
Function Level Programs as Mathematical Objects

John Backus

IBM Research Laboratory
5600 Cottle Road

San Jose, California 95193

I. Introduction

Most programs written today are "object-
level" programs. That is, programs des-
cribe how to combine various "objects" (i.e.,
numbers, symbols, arrays, etc.) to form
other objects until the final "result ob-
jects" have been formed. New objects are
constructed from existing ones by the ap-
plication of various object-to-object func-
tions such as + or matrix inversion.

Conventional, yon Neumann programs are
object level; "expressions" on the right
side of assignment statements are exclusive-
ly concerned with building an object that is
then to be stored. Lambda calculus based
languages, such as LISP and ISWIM [Landin
66], are also, in practice, object level
languages, although they have the means to
be more.

To see that "lambda style" programs are
primarily object level, consider the defi-
nition of a new object-to-object function
(the usual kind of definition), f = lx.E;
here x must be an object variable (since
the argument of f is an object) and E must
denote an object (since f's result is an
object). Typically E is an expression in'
volving the application of object-forming
functions to object variables and constants.
A few object-forming functions are used that
have both function and object arguments.

If we include object variables in the
term "objects", then the object level view
of programming is one of building objects
by the application of existing programs
(object-forming operations) to objects.
Lambda style programs then build a new pro-
gram from the result-object by abstracting
the object variables.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1981ACM0-89791-060-5/81-10/0001 $00.75

There is a different approach to build-
ing programs, a "function level" one. In
the function level style a program is built
directly from the programs that are given
at the outset, by combining them with pro-
gram-forming operations (PFOs). Thus instead
of applying the given programs to objects
to form a succession of objects culminating
in the result object, the function level ap-
proach applies program-forming operations
to the given programs to form a succession
of programs culminating in the desired pro-
gram.

Thus the object level approach invites
the study of the space of objects under the
object-forming operations, and of the alge-
braic properties of those operations. On
the other hand, the function level approach
invites study of the space of programs under
the program-forming operations and of the
algebraic properties of these PFOs.

The study of the space of objects under
the object-forming operations is now called
the study of data types. It has advanced
from focussing on the objects themselves
and their structure to a primary concern
with the object-forming operations and their
structure as given by certain axioms or al-
gebraic laws. This movement toward the
algebraic study of data types is exemplified
by [Burstall & Goguen 80], [Guttag &Horning
78], [Thatcher, Wagner & Wright 78], and
[Zilles 79].

One goal of the function level approach
is to now move our attention in a similar
fashion from programs themselves and their
'~structure" to the program-forming opera-
tions and their structure as given by var-
ious algebraic laws. Just as the study of
data types has brought out that "objects '~
comprise a "mathematical" space by emphasiz-
ing the algebraic properties of the opera-
tions on that space, so the function level
approach offers the possibility of making
the set of programs a mathematical space by
emphasizing the algebraic properties of the
program-forming operations over the space of
programs.

One purpose of this paper is to contrast

the object level and the function level ap-
proaches to programming. The latter ap-
proach is not well understood by many users
of lambda style languages, who mistakenly
regard it as merely a restrictive variant
of the lambda style, which is an object lev-
el style.

Section 2 is a very brief summary of the
FP style of programming [Backus 78] which
we shall use as an example of the function
level style. Section 3 discusses what we
mean by a set of "mathematical objects",
the advantages of a concept of "programs"
in which programs comprise a set of mathe-
matical objects, and why the object level
view blocks, whereas the function level
view advances this objective.

Section 4 compares object level function
definitions and function level ones. It
gives a mapping, "lift", that transforms any
object level definition into a corresponding
function level one, where object variables
in the first kind are replaced by function
variables in the second. This introduction
of function variables makes "extended" FP
definitions as readable as object level ones,
thereby removing one of the principal diffi-
culties people have experienced with the FP
variable-free style. Extended definitions
also turn out to be useful algebraic laws
about the functions they define.

