto, can be customized with
a hint database, containing a collection of lemmas. In our example,
auto would b e able to p rove the simple lemma, provided it the
hint database contains at least the constructors of the Even data
type and the even+ lemma. The r esulting proof is r obust against
reformulation and refactoring. I n contrast to the construction of
explicit proof terms, changes to the theorem statement need not
break the proof. This p aper shows how to implement such a tactic
similar to auto in Agda.

Before we can use our auto function, we need to construct a
hint database:

hints : HintDB
hints = hintdb

(quote Base :: quote Step :: quote even+ :: [])

To construct such a database, we quote any terms t hat we wish
to include in it and pass them to the hintdb function. We defer
any discussion about the hintdb function for the moment. Note,
however, that unlike Coq, the h int data base is a f irst-class value
that can be manipulated, inspected, or passed as an argument to a
function.

We now give an alternative p roof of the simple lemma, using
this hint database:

simple : Even n → Even (n + 2)
ssiimmppllee =: qveunotn e→ GoaE l g nin(unquote (auto 5 hints g)

The central ingredient is af unction auto with the following t ype:

auto : (depth : N) → HintDB → Term → Term

Given a maximum depth, h int database, and goal, i t searches for a
proof Term that witnesses our goal. If this term can be found, it is
spliced back into our program using the unquote statement.

Of course, such invocations of the auto function may fail.
What happens if no p roof exists? For example, trying to prove
Even n → Even (n + 3) in this style gives the following error:

Exception searchSpaceExhausted !=<
Even .n -> Even (.n + 3) of type Set

When no proof can b e found, the auto function generates a dummy
term whose type explains the r eason why the search has failed.
In this example, the search space has b een exhausted. Unquoting
this term, then gives the type error message above. It is up to
the p rogrammer to fix this, either by p roviding a manual proof or
diagnosing why no p roof could be found.

The remainder of this p aper will explain how this auto function
is implemented.

3. Prolog in Agda

Let us set aside Agda’s reflection mechanism for the moment.
In this section, we will present a standalone Prolog interpreter.
Subsequently, we will show how this can b e combined with the
reflection mechanism and suitably invoked in the definition of the

auto function. The code in this section is contained in its own Agda
module, parameterized b y two sets:

module Prolog
(TermName : Set) (RuleName : Set) where

Terms and Rules

The heart of our p roof search implementation is the structurally
recursive unification algorithm described b y McBride [12]. Here

2014/2/24
the type of terms is indexed b y the number of variables a given
term may contain. D oing so enables the unification algorithm to
formulated by structural induction on the number of free variables.
This yields the following definition of terms:

data PrologTerm (n : N) : Set where
var : Fin n → PrologTerm n
cvaonr :: FTeinrmn N→ amP er o→lo LTisetr m(Pn rologTerm n)

T→e PmroNloagmTee→ rm Lni

In addition to variables, we will encode first-order constants as a
TermName with a list of arguments.

For instance, if we choose to instantiate the TermName with
the following Arith data type, we can encode numbers and simple
arithmetic expressions:

data Arith : Set where
Suc : Arith
Zero : Arith
Add : Arith

The closed term corresponding to the number one could b e written
as follows:

One : PrologTerm 0
One = con Suc (con Zero : : [])

Similarly, we can use the var constructor to r epresent open terms,
such as x + 1. We use the p refix operator # to convert from natural
numbers to finite types:

AddOne : PrologTerm 1
AddOne = con Add (var (# 0) :: con One :: [])

Note that this r epresentation of terms is untyped. There is no check
that enforces addition is provided p recisily two arguments. Al-
though we c ould add further type information to this effect, this
introduces additional overhead without adding safety to the proof
automation p resented in this p aper. For the sake of simplicity, we
have therefore chosen to work with this untyped definition.

We shall refrain from further discussion of the unification algo-
rithm itself. Instead, we restrict ourself to p resenting the interface
that we will use:

unify : (t1 t2 : PrologTerm m) → Maybe (∃ (Subst m))

Substitutions are indexed by two natural numbers n and m. A
substitution of type Subst m n can be applied to a PrologTerm m
to produce a value of type PrologTerm n. The unify function takes
two terms t1 and t2 and tries to compute the most general unifier.
As unification may fail, the result is wrapped in the Maybe monad.
The number of variables in the terms resulting from the unifying
substition is not k nown a priori, hence this n umber is existentially
quantified over.

This u nification function is defined using an accumulating pa-
rameter, r epresenting an approximation of the final substitution. In

what follows, we will use the following, more general, function:

unifyAcc : (t1 t2 : PrologTerm m) →

∃ (Subst :mP) →rol MgTaeybrme (m∃)(→S ubst m))

Next we define Prolog r ules as records containing a name and
terms for its premises and conclusion:

record Rule (n : N) : Set where
field

name : RuleName
conclusion : PrologTerm n
premises : List (PrologTerm n)

3

Again the data type i s quantified over the number of variables
used by its constituents. N ote that variables are shared between the
premises and conclusion.

Using our newly defined Rule we can give a simple definition
of addition. I n Prolog, this would b e written as follows.

add(0 , x , x) .
add(x , y , z) : - add (suc (x) , y , suc (z)) .

Unfortunately, the named equivalents in our Agda implementation
are a bit more verbose. Note that we h ave, for the sake of this
example, instantiated the RuleName and TermName to String and
Arith respectively.

AddBase : Rule 1
AddBase = record {

ndaBmaes e=c "rAdd {dBase"

conclusion = con Add (con Zero []
: : var (# 0)
: : var (# 0)

:: [])
premises = []

}

AddStep : Rule 3
AddStep = record {

ndaSmteep e=c "AddStep"
conclusion = con Add (con Suc (var (# 0) : : [])

: : var (# 1)
: : con Suc (var (# 2) : : [])

:: [])
premises = con Add (var (# 0)

: : var (# 1)
: : var (# 2)

:: [])
:: []

}
Lastly, b efore we can implement some form of proof search,

we define a p air of auxiliary functions. During p roof r esolution,
we will need to work with terms and rules containing a different
number of variables. We will use the following pair of functions,
inject and raise, to weaken bound variables, t hat is, map values of
type Fin n to some l arger finite type.

inject : ∀ {m} n → Fin m → Fin (m + n)
iinnjjeecctt n: z∀ er {om n= →zeF roin

inject n (suc i) = suc (inject n i)

raise : ∀ m {n } → Fin n → Fin (m + n)
rraaiissee z: er ∀o in }=→ →i
raise (suc m) i = suc (raise m i)

We have tried to visualize the behaviour of inject and raise, embed-
ding Fin 3 into Fin (3 + 1) in Figure 1. On the surface, the inject
function appears to b e the identity. When you make all the implicit
arguments explicit, however, you will see t hat it sends the zero con-
structor in Fin m to the zero constructor of type Fin (m + n).
Hence, the inject function maps Fin m into thef irst m elements of
the type Fin (m + n) . Dually, the raise function maps Fin n into
the last n elements of the type Fin (m + n) b y repeatedly applying
the suc constructor.