Section 5 shows why variables are essen-
tial in object level definitions but not in
function level ones. It shows how function
variables in the latter can be removed, giv-
ing a "proper", variable-free definition of
the same function.

Section 6 discusses two further advan-
tages of the function level view. One is
the ability to use only strict functions
and thereby have bottom-up semantics (the
simplest kind) that are "safe" for comput-
ing least fixed points. The other is the
existence of function level definitions
that are not the "lifted" image of any ob-
ject level one. These "terse" function
level definitions represent a more powerful
style of programming not available at the
object level; they are often easier to un-
derstand and to reason about.

Section 7 compares lambda style and FP
style programs. It shows that the former
tend to be unstructured whereas the latter
are highly structured. The lambda style
tends to obscure function level identities
that are clear in function level expres-
sions; it obscures and complicates function
level reasoning about programs.

2. Brief summary of the FP function level
style of progra~,~ing

Here we give the shortest description
we can of the essential elements of FP pro-
gramming. For a complete description see
[Backus 78].

The "objects" that FP programs map into
one another comprise a set whose primary
property is closure under "sequence forma-
tion": if Xl,...,x n are objects, then the

sequence <Xl,...,Xn > is an object. Thus

the objects can be built from any set of
atoms (which should contain numbers, truth
values, symbols, etc.).

FP programs are functions f that each
map a single object x into another. We
write f:x for the object that results from
applying the function f to the object x.
Functions are either primitive (given) or
are built from the primitives by program-
forming operations, or PFOs (also called
combining forms or functional forms). One
such PFO, constant, transforms an object x
into the constant-valued function x, where

~:y=x

for all objects y (except the "undefined"
object, which all functions map into itself).
Next there are the three principal PFOs of
FP, which map, respectively, two, nal, or
three functions into a single function as
follows:

composition fog

fog:x = f: (g:x)

construction [fl,...,fn]

If,g] :x = <f:x, g:x>

[fl fn] :x = <fl :x fn :x>

condition (p+f;g)

f:x if p:x = T

(p+f;g) :x = g:x if p:x = F

undefined otherwise

Other PFOs are apply-to-all, ~f, where
, = <f:x I ,f:Xn>; right in- ef:<x I ...,Xn> ,...

sert, /f, where /f:<x> = x and

/f:<xl,x 2 Xn> = f:<xl,/f:<x 2 Xn>>;

and left insert \f, which works like right
insert except that the computation associates
to the left. Right or left insert of f ap-
plied to the empty sequence gives the right
or left unit of f if f has such a unit.

In addition to being constructed from
primitives by PFOs, a function may be defined
recursively by an equation, the simplest
kind (without variables, more on equations
with variables later) has the form:

f = Ef

where Ef is an expression built from primi-
tives, defined functions, and the function
symbol f by PFOs.

Of the many possible primitive functions
here we note only the basic "selector" func-
tions, denoted by 1,2,... , where, e.g.,

1:<x I, Xn> = Xl, 2:<Xl,X 2 ,Xn> = x2,

etc.

3. Programs as mathematical objects.

When we say that a set S is a set of
"mathematical objects", we are speaking of
S and a set of operations on S (that map S n
into S) such that these operations are in-
terrelated by algebraic laws. The "strong-
est '~ laws are "symmetric" ones like the
distributive law that relate two operations
A and B, in which operation A, combining
objects formed by operation B, is expressed
as operation B combining elements formed by
operation A. Other "weaker '~, non-symmetric
laws may relate several operations. The
more and the stronger laws that relate the
operations on S, the "stronger" is their
algebraic structure and the stronger is the
"mathematical structure" of the set S.

If the operations of a set of mathemat-
ical objects obey a strong set of interrelat-
ing laws, then there will exist a large body
of general theorems about the set. Thus
there are many such theorems concerning the
set of numbers under addition and multiplica-
tion, or about rings in general, or about
categories, etc. On the other hand, if the
operations on a set obey only a few weak laws,
there will be few general theorems. Thus
the set of numbers under addition and square
root hardly deserves to be called a set of
"mathematical objects" since there are few
general laws and theorems about it (unless
other operations, e.g., multiplication, are
added and obey laws relating to the other
two).

If programming is to become a truly
mathematical discipline, it is important to
find a way to make the space of programs a
mathematical one with respect to the oper-
ations (PFOs) over that space (as distin-
guished from the space of objects and the
operations (programs) over it). We would
then be able to produce a l~ge body of
carefully proven general theorems (whose
universally quantified variables would de-
note programs). These theorems would ex-
press many reliable, useful facts about
large classes of programs and about the
solutions of equations whose "unknowns" are
programs, just as ordinary algebra giyes us
theorems about numerical expressions and,
for example, the general solution for all
quadratic equations. This saves us the
labor of repeatedly and separately solving
many individual problems.

If programs were themselves mathematical
objects, we might derive many theorems that
would guide us -- at the outset, not after
the fact -- in how to structure a proposed
program, and later help us prove its correct-
ness or optimize it. Our reasoning could be
direct: theorems would concern the actual
PFOs we use to construct our programs and the
structure of the programs themselves.

Von Neumann programs do not form a set of
mathematical objects for reasons relating to
their object level nature; for further dis-
cussion of this question see [Backus 81a] .

Traditional "functional" programs, those
written in the lambda style of LISP or IS-
WIM, also tend not to form a set of mathe-
matical objects. These programs use lambda
abstraction as their principal program-form-
ing operation. This PFO obeys no strong
algebraic laws of the kind that are helpful
in transforming and reasoning about programs.
Its use in building an object-transforming
program requires that it be applied to an
object expression, one built by object-form-
ing operations from object variables, where-
upon lambda abstraction "elevates" it to a
function expression.

Thus the use of lambda abstraction as the
PFO of the lambda style means that most pro-
grams are largely object level; existing
programs are combined, not by PFOs directly,
but by application to "objects" to form an
expression for a "result object" that is
then elevated to a program by abstraction
of object variables.

Since von Neumann programs and traditional
functional programs are not mathematical
objects, we reason about them by mapping
them into a logical or mathematical domain,
reason about their images in that domain
and then translate the results of that
reasoning back to the realm of programs.
Even in these other, richer domains we do
not have a satisfactory set of laws and gen-
erally useful theorems relating to programs.

Our inability to change our notion of
"program" into a more orderly concept has
resulted from our tendency to keep to the
object level view of programs in their
active role as entities that combine objects.
This view has caused us to neglect the
study of program-forming operations them-
selves in their active role as entities that
combine programs.

The main purpose of this paper is to point
out the importance and usefulness of this
second, function level view of "programs"
as entities operated upon by PFOs. Only by
taking this view can we hope to change "pro-
grams" into mathematical objects.

FP programs serve as one example of "pro-
grams" that are mathematical objects; we
need to develop other examples. Thus the
three principal PFOs of FP obey the kind
of symmetric interrelating laws required
of the operations on a set of objects with
a strong mathematical structure; they obey
the following interrelating laws (in addi-
tion to laws concerning a single operation,
such as associativity of composition and
various laws concerning properties of con-
dition):

Composition and construction

[f,3] oh :[foh, 3oh]

This is a symmetric law since it expresses
composition involving construction as con-
struction involving composition, just as the
distributive law of ordinary algebra expres-
ses multiplication involving addition as
addition involving multiplication:

(a+b)c : ac + bc .

Composition and condition

([,-~f;~])oh : poh +foh; ~joh
h°({'÷f;w) = ~, -~ hof; hog

Again both laws are symmetric ones, composi-
tion involving a condition is expressed as
a condition involving composition.

Construction and condition

[f, (k÷:1; h)] = P -~ [f,u] ; [f,l~]

(The same symmetry principle applies to
this law, which is only an example of many
similar ones.)