We can use these inject and raise to define similar functions that
work on our Rule and Term data types, b y mapping them over all
the variables that they contain.

2014/2/24

Figure 1. The graph of the inject function (a) and the raise func-
tion (b) embedding Fin 3 in Fin (3 + 1)

Proof search

Our i mplementation of p roof search is split into two steps. In the
first step we set up an higher-order representation of the search
space, where we branch over some collection of undetermined
rules at every step. In the second step we flatten this abstract
representation t o a first-order search tree.

The distinction between these two phases keeps the nitty gritty
details involved with unification and weakening used in the first
phase separate from the actual p roof search. By doing so, we
can implement various search strategies, such as breadth-first
search, depth-first search or an heuristic-driven algorithm, by sim-
ply traversing the final search tree in a different order.

Setting up the search space

We start by defining the following type synonym to distinguish
goals from regular Prolog terms:

Goal : N → Set
GGooaall n: =N →TeS rmet n

Next we define the data t ype that we will use to model the abstract
search space.

data SearchSpace (m : N) : Set where
fail : SearchSpace m
retn : Subst (m + δ) n → SearchSpace m
step :: S(∃u bRstul(em m→+ +∞δ)(n Se→ arcS heSaprachcSe pmac))e

→: S∃eR aruclheS →pa∞c e m (S

Ignoring the indices for the moment, the SearchSpace type has
three constructors: fail, retn and step. In the case of retn, we
have found a substitution that resolves the goal we are trying to
prove. In the step constructor, we have not yet resolved the goal,
and instead have a choice of which Rule to apply. Note that we
do not specify which rules may be used; only how the choice
of any rule determines the remainder of the search. As a search
need not terminate, the SearchSpace resulting from applying a r ule
are marked as coinductive. The fail constructor is u sed to mark
branches of the search space that f ail, i.e., where the selected rule
is not unifiable with the current goal.

Note that we r ename Agda’s notation for coinduction to more
closely resemble notation already familiar to Haskell programmers.
Coinductive suspensions are created with the prefix operator ∼

rCatohienrd uthctainv]e; ssuuscphe snussiopnesns iaornesc craeant e bed fw oircthedt huesi npgre afi x bao ngp,e r!,a traorthe ∼r
than the usual [.

4

Now let u s turn our attention to the indices. The variable m
denotes the number of variables i n the goal; δ denotes the n umber
of fresh variables necessary to apply a r ule; and n will denote the
number ofvariables remaining after we have resolved the goal. This
naming will be used consistently in subsequent definitions.

We can now define a function resolve that will b e in charge of
building up a value of type SearchSpace from an initial goal:

resolve : Goal m → SearchSpace m
rreessoollvvee {: :mG }o g m= →reS soelavrecAhcScp a(jcuestm (m, nil)) [g]

The resolve function is once again defined by calling an auxiliary
function defined using an accumulating parameter. It starts with an
empty substitution and a list of goals that only contains the initial
goal g. The resolveAcc function will attempt to resolve a list of
sub-goals, accumulating a substitution along the way:

resolveAcc : ∀ {m δ : N}
→olv MeAacycbe: (∀∃ {(λm mnδ δ→: NSu}bst (m + δ) n))
→→ LMisaty (bGeo (∃al ((mλ n+→ →δ)S) u→bs tS (eamrc +hS δp)an ce)) m

res→olvL eAistcc (G(jouastl ((mn, s+ubδ s)t)))→ →[→]S m= retn subst
resolveAcc nothing = fail
resolveAcc (just (n, subst)) (goal :: goals) = step next

If we have no remaining goals, we can use the retn constructor to
return the substitution we h ave accumulated so far. If at any p oint,
however, the conclusion of the chosen rule was not u nifiable with
the next open subgoal—and thus the accumulating parameter has
become nothing—the search will fail. The interesting case is the
third one. If there are remaining goals to resolve, we recursively

construct a new SearchSpace. To do so, we use the step constructor
and branch over the choice of rule. The next function defined b elow
computes the r emainder of the SearchSpace after trying to apply a
given rule:

next : ∃ Rule → ∞ (SearchSpace m)
nneexxtt (: δ’ ∃, ruR ulel)e →=

∼ resolveAcc mgu (prems’ ++ goals’)
∼whr eerseo

mgu : Maybe (∃ (λ n → Subst (m + (δ + δ’)) n))
mgu :=M uanyibfyeA(c∃c (gλo nal’→ →coS ncubl’ sstu (bmst+’

where
goal’ : PrologTerm (m + (δ + δ’))
goal’ = injectTerm δ’ goal

subst’ : ∃ (Subst (m + (δ + δ’)))
ssuubbsstt’’ :=∃ n(S+u bδs’ , i n(mjec+ tS(uδb+s t δδ’’ s)u)bst

concl ’ : PrologTerm (m + (δ + δ’))
concl ’ = raiseTerm (m + δ) (conclusion rule)

goals’ : List (PrologTerm (m + (δ + δ’)))
goals’ = injectTermList δ’ goals

prems’ : List (PrologTerm (m + (δ + δ’)))
prems’ = raiseTermList (m + δ) (premises rule)

For the moment, try to ignore the various calls to raise and inject.
Given the rule that must b e applied, the next function computes
most general unifier of the conclusion of rule and our current goal.
The resulting substitution is p assed to resolveAcc, which continues
the construction of the SearchSpace. The premises of the rule are
added to the list of open goals that must b e resolved. The apparent
complexity of the next function comes from the careful t reatment
of variables.