In addition to these "strong" basic
laws there are many others, usually "weak"
ones, some involving the other PFOs, others
involving particular constants (that is,
particular functions), corresponding to
laws about units and other entities. Thus,
e.g., the identity function is the "unit"
of composition: foid = idoj' = ~'. The law

h : [1"h,2oh] where h : [f,j]

corresponds to the important "natural" one-
one correspondence

h ~ " [I .h,2..h]

in category theory [Mac Lane 71, p2] .

From the laws governing the PFOs and
primitive functions of FP one can derive
many general theorems and the solutions for
several large classes of functional equa-
tions. For early examples of such results
see [Williams 80], [Backus 81], and
[Backus 78].

The approach of viewing programs as
mathematical objects is a fairly recent one
and the development of theorems in a domain
rich in algebraic laws has only begun. When
the mathematical community begins to take
up this enterprise we can perhaps hope for
some really interesting new insights into
the mathematical structure of the domain of
programs with their PFOs. As some second-
order PFOs -- operations for combining first-
order PFOs -- are adjoined to such systems
we shall have need of insight to help us
identify the cleanest, most useful properties
for these operations (and for new first-order
PFOs).

4. Object level and function level defini-
tions; lifting object expressions to
function expressions: an example.

A typical object level definition looks
like this (we use FP syntax to clarify later
comparisons):

f:<x,y> = if neg:x then 0

else +:<sqrt:x,y>

This defines a function f that sends a pair
of numbers <x,y> into 0 when x is negative

and otherwise into fk + y. Notice that the
corresponding definition using lambda ab-
straction concerns itself with exactly the
same objects and constructions:

f : l(x,y). (if neg:x then 0

else +:<sqrt:x,y>) .

Therefore, for the present, we shall dis-
pense with lambda abstraction (we shall
have more to say about the "lambda style"
of programming later) and use traditional
object level definitions as above.

Notice that object expressions, like that
on the right above, are built up from atomic
objects (e.g., 0) and object variables
(x and W) by the application of ordinary
object-forming functions (neg, +, sqrt)
and by two object-forming operations that
are treated specially, if-then-else and
sequence-formation or tupling (that maps
n objects x I ,Xn into the single object

<Xl,...,Xn>) •

Thus objects and object variables are
object expressions and if e, el, en are

object expressions and if f is an object-
forming function, then

(a) (f:e)

(b) if e I then e 2 else e 3

(c) <el,...,en >

are object expressions.

It is clear that an object expression
containing no variables denotes an object
that is the value of the expression, thus
the expression +:<2,3> denotes the value
5.

Now consider the following mapping that
"lifts" object expressions e onto function

expressions 6 : lift(e)

The mapping "lift" : {e] ÷ {e}

We give the values of lift(e) for the
five possible cases:

a) e is an object:

lift(e) =

b) e is an object variable:

lift(e) = e

where, e.g., lift of the object variable
x is the function variable x.

c) e is an application (f:d) where f is
an object-forming function and d is an
object expression:

lift((f:d)) : fod

d) e is formed by if-then-else:

lift(if e I then e 2 else e 3)

= el + e2; e3
e) e is a sequence:

lift(<el en>) = [e l en]

(Note that if-then-else maps three objects
into one, whereas condition, on the right
in (d) , maps three functions into one.)
Here is an example:

lift(+:<g:x,h:3>) : +o [gox,ho3] ,

where x is an object variable on the left
and a function variable on the right.

Notice that an object expression e with-
out variables is lifted onto a function ex-
pression ~ whose function-value is the

constant-valued function v, where v is the
object-value of e. This relationship is
indicated by the following commuting dia-
gram:

lift

object value ~ $ function value

v lift

Thus, for example:

value(+:<2,3>) : 5

lift(+:<2,3>) = +o [2,3]

function-value(+o [2,3])= 5 : lift(5)

But keep in mind that most function expres-
sions are not lift-images of object expres-
sions.