First of all, note that we p ass the substitution accumulated so
far to unifyAcc. This ensures that the constraints on any variables
occurring in the two terms b eing unified are taken into account.

Next, there is the problem of avoiding variable capture. We can
only unify two terms that have the same type. Therefore we must

2014/2/24
ensure that the goal, the rule’s conclusion and its premises have the
same number of variables. At the same time, the substitution we
are accumulating should b e kept in synch with the variables used in
the initial goal. Furthermore, the variables mentioned in the r ule are
implicitly universally quantified. We need to instantiate them with
fresh variables to avoid introducing unintended constraints. T his is
where inject and raise come in.

Recall that injecting a variable into a larger set would keep
its value the same, whereas raise maps the variable into a ’fresh’
portion of the set that was p reviously unused. Therefore we will
always take care to inject our goal terms and our accumulating
substitution, whereas we raise the terms in the applied rule. This
ensures that the substitution and goals are kept in synch, whereas
any variables mentioned in the rule are fresh.

Note the number of free variables in the chosen rule, δ2, is
added to the amount of space that had to be made for previous r ule
applications, δ1 . As a result, we need to raise by more and more as
the proof search proceeds.

Constructing search trees

The second step in our proof search implementation is to transform
the SearchSpace we h ave j ust constructed into a first-order r ose
tree. We do this by b ranching once for every rule at every step
constructor. The r esult of t his transformation shall be expressed in
terms of the following data type.

data SearchTree (A : Set) : Set where
fail : SearchTree A
retn : A → SearchTree A
froetrkn :: LAis→ t (S∞e (rScheaTrcreheTA ree A)) → SearchTree A

Note that this SearchTree is finitely branching, but potentially
infinitely deep. At every fork we may b ranch over some finite set
of r ules, but there is no guarantee that we can construct the entire
SearchTree in finite time.

In our case, we will instantiate the type variable A with a tuple
containing a substitution together with a trace that keeps track of all

tthhee afpolploliewdinrgula eslia.sIn.3ordertokeepthecodereadable,letusintroduce
Result m = ∃2 (λ δ n → Subst (m + δ) n) ×Rules

The existential quantifier ∃2 hides both the number of fresh vari-
Tabhleese xthisatte nwtiea lneq euda tnoti ifnietrro∃ duce, δ, and the number of variables in
the terms produced by the final substitution, n.

The function that takes care of the transformation is almost
trivial. For a given set of rules, we simply traverse the SearchSpace
structure, where at every step we apply the continuation to every
rule. Since we also wish to maintain a trace of the rules that have
been applied, we shall define t his transformation using an auxiliary
function with an accumulating parameter:

mkTree : Rules → SearchSpace m
→: RSuelaersc→ hTrS eeea (rcRhesSuplatc mem)

mkTree rs0 Ss a=rc go se e[(]
where
go : SearchSpace m → Rules → SearchTree (Result m)
go fa :i lS = mfai→ l
go (retn s) acc = retn ((, (,s)), acc)
go (step f) acc =

fork (map (λ r → ∼ go (! f r) (acc ::r r)) rs0)

Note that we accumulate the trace of rules applied in the order in
which they are applied: new rules are added to the end of the list
with the snoc operator ::r.
3Rules isa na liasf ora l isto fe xistentiallyq uantifiedr ules List (∃ Rule).

5
In the implementation of mkTree, Agda’s guardedness checker

cannot t ell that the call to map is size-preserving, and therefore
safe. To show this definition is suitably guarded, we need to inline
the definition of map and explicitly recurse over the list of rules
rs0 .

After the transformation, we are left with a first-order tree struc-
ture, that we can traverse in search of solutions. For example, we
can define a simple bounded depth-first traversal as follows:

dfs : (depth : N) → SearchTree A → List A
ddffss z: er (od =[a a]r
dfs (suc k) fail = []
dfs (suc k) (retn x) = return x
dfs (suc k) (fork xs) = concatMap (λ x → dfs k (! x)) xs

It is fairly straightforward to define other traversal strategies, such
as a breadth-first search. Similarly, we can also vary the rules used
to construct the SearchTree. For example, you may want to define a
function that constructs a ‘linear’ proof, where every r ule is applied
at most once. All these search strategies are simple variations of the
solution presented here.

Putting all these pieces together, we can define a function
searchToDepth, which implements proof search up to a given

depth d, i.e. it constructs the SearchSpace, flattens this to a
SearchTree, and finally traverses the resulting tree in depth-first
order up to depth d.

searchToDepth :N → Rules → Goal m → List (Result m)
sseeaarrcchhTTooDDeepptthh :dNep →th rRuulleess g→ oa lG o=a

dfs depth (mkTree rules (resolve goal))

Example

Using this implementation of p roof search, together with the terms
and rules defined above, we can compute, for instance, the sum
3 + 1. First we define a query, corresponding to the Prolog query
add (3 ,1,x) :

query : Term 1
query =

con Add (inject 1Three :: inject 1One :: var (# 0) : : [])

Note that we must inject the terms Three and One, which are
closed terms, in order to make it match the variable domain of our
variable var (# 0).

Second, we use searchToDepth to search for a substitution. We
use a function apply which applies a list of solutions to a goal term:

apply : List (Result m) → Goal m → List (Term 0)

Since we do not wish to go into the details of unification and
substitution, we shall leave this function undefined. Instead we
will present a complete u sage of searchToDepth, resolving the
previously defined query:

result : List (Term 0)

result = apply substs (var (# 0))
where

rules = (1, Add Base) : : (3, AddStep) :: []
substs = searchToDepth 5 rules query

Once we h ave this, we can show that the result of adding 1and 3 is
indeed 4.

test : result ≡ (Four : : [])
tteesstt :=r rseufll

2014/2/24

4. Constructing proof trees

The Prolog interpreter described in the previous section returns a
substitution. To use such an interpreter to produced proof terms,
however, we need to do a bit more work.

Besides the r esulting substitution, the Result type returned by
the proof search process also contains a a trace of the applied rules.
In the following section we will discuss how to use this information
to r econstruct a p roof term. That is, we will construct a closed term
of the following type:

data ProofTerm : Set where
con : RuleName → List ProofTerm → ProofTerm

It is easy to compute the arity of every rule: we simply take the
length of the list of premises. After making this observation, we can
define a function to construct such a ProofTerm as a simple fold:

toProofTerms : Rules → List ProofTerm
ttooPPrrooooffTTeerrmmss =: fuoleldsr →neL xti [t t]

where

next : ∃ Rule → List ProofTerm → List ProofTerm
nneexxtt (:δ, ∃ ∃r)R puflse w→ ith L isatrit Pyr ro 6ofT? elermngt →h pLfiss
... | no r>p = [] -- should not occur
... || yes rr>6pp ==

.c| ony e(nsa r6mpe r=) (take (arity r) pfs) :: drop (arity r) pfs

The next function combines a list of proof terms, produced by
recursive calls, and the single rule r that has j ust been applied. If
the list contains enough elements, we construct a new ProofTerm
node by applying the rule to the first arity r elements ofthe list. This
new ProofTerm is the head of the list, r eplacing the children terms
that previously formed the prefix of the list. Essentially, this is the
‘unflattening’ of a rose tree using the the arities of the individual
nodes. Upon completion, toProofTerms should return a list with
a single element: the p roof term that witnesses the validity of the
our derivation. The function, toProofTerm, returns this witness if
it exists:

toProofTerm : Rules → Maybe ProofTerm
ttooPPrrooooffTTeerrmm r :s wRiutlhe st→ oPr MooafyTbeermP sr ros
. . . | [] = nothing
. . . || p :: [] = j ust p
. . . || p :: :: []::= nothing

Of course, the toProofTerms function may fail if there are not
enough elements in the list to fully apply a r ule. W hen run on
the r esult of our proof search functions, such as searchToDepth,
however, we know that the list has the right length, even if this is
not enforced by its type. While we could use a clever choice of
indexed data type to show that the toProofTerms can be defined in
a total fashion, there is little benefit in doing so. The proof search
functions such as searchToDepth are already partial by their very
nature. Adding further structure to the accumulated list of r ules to
guarantee totality will not change this.

5. Adding reflection

To complete the definition of our auto function, we still need to
convert between Agda’s built-in Term data type and the data type
required by our unification and resolution algorithms, PrologTerm.
This is an essential piece of p lumbing, necessary to provide the
desired p roof automation. While not difficult in principle, this does
expose some of the limitations and design choices of the auto
function.

The first thing we will need are concrete definitions for the
TermName and RuleName data types, two were parameters to the
development p resented in the previous sections. It would b e desir-
able to identify both types with Agda’s Name t ype, but unfortu-

6

nately the Agda does not assign a name to the function space type
operator, _→_; nordoesAgdaassignnamestolocallyboundvari-
aobpelersa.t oTro, _ad→d_res;sn tohrids,o weseA dgedfainaes tswigon nnaewm dsattoa otycpaelsly TboerumnNdvaamrie-
and RuleName.

First, we define the TermName data type as follows:

data TermName : Set where
pname : (n : Name) → TermName
pvar :: ((in n: N N)a m→e T)e→ rmT TNearmmNe
pimpl :: T(ie: rmN N)am →eT

The TermName data type has three constructors. The pname con-
structor embeds Agda’s built-in Name in the a TermName t ype.
The pvar constructor describes locally b ound variables, r epresent
by t heir De Bruijn index. Note that the pvar constructor has nothing
to do with PrologTerm’s var constructor: it is not used to construct

a Prolog variable, but rather to be able to refer to a local variable
as a Prolog constant. Finally, pimpl explicitly represents the Agda
function space.

We define the RuleName type in a similar fashion:

data RuleName : Set where
rname : (n : Name) → RuleName
rrvnaarm :: ((in n: N N)a m→e)R→u leNR aumleNe

The rvar constructor is used t o refer to Agda variables as rules. Its
argument i is corresponds to a De Bruijn index—the value of i can
be used directly as an argument to the var constructor of Agda’s
Term data type.

As we have seen in Section 2, the auto function may fail to find
the desired p roof. Furthermore, the conversion from Agda Term
to PrologTerm may also fail for various reasons. To handle such
errors, we will work i n the Error monad defined b elow:

Error : (A : Set) → Set a
EErrrroorr A: =A :EiSt heetr) M→es Sseatga e A

Upon failure, the auto function will produce an error message.
The corresponding Message type simply enumerates the possible
sources of failure:

data Message : Set where
searchSpaceExhausted : Message
indexOutOfBounds : Message
unsupportedSyntax : Message
panic! : Message

The meaning of each of these error messages will b e explained as
we encounter them in our implementation below.

Finally, we wil need one more auxiliary function to manipulate
bound variables. The match function takes two bound variables of

types Fin m and Fin n and computes the corresponding variables
in Fin (m t n) variables—where m t n denotes the maximum of
imn aFnind (nm:

match : Fin m → Fin n → Fin (m t n) ×Fin (m t n)

The implementation is r easonably straightforward. W e compare
the numbers n and m, and use the inject function to weaken the
appropriate b ound variable. It is straightforward to use this match
function to define similar operations on two terms, matchTerms,
or a term and a lists of terms, matchTermAndList.

Constructing terms

We now turn our attention to the conversion of an Agda Term to a
PrologTerm. T here are two problems that we must address.

First of all, the Agda Term type represents all (possibly higher-
order) terms, whereas the PrologTerm type is necessarily first-
order. W e mitigate this problem, by allowing the conversion to fail,
throwing an ‘exception’ with the message unsupportedSyntax.