Using the lift mapping we can write the
function level version of our earlier ex-
ample:

(I) object level:

f:<x,y> = if neg:x then 0 else +:<sqrt:x,y>

(2) function level:

f0 [x,y] : negox ÷ 0; +o [sqrtox,y]

Just as the object level versrion (I) is to
hold for all object values of the variables
x and y, so the function level version (2)
is to hold for all function values of the
variables x and y.

If, for the moment, we think of the var-
iables x and y as having fixed object or
function values respectively in the two
equations, denoted x and y in both cases,
then in (I) <x,y> is the value of f's argu-
ment, whereas in (2) [x,y] is the function
that constructs f's argument. Thus when
fo[x,y] :w is computed for any object w, f
"sees" the argument <x:w,y:w>. When the
right side of (2) is applied to the same
object w, then every occurrence of x will
produce x:w, just as it does on the left
side; similarly every occurrence of y will
produce the same object on both sides of
the equation. So the functional equation
(2) asserts that, to compute fo [x,y] :w =
f:<x:w, y:w> one computes

(negox ÷ 0; +o [sqrtox, y]) :w ,

which is 0:w = 0 if neg: (x:w) = T , or

+:<sqrt: (x:w) , y:w>

if neg: (x:w) = F.

This computation for the "extended" FP
definition (2) corresponds exactly with what
we understand from (I), except that the
(variable) object x in (I) is represented
in (2) by x:w, where both the function x and
the object w are variable elements (but in
(2) the variable object w is only implicit
by virtue of the fact that f=g means
f:w = g:w for all objects w).

Another way to see that (I) and (2) define
the same function f is to compare the object
level computation of (I) for a particular
argument, say <4,3>, with the corresponding
function level calculation for (2).

(I') f:<4,3> = 4:<sqrt:4, 3>

since neg:4 = F

= 5

Lifting 4 and 3 yields the constant-valued

functions ~ and 3. Thus the lift of <4,3>

is the function [4,3], and (2) becomes

(2') fo[4,3] = nego~ + 0; +o[sqrto4, 3]

It is easy to see that nego~ = F, (F÷g;h)

= h, sqrto4 = 2, and +0[2,3] = 5 are triv-
ial function level identities (if you wish
you can view them as lifted from their object
level counterparts). Fromthese we obtain
at the function level

fo [~,3] =

And in general, if (I) yields f:<x,y> = z,
then (2) will give

fo [x,y] =

Thus (I) expresses the fact that the ob-
ject f:<x,y> is the same as the object-value
of the expression on the right, no matter
what objects one chooses as x and y. As
expected, (2) expresses the "same"- thing

except in its "lifted" version: the function
fo [x,y] is the same as the function-value of
the expression on the right, no matter what
functions one chooses as x and y.

5. Why the function level is preferable to
the object level; deriving variable-free
function level definitions from those
with function variables: example contin-
ued.

What, if any, are the advantages of using
the lifted version of a definition? (We
continue to refer to definitions (I) and (2)
of the last section.) Now (I) allows us to
replace the object f:<x,y>, for any objects
x and y, by the object-expression on the
right. This forces us, in reasoning about
the program f or some program that uses f,
to descend from the domain of programs to
the domain of objects. Clearly it is simpler
and more direct if we can reason about the
program f in the program domain without
referring to objects at all; the function
level definition (2) allows us to do just
that. Thus (2) allows us to replace the
program fo [x,y], for any programs x and y,
by the program-expression on the right.
Therefore (2) is a general, useful law about
f that can be used to reason about f and
programs using f without leaving the domain
of programs.

Many programs that use f will construct
an argument for f with a function of the
form [g,h], and so fo [g,h] will occur in
the program using f. Thus (2), regarded as
a law about f, allows us to replace fo[g,h]
with the function expression

negog ÷ 0; +o[sqrtog, hi ;

this elimination of f may help us to reason
about or transform the using program.

In addition to serving as a useful alge-
braic law about f, (2) has another advantage
over (I). In (I) the variables x and y are
absolutely essential in defining the function
f: the object level approach, by definition,
is dedicated to describing functions by des-
cribing their values for all arguments, in
this case denoted by x and y. But in (2),
as we shall see, the function variables x
and y are not essential in defining f; their
purpose is (a) to make the definition more
readable and (b) to provide the variables of
an algebraic law about f.