2014/2/24
Secondly, the Agda Term data type u ses natural numbers to

represent variables. The PrologTerm data type, on the other hand,
represents variables using a finite type Fin n, for some n. To con-
vert between these representations, we could compute the number
of free variables in a Term, and use this information to map be-
tween the two different representations of bound variables. T o keep
matters simple, however, we allow the conversion to fail with an
indexOutOfBounds message, even t hough t his should never oc-
cur. While we could do more work to prove totality of the variable
conversion, we are already defining a function that could fail. To-
tality of the variable conversion will still not make our conversion

total.
The conversion function, fromTerm, traverses the argument

term, keeping track of the number of Π-types it has encountered.
We sketch its definition below:

fromTerm : N → Term → Error (∃ PrologTerm)
ffrroommTTeerrmm d: (N va →r →i [T])e →= rfrroomr(V∃aPr rdo il
fromTerm d (con c args) = fromDef c h$i fromArgs d args
ffrroommTTeerrmm dd ((dcoefn nfc caa rrggss) == ffrroommDDeeff fc h h$$ii f frroommAArrggss dd args
fromTerm d (pi (arg visible= = f(roelm mDte1f))f (h$eli f rto2m))A

with fromTerm d t1 | fromTerm (suc d) t2
... | left msg || =luecft d msg
... || leftm sg|| left msg = left msg
... || right (n1, p1) | rig|hl te f(tn 2m, spg2)

.w| itr hi mhtat(cnhTerm)s | p1 p2

... | (p1’, p2 ’) = let term = con pimpl (p1 ’ : : p2 ’ : : [])
in right (n1 t n2 , term)

fromTerm d (pi (arg) (el n t2))
= fromTerm (suc d) t2

fromTerm = left unsupportedSyntax

We define special functions, fromVar and fromDef, to convert
variables and constructors or defined terms r espectively. The ar-
guments to constructors or defined terms are processed u sing the
fromArgs function defined b elow. The conversion of a pi node
binding an explicit argument proceeds b y converting the domain
and codomain. If both conversions succeed, the r esulting terms are
matched and a PrologTerm is constructed using pimpl. Implicit
arguments and instance arguments are ignored b y this conversion
function. Sorts, levels, or any other Agda feature mapped to the
constructor unknown of type Term triggers a failure with the mes-
sage unsupportedSyntax.

The fromArgs function converts a list of Term arguments to a
list of Prolog terms, b y stripping the arg constructor and recursively

applying the fromTerm function. We only give its t ype signature
here, as the definition is straightforward:

fromArgs : N → List (Arg Term)
→: NE→ rrorL (is∃t ((LAisrtg ◦T Perrmol)ogTerm))

Next, the fromDef function constructs a first-order constant from
an Agda Name and list of terms:

fromDef : Name → ∃ (λ n → List (PrologTerm n))
→: N∃a Pmreol →ogT∃ e r(mλ

fromDef f→ →(n∃ , t Ps)r =log n, rcmon (pname f) ts

Lastly, the fromVar function converts a natural number, corre-
sponding to a variable name in the Agda Term type, to the corre-
sponding PrologTerm by taking the difference between the number
of binders traversed and the D e Bruijn index:

fromVar : N → N → Error (∃ PrologTerm)
ffrroommVVaarr n: :i Nw→i th compare nr i(
fromVar n bsuc (n + k)c | less bc k

m=V laerf tn in bdsuecxO (nut+ Ofk B)ocu n|dl es
fromVar n bnc | equal bc

7

= right (suc 0, var (# 0))
fromVar bsuc (i + k)c i | greater bc k

m=V arirg hbtsu (csu(ci +k, vk)acr (i# |k)g)r

To convert between an Agda Term and PrologTerm we simply
call the fromTerm function, initializing the number of binders
encountered to 0:

toPrologTerm : Term → Error (∃ PrologTerm)
ttooPPrroollooggTTeerrmm :=T ferrommT→ erE mr 0o

Constructing rules

Our next goal is to construct r ules. More specifically, we need to
convert a list of quoted Names to a hint databases of Prolog rules.
To r eturn to our example in Section 2, the definition of even+ had
the following type:

even+ : Even n → Even m → Even (n + m)

We would like to construct a value of type Rule that expresses how
even+ can be used. InProlog, we might formulate the lemma above
as the rule:

Even (Plus (m, n)) :- Even(m) , Even (n) .

In our Agda implementation, we can define such a r ule manually:

Even+ : Rule 2
Even+ = record {

enan m+e =or dr{n a me even +
conclusion = con (pname Even)

(con (pname _+_)
(var (# 0) : : var (# 1) :: [])

:: [])
premises = con (pname Even) (var (# 0) :: [])

: : con (pname Even) (var (# 1) :: [])

:: []
}

In the coming subsection, we will show how to generate the above
definition from the Name representing even+.

This generation of rules is done in two steps. First, we will
convert a Name to its corresponding PrologTerm:

fromName : Name → Error (∃ PrologTerm)
ffrroommNNaammee :=N taomPero→ logE Trerromr ◦∃ uP nreoll o◦g type

The type construct converts a Name to the Agda Term representing
its type; the unel function discards any information about sorts; the
toPrologTerm was defined p reviously.

In the next step, we process this PrologTerm. The splitTerm
function splits a PrologTerm at every top-most occurrence of the
function symbol pimpl. Note that it would b e possible to define this
function directly on Agda’s Term data type, but defining it on the
PrologTerm data type is much cleaner as all unsupported syntax
has been removed.

splitTerm : PrologTerm n
→ ∃ (λ k → Vec (PrologTerm n) (suc k))

splitTerm (→co∃n (pλim kp→l →(tV1 e: :c t (2P :r r: [l]o)g)T =erm
Product.map suc (_::_ t1) (splitTerm t2)

splitTerm t = 0, t :: []

Using all these auxiliary functions, it is straightforward to con-
struct the desired rule.

toRule : Name → Error (∃ Rule)
ttooRRuullee n :a Nmeam mweit →h fEr ormroNr (a∃mR e nualem)e

.. . | left msg = left msg

.. . || rliefghtmt (sng, t) with splitTerm t

2014/2/24
... | (k, ts) with initLast t s
... || ((pk,retms)s, concl, ,) =

.r i|gh(pt r(enm, rsu,cleo (nrcnla,m) e n=ame) concl (toList prems))

We convert a name to its corresponding PrologTerm, which is split
into a vector of t erms using splitTerm. The last element of t his
vector is the conclusion of the r ule; the initial prefix constitutes the
premises.

Constructing goals

Next, we turn our attention to converting a goal Term to a
PrologTerm. W hile we could use the toPrologTerm function to
do so, there are good reasons to explore other alternatives.

Consider the example given in Section 2. The goal Term we
wish to prove is Even n → Even (n + 2). Calling toPrologTerm
wwiosuhldt o oc opnrovveert sthE isv eton nan nP →rol oEgvTeenrm(n, +wh2 er)e. Cthaell finungct otioPnr space ehrmas
been replaced b y the pimpl. W hat we would like to do, however, is
to introduce as any available assumptions, such as Even n, and try
to resolve the r emaining goal Even (n + 2).

Fortunately, we can r euse many of the auxiliary functions we
have defined already to achieve t his. W e convert a Term to the c or-
responding PrologTerm. Using the splitTerm and initLast func-
tion, we can get our h ands on the list of arguments args and the
desired return type goal.

toGoalRules : Term → Error (∃ PrologTerm ×Rules)
ttooGGooaallRRuulleess st: :wT iethrm mfro →mTE errrmor0 0∃ tP
... | left msg = left msg
... || rliefghtmt (sng, p) with splitTerm p
... || (rikg, htst) (with initLast ts
... || ((ak,rgtss,) goal, ,) = let rs = toRules 0 args

line trr isgh=t =((t no, Rgoulaels), 0rsa)r

The only missing piece of the puzzle is a function, toRules, that
converts a list of PrologTerms to a Rules list.

toRules : N → Vec (PrologTerm n) k → Rules
ttooRRuulleess si :[N] e=c [P P]
toRules i (t :: ts) = (n, rule (rvar i) t [])

:: toRules (suc i) ts

The toRules converts every PrologTerm in its argument list to a
rule, generating a fresh variable for each p arameter.

There is one last technical p oint. In the previous version of
fromTerm, an Agda Term variable was mapped to a Prolog vari-
able. When considering the goal type, however, we want to gener-
ate skolem constants for our variables, rather than Prolog variables
which may still b e unified. T o account for this difference, we use
the fromTerm’ function, a slight variation of the fromTerm func-
tion described previously.

Reification of proof terms

Now that we can compute Prolog t erms, goals and rules from
an A gda Term, we are ready to call the r esolution mechanism
described in Section 3. The only remaining problem is to convert
the witness computed by our p roof search b ack to an Agda Term.
The fromProof function does exactly that:

fromProof : ProofTerm → Term
ffrroommPPrrooooff (: co Pnr o(rovfaTre ri)m p s→) T=e mvar i []
fromProof (con (rname n) ps) with definition n
... | function = def n ◦ toArg ◦ fromProof h$i ps
... || cfuonncsttriounctor0 == cdeonf nn ◦◦ ttooAArrgg ◦◦ ffrroommPPrrooooff hh$$ii ps
... || == ucnoknnn o◦ wnt

.w| here
toArg = arg visible relevant

8

Any b ound variables, corresponding to usage of the local p remises,
can be mapped to the var constructor the Agda Term data type.
As we know by construction that these correspond to r ules without
premises, these variables do not need any further arguments.

If the r ule b eing applied i s constructed using an rname, we
do disambiguate whether the rule name refers to a function or a
constructor. The definition function, defined in Agda’s r eflection
library, returns information about how the piece of abstract syntax
to which its argument Name corresponds. For the moment, we
restrict this definition to only h andle defined functions and data
constructors. It is easy enough to extend with further branches for
postulates, p rimitives, and so forth.

We will also need t o wrap an additional lambda around all the
premises that were introduced by the t oGoalRules function. To do
so, we define the intros function that r epeatedly wraps its argument
term in a lambda:

intros : N → Term → Term
iinnttrrooss z: er No t→ =T tr
intros (suc k) t = lam visible (intros k t)

Hint databases

We allow users to provide hints, rules that may b e used during
resolution, in the form of a hint database. Such a hint database
is simply a list of Prolog rules:

HintDB : Set
HintDB = List (∃ Rule)

We can ‘assemble’ hint databases from a list of names using the
function hintdb:

hintdb : List Name → HintDB

hhiinnttddbb =: cisotnN caamtMea→ p (H frionmtDEBrror ◦ toRule)
nwtdhbere=

fromError : Error A → List A
ffrroommEErrrroorr :=E rfrroomrA Ei t→heL r s(cto Anst []) []

Note that if the generation of a r ule fails for whatever reason, no
error is raised, and the rule is simply ignored. T his behaviour is
easily adapted.

This is the simplest possible form of hint database. In p rinciple,
there is no reason not to define alternative versions that assign
priorities to certain rules or limit the number of times a rule may be
applied. The only function that would need to b e adapted to handle
such r equirements is the mkTree function in Section 3.

Error messages

Lastly, we need to decide how to r eport error messages. Since
we are going to return an Agda Term, we need to transform the
Message type we saw previously into an Agda Term. When un-
quoted, this term will cause an type error, reporting the reason for
failure. To accomplish this, we introduce a dependent type, indexed
by a Message:

data Exception : Message → Set where
tthar oEwxc e: (tmiosng :: Meessssaaggee →) →S Etxw cehpetreion msg

The message passed as an argument to the throw constructor, will
be recorded in the Exception’s type, as we intended.

Next, we define a function to produce an Agda Term from a
Message. We could construct such terms by hand, but it is easier to
just use A gda’s quoteTerm construct:

quoteError : Message → Term
qquuootteeEErrrroorr (: se MarecshsSapgaec→ eExT hearmusted)

= quoteTerm (throw searchSpaceExhausted)
quoteError (indexOutOfBounds)

2014/2/24
= quoteTerm (throw indexOutOfBounds)

quoteError (unsupportedSyntax)
= quoteTerm (throw unsupportedSyntax)

quoteError (panic!)
= quoteTerm (throw panic!)

Putting it all together

Finally, we can present the definition of the auto function used in
the examples in Section 2:

auto : (depth : N) → HintDB → Term → Term
aauuttoo d :e (pdteh htihnt s: Ng o)al→ TyH pein

with toGoal goalType
... | left msg = quoteError msg
... || rliefghtmt (s(gn, =goaq l)u , oatregEs)rr

.w| itr hi gsheta(rc(nhT,ogDoaelp),tahr gdse)pth (args ++ hints) goal
... | [] = quoteError searchSpaceExhausted
... || [(], trace) ::

.w| it(h t,otPrarcoeo)f:T :erm t race
... | nothing = quoteError panic!
... || jn uostth p == qinutorotse E(rfrroormp Parnoico!f p)

The auto function converts the Term to a PrologTerm, the return
type of the goal, and a list of arguments that may be used to con-
struct this term. I t then proceeds b y calling the searchToDepth
function with the argument hint database. If this p roof search succ-
ceeds, the Result is converted to an Agda Term, a witness that the
original goal is inhabited. There are three places that this function

may fail: the conversion to a PrologTerm may f ail, for instance be-
cause of unsupported syntax; the proof search may not find any re-
sult; or the final conversion to an Agda Term may fail unexpectedly.
This last case should never be triggered, provided the t oProofTerm
function is only called on the result of our p roof search.