Let us try to derive a "proper", variable-
free definition of f from the definition (2).
Since (2) is to hold for all functions x
and y, we might ask if there are particular
functions s I and s 2 such that [Sl,S 2] is the

identity on pairs, the domain on which f is
to be defined. If s I and s 2 exist, then, in

the domain of pairs, fo[sl,s 2] = f, and so,

if we substitute s I and s 2 for x and y in

(2), we get

(3) f = negos I ~ 0; +o[sqrtos I, s 2]

For [Sl,S 2] to be the identity on pairs, it

is necessary and sufficient that the func-

tions s I and s 2 satisfy

SlO [x,y] : x and s2o [x,y] = y

when both x and y are defined. Now of
course the selector functions I and 2 have
this property and are the functions that
we want for s I and s2, since [1,2] is the

identity function on pairs:

[I,2] :<x,y> = <1:<x,y>, 2:<x,y>> = <x,y>.

Substituting these values in (3) gives

(4) f = negol ÷ 0; +o[sqrtol, 2] ,

which defines the sam~ function as (I) and
(2) on the domain of pairs. But the right
side of (4) is defined for sequences of any
length whose first two elements are numbers.
If we want f to be undefined for all non-
pairs, we must insert a predicate that
ensures this:

(5) f = eqo[[1,2I,id] ÷ E;

where eq is the equality function, id is
the identity function, E is the right side

of (4), and [is the everywhere-undefined
function. Now (5) defines exactly the
function we intend by (I) and (2): it is
undefined for arguments that are not pairs
of numbers.

In the two preceding sections we have
tried to give an informal idea of how "ex-
tended" FP definitions using function vari-
ables can be used to make easily readable
definitions that correspond exactly to ob-
ject level definitions. We have indicated
how these extended definitions serve as
useful laws for reasoning about the defined
function and others that use it. And we
have indicated how extended definitions can
be converted to proper, variable-free ones.

The technical definitions and theorems
needed to make the noti6n of extended def-
initions precise and to prove the equival-
ence of the functions defined by an extend-
ed definition and by the corresponding pro-
per definition are to be found in [Backus

81].

6. Safe computation rules; "terse" func-
tion level programs.

Another advantage of the function level
approach concerns the elimination of the
object level function if-then-else, a
function that must be non-strict to be
meaningful (i.e., it must be defined for
some undefined arguments). Object level
functional languages require at least this
one non-strict function. As Manna et al.
[73] and Cadiou [72] observe, bottom-up

computation rules are not "safe" for comput-
ing least fixed points in systems with non-
strict functions, thus bottom-up rules (giv-
ing the simplest operational semantics) are
not safe in object level languages using if-
then-else, hence the simplest operational
semantics are incompatible with fixed point
semantics in such languages.

On the other hand, function level lan-
guages can use condition, the lifted version
of if-then-else, a non-strict functional; all
functions can then be strict and bottom-up
rules become safe for computing least fixed
points. It is interesting to note that the
object level view has so dominated our think-
ing that Manna and Cadiou, despite the thor-
oughness of their studies of fixed points,
never considered the possible existence of
systems with all strict functions and hence
of safe bottom-up computation. (For a fuller
discussion of this point see [Williams 80].)

Perhaps the most important advantage of
the function level approach is that it makes
possible a more powerful and terse style of
programming than is possible at the object
level, a style that often has no object lev-
el counterpart of comparable simplicity.
Furthermore, this terse style is often much
easier to reason about. Let me illustrate
this point with an example similar to one
in [Williams 81].

Williams defines the function "length"
at the function level as follows:

(6) length = /+ o ~#

This means (a) apply (with apply-to-all of 1)
the everywhere-1 function to every member
of an argument sequence, giving a sequence
of all 1's, then (b) sum this (with /+) ,
thereby giving the length of the original.