6. Type classes

As a final application of our proof search algorithm, we show how
it can be used to implement a type classes in the style of Haskell.
Souzeau and Oury [19] have already shown how to use Coq’s proof
search mechanism to construct dictionaries. Using Agda’s instance
arguments [10] and the proof search p resented in this paper, we
mimic their results.

We begin b y declaring our ‘type class’ as a record containing
the desired function:

record Show (A : Set) : Set where
field

show : A → String

We can write instances for the Show ‘class’ b y constructing
records:

ShowBool : Show Bool
ShowBool = record {show = showBool }

ShowN : Show N
ShowN = record {show = showN}

Using instance arguments, we can now call our show function
without having to p ass the required dictionary explicitly:

open Show {{...}}

example : String
example = show 3

The instance argument mechanism infers that the show function
is being called on a natural number, hence a dictionary of type
Show Nis required. As there is only a single value of type Show N,

9

the required dictionary is inserted automatically. If we have multi-
ple instance definitions for the same type or omit the required in-
stance altogether, the Agda type checker would have given an error.

It is more interesting to consider p arameterised instances, such
as the Either instance given b elow.

ShowEither : Show A → Show B → Show (Either A B)
SShhoowwEEiitthheerr S :h oSwhoAw SA ho →wBS =ow rBe c o→rdS {h sohwow (E =th srhA owB E) }

wowhEerieth
showE : Either A B → String
sshhoowwEE (: In El xith) r=A "B BIn→ l →" +t+r in gshow x
showE (Inr y) = "Inr " ++ show y

Unfortunately, instance arguments do not do any recursive search
for suitable instances. T rying to call show on a value of type
Either N Bool, for example, will not succeed: the Agda type
checker will complain that it cannot find a suitable instance argu-
ment.

At the moment, the only way to resolve this is to construct the
required instances manually:

ShowEitherBoolN : Show (Either Bool N)
ShowEitherBoolN = ShowEither ShowBool ShowN

Writing out such dictionaries is r ather tedious.
We can however, use the auto function to construct the desired

instance argument automatically. W e start b y putting the desired
instances in a hint database:

ShowHints : HintDB
ShowHints = hintdb (quote ShowEither

: : quote ShowBool
: : quote ShowN :: [])

Now we can call our proof search to assemble the instances for
us:

example : String
example = show (Inl 4) ++ show (Inr true)

where
instance = quoteGoal g

in unquote (auto 5 ShowHints g)

The type of the locally bound instance record is inferred; the proof
search manages to assemble the desired dictionary.

7. Discussion

The auto function p resented here is far from perfect. T his section
not only discusses its limitations, but compares it to existing proof
automation techniques in interactive proof assistants.

Performance First of all, the p erformance of the auto function
is t errible. Any p roofs that require a depth greater than ten are
intractable in practice. This is an immediate consequence of Agda’s
poor compile-time evaluation. The current implementation is call-
by-name and does no optimization or sharing whatsoever. W hile
a mature evaluator is beyond the scope of this project, we believe
that it is essential for Agda p roofs to scale beyond toy examples.

Simple optimizations, such as the erasure of the natural number
indexes used in unification [4], would help speed up the proof
search substantially.

Language The auto function can only handle first-order terms.
Even if h igher-order unification is undecidable in general, we be-
lieve we should be able to adapt our algorithm to work on second-
order functions. Furthermore, there are plenty of Agda features that
are not supported by our quotation or Agda’s r eflection mechanism,
such as universe polymorphism, instance arguments, and primitive

2014/2/24
functions. Even in the presence of simple dependent types, our r es-
olution function can produce surprising results. Consider the fol-
lowing example, defining a show function on dependent pairs:

data _×_(A : Set) (B : A → Set) : Set where
, : (_x : A :) →et) (BB Bx :→A →A →× Be

Show× : Show A → Show B → Show (A ×B)

Here we define a type for d ependent p airs, but only use the degener-
ate, simply typed case. Although our p roof search can construct the
required dictionary, using the show function results in various unre-
solved metavariables. We suspect that this is because Agda cannot
figure out how to instantiate the second argument of the dependent
pair. W e suspect this is a limitation of the reflection mechanism.
Wouter: Pepijn: is dit opgelost in de HEAD?

Refinement a ndR ecursion The auto function returns a complete
proof term or fails entirely. This is not always desirable. W e may
want to return an incomplete proof, that still has open h oles that the
user must complete. This difficult with the current implementation
of Agda’s reflection mechanism: it cannot generate an incomplete
Term.

In the future, it may be interesting to explore how to integrate
proof automation, as described in this paper, better with Agda’s
IDE. If the call to auto were to generate the concrete syntax for a
(possibly incomplete) p roof term, this could b e replaced with the
current goal quite easily. An additional advantage of this approach
would be that r eloading the file does no longer needs to r ecompute
the proof terms.

Another consequence of this r estriction is that we cannot use
induction h ypotheses as h ints. Wouter: Why is this exactly? Do
we h ave a good story here?

Metatheory The auto function is necessarily untyped because
the interface of Agda’s reflection mechanism is untyped. Defin-
ing a well-typed r epresentation of dependent types in a depen-
dently typed language remains an open problem, despite various
efforts in this direction [6, 8, 11, 13]. If we had such a represen-
tation, however, we might b e able to use the type information to
prove that when the auto function succeeds, the resulting term
has the correct type. A s it stands, to do p rove soundness of the
auto function is non-trivial: we would need to define the typing
rules of Agda’s Term data type and prove that the Term we p ro-
duce witnesses the validity of our goal Term. It may b e slightly
easier to ignore Agda’s r eflection mechanism and instead verify
the metatheory of the Prolog interpreter: if a p roof exists at some
given depth, searchToDepth should find it; any Result returned b y
searchToDepth should r epresent a valid derivation.

Related work

There are several existing alternatives

Coq and Ltac

Mtac

Idris

Agsy

Closure

Having said all of this, we h ave good reasons to believe the ap-
proach to proof automation described in this p aper is interesting
and worth exploring further. Unlike Coq, we do not need a custom
language of proof tactics. W e can debug and test our p roof search
mechanism j ust as easily as we debug any other Agda function. It
is straightforward to r ecord a log of all the r ules that have b een at-
tempted, for example, which is invaluable information when trying
to debug p roof automation. It is easy to write variations of the proof

10
search r esolution mechanism. W e have first-class h int databases
that can be assembled modularly, inspected b y other functions, or
even modified during proof search. This is super useful: consider
the problem of having trans in a hint database.

Using the techniques described in this p aper, it is possible to
write many other p ieces of proof automation. A utomated rewriting,
for example. Or a high-level, first-class tactic language: try this
piece of automation, and if that fails try something else.

This is the way forward for p roof automation.

References

[1] Agda developers. Agda release notes, r egarding reflection. The Agda
Wiki: h ttp ://wiki .portal .chalmers .se/agda/agda. .php?n=
Main .Version- 2- 2- 8 and http ://wiki .portal . chalmers .
se/agda/agda. .php?n=Main .Version- 2- 3- 0, 2013. [Online;
accessed 9-Feb-2013].

[2] Guillaume Allais. Proof automatization using reflection (implementa-
tions i n Agda). MSc Intern report, University of Nottingham, 2010.

[3] Edwin Brady. Idris, a general-purpose dependently typed program-
ming language: Design and implementation. Journal of Functional
Programming, 23:552–593, 9 2013. ISSN 1469-7653. doi: 10.1017/
S09567968 1300018X. URL h ttp ://j ournals . cambridge .org/
article_S095679681300018X.

[4] Edwin B rady, Conor McBride, and James McKinna. Inductive fam-
ilies need not store their indices. In Types for Proofs and Programs,
pages 115–129. Springer, 2004.

[5] Thomas B raibant. E mancipate yourself from Ltac. A vailable online
http ://gallium. .inria .fr/blog/your- f irst- coq-plugin/,
2012.

[6] J ames Chapman. Type checking and normalisation. PhD thesis,
University of Nottingham, 2009.

[7] Adam Chlipala. Certified p rogramming with dependent types. MIT
Press, 2013.

[8] Nils Anders Danielsson. A formalisation of a dependently typed
language as an inductive-recursive family. In Types for Proofs and
Programs, volume 4 502 of Lecture N otes in Computer Science. Spring
Verlag, 2006.

[9] The Coq development team. The Coq proof assistant reference man-
ual. Logical Project, 2004.

[10] Dominique Devriese and Frank Piessens. On the b right side of type
classes: Instance arguments in agda. In P roceedings of the 16th
ACM SIGPLAN I nternational Conference on Functional Program-
ming, I CFP ’ 11, p ages 143–155. ACM, 2011. doi: 10. 1145/2034773.
2034796.

[11] Dominique Devriese and Frank Piessens. Typed syntactic meta-
programming. In P roceedings of the 2 013 ACM SIGPLAN Interna-
tional Conference on Functional P rogramming (ICFP 2013). ACM,
September 2013. doi: 10.1145/2500365.2500575. URL https :
//lirias .kuleuven .be/handle/123456789/404549.

[12] Conor McBride. F irst-order u nification by structural recursion. J our-

nal of Functional P rogramming, 13: 1061–1075, 112003. ISSN 1469-
7653. doi: 10.1017/S0956796803004957. URL http : //j ournals .
cambridge .org/article_S0956796803004957.

[13] Conor McBride. Outrageous but meaningful coincidences: Dependent
type-safe syntax and evaluation. In P roceedings of the 6th ACM
SIGPLAN Workshop on Generic Programming, WGP ’ 10, pages 1

12, New York, NY, U SA, 2010. ACM. ISBN 978-1-4503-0251-7. doi:
10. 1145/1863495. 1863497. URL h ttp : //doi .acm .org/10 .1145/
1863495 . 1863497.

[14] Ulf Norell. Towards a p ractical p rogramming language based on

dependent type theory. PhD thesis, Department of Computer Science
and E ngineering, Chalmers University of T echnology, 2007.

[15] Ulf Norell. Playing with A gda. Invited talk at TPHOLS, 2009.

[16] Simon Peyton Jones, editor. Haskell 98 language and libraries: the
revised report. Cambridge University Press, 2003.

2014/2/24

[17] Kent MPitman. Special forms in Lisp. In P roceedings of the 1980
ACM conference on LISP and f unctional p rogramming, p ages 179–
187. ACM, 1980.

[18] Tim Sheard and Simon Peyton Jones. Template meta-programming
for Haskell. In Proceedings of the 2002 ACM SIGPLAN workshop on
Haskell, p ages 1–16, 2002. doi: 10.1 145/581690.581691.

[19] Matthieu Sozeau and Nicolas Oury. First-class type classes. In
Theorem Proving in Higher Order Logics, pages 278–293. Springer,
2008.

[20] Jurriën Stutterheim, Wouter Swierstra, and Doaitse Swierstra. Forty
hours of declarative programming: Teaching p rolog at the j unior col-
lege utrecht. In P roceedings First I nternational Workshop on Trends
in F unctional P rogramming in Education, University of St. Andrews,
Scotland, UK, 11th J une 2012, volume 106 of Electronic Proceedings
in Theoretical Computer Science, pages 50–62, 2013.

[21] Walid Taha and Tim Sheard. M ulti-stage programming with explicit
annotations. In Proceedings of the 1997 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manipulation,
PEPM ’97, 1997. doi: 10.1145/258993.259019. URL h ttp ://doi .
acm. .org/10 .1145/258993 .259019.

[22] Paul van der Walt and Wouter Swierstra. Engineering proof b y re-
flection in agda. In Ralf Hinze, editor, I mplementation and A ppli-
cation of Functional L anguages, Lecture Notes in Computer Sci-
ence, pages 157–173. Springer Berlin Heidelberg, 2013. ISBN 978-
3-642-41581-4. doi: 10.1007/978-3-642-41582- 1_10. URL http :
//dx .doi .org/10 . 1007/978- 3- 642-41582- 1_10.

[23] Paul van der W alt. Reflection in Agda. Master’s thesis, Department
of Computer Science, Utrecht University, Utrecht, The Netherlands,
2012. available online, h ttp : //igitur- archive .library .uu.
nl/student-theses/2012- 1030- 200720/UUindex .html.

11 2014/2/24