This definition uses the PFOs insert (/) ,
composition (o) and apply-to-all (~) to
build length from the functions + and 1.
It is not clear what object level definition
might approximate (6) without these PFOs.
Thus, unlike our earlier example, (6) is
not the lift of any object level definition.
The usual object level definition of length
is recursive:

(7) length:x = if null:x then 0

else +:<I, length: (tl:x)>

The lifted version of (7), with the variable
removed, is

(8) length = null ÷ 0; +o [1, lengthotl]

One indication of the usefulness of the gen-
eral theorems of the FP style is that one
can use the general solution for all "lin-
ear" equations [Backus 81] to prove that
(8) and (6) define the same function.

But the proof of a theorem about length
is often much easier when it starts with the

closed form (6) than when it starts with the
recursive definitions (7) or (8). For ex-
ample, the following theorem has a relative-
ly simple proof when length is defined by
(6), whereas its proof is harder and involves
induction when length is defined by (7).

THEOREM lengthoapndro [f,g] = +o [lengthof,~]

for all functions f and g when g is defined,
where apndr is append on the right:

apndr:<<Xl,...,Xn>,y> = <Xl,...,Xn,Y> •

This theorem is a lifted version of one
that says: the length of a sequence s = f:x
with an element (g:x) added on the right, is
one greater than the length of s.

The proof uses the following identities:

(a) ~hoapndro [f,g] = apndro [~hof, hog]

(b) if h is associative then \h = /h

(c) \hoapndro If,g] = ho[\hof, g]

(d) ~og =

proof We transform the left side of the
equation into the right by the use of-the
above identities.

lengthoapndro[f,g]

: /+oe~oapndro[f,g]

= /+oapndro[elof, log]

= \+oapndro[~lof, 1]

= +o [\+oe~of, 1]

= +o [/+o~lof, 1]

= +o[lengthof, 1]

by def of length

by (a)

by (b) (+ assoc)
and (d)

by (c)

by (b)

by def of length

D

The point of this example is that, after
becoming familiar with the function level
style, one can construct functions that are
more tersely expressed, easier to understand
and to reason about.

7. Comparison of FP and lambda style prop
gramming; object vs. function level,
structure and reasoning.

So far we have discussed a number of
reasons for preferring a function level
style over an object level one. Now I would
like to extend that discussion with a more
specific comparison of the FP style with the
"lambda style", that used in lambda calculus
based languages like LISP and ISWIM [Landin
66], from the viewpoint of program structure.

In this section we shall point out some
of the basic differences between the FP and

the lambda styles of functional programming.
We shall suggest that (a) the FP style leads
to "structured" functional programs, where-
as the lambda style leads to unstructured
ones, and that (b) the FP style encourages
reasoning at the "function level" whereas
the lambda style leads to reasoning at the
"object level" In general, we suggest that
the FP style offers a framework in which one
can perceive and reason about program struc-
ture, truths, and transformations at a high-
er level of generality than that presently
available for reasoning about lambda style
programs.

What do we mean by the "structure" of a
program? In a conventional, yon Neumann
language, a program is "structured" if it
has single entry and exit points and is built
up from subprograms of this same kind by a
small set of program-forming operations
(PFOs) . For example, the program

p = if a then (while b do c) else d

is built from an expression a and two pro-
grams, (while b do c) and d by the PFO
if-then-else. Its first subprogram is built
by the PFO while-do. Thus the "structure"
of p is the operation if-then-else composed
with while-do in its first program-argument
position.

In similar terms FP programs are complete-
ly structured. For example, the program

(I) f : p ÷ q; ho[r,s]

employs the PFO, condition, to build f from
three programs, p, q, and ho[r,s], where the
third of these is built by the PFO composi-
tion from the program h and the program form-
ed by the PFO construction from programs r
and s.

In contrast to the FP emphasis on the use
of program-forming operations to build struc-
tured programs at the function level, the
lambda style emphasizes object-forming oper-
ations and is more often concerned with
combining objects than with combining func-
tions. For example, the lambda style ana-
logue of (I) is

(2) f = ix. (p:x ÷ q:x; h(r:x,s:x))

In (I) we simply combine the functions
p, q, h, r, and s to form the function f.
In (2) we are given the same functions to
start with and want to define the same result.
But we proceed quite differently. We begin
by introducing an "object" x, and from it
we form the objects p:x, q:x, r:x, and s:x,
combine r:x and s:x to form the object
h(r:x,s:x), and finally we combine p:x, q:x
and h(r:x,s:x) with the object-forming opera-
tion conditional to form the "result", an
object. Only at this point do we use the
primary program-forming operation of the
lambda style, lambda abstraction [Church 41].
By writing "ix." in front of the object we
have so far produced, v'e transform it into

the desired function.

As the above example shows, the typical
method of building a function f in the lamb-
da style is to immediately descend from the
level of functions (those supplied to build
f) to the level of objects, and there combine
objects to form the desired "result-object".
One then ascends to the function level by
abstraction of the original "objects", i.e.,
the object variables. This down-then-up-
again approach and its concern with object-
forming operations avoids the use of PFOs
that could achieve the same result more
directly; therefore it obscures the "struc-
ture" of the program.

It is clear that it is the use of lambda
abstraction as the principal PFO that leads
to the object-oriented, structure-obscuring
nature of the lambda style. If a function
f maps objects into objects and is built
by lambda abstraction, f = Ix.E, then x
must be an objeqt variable (since the argu-
ment of f is an object) and E must denote
an object (since the result of f is an ob-
ject) .

The relative structurelessness of lambda
style programs makes it difficult to recog-
nize even simple relationships between pro-
grams. For example, it is harder to recog-
nize an instance of the following simple
identity in the lambda style,

(3) ly. ((Ix.<f:x,g:x>) : (h:y) =

ly.<Ix. (f: (h:x)) :y, Ix. (g: (h:x)) :y>

than it is to recognize the more structured
FP law

(4) [f,g]oh = [foh,goh] ,

which is the same identity expressed at the
function level, without the superfluous
application of functions to "abstract" ob-
jects that is required by lambda abstract-
ion and that demotes this statement about
functions to substatements about objects.
(The identity (3) is unlikely to be recog-
nized as a useful function level identity
for a second reason: if it is simplified
to eliminate x, both sides reduce to

ly.<f: (h:y), g:(h:y)>

and the functional relationship has vanish-
ed.)

The simpler structure of FP-style programs
is important if programming is to become a
mathematical discipline that is useful to
the ordinary practitioner. Such a disci-
pline can be helpful by providing a body
of carefully proven general laws and theo-
rems about programs. The simpler the struc-
ture of programs, the more easily can a
programmer recognize that the major struc-
ture of his program provides an instance of
one or more theorems that will help him
prove its correctness or make it more effi-

cient.

If it is difficult to recognize an in-
stance of a simple law like (4) when express-
ed in the lambda style, then the chances of
recognizing instances of important theorems
are very small. For example, Williams [80]
proves the following theorem for all n>1
and for all functions f, a, b, and c:

(5) [f, 2oa] no [b,c] =

[\fo[b,c,aoc an-loc], anoc],

where fn+1 = fof n. It is unlikely anyone
is going to recognize an instance of such a
theorem when his program and the theorem are
expressed in the lambda style, simply because
of the sheer complexity of its statement.

We have seen how the lambda style tends
to obscure the function level structure of
a program. The need to move from the func-
tion level down to the object level leads to
an over-reliance on object level reasoning.
In either the FP or lambda style it is some-
times necessary to reason at the object lev-
el: to show that f=f' one may have to show
that for every object x, f:x is the same
object as f' :x. (Such reasoning can be done
in a lifted form at the function level.)
But often such reasoning is unnecessary and
tends to lose touch with important function
level identities. For example, consider the
following object level definitions of f
and f'.

f:x : 4x + g(3x)

where g:x = even(x) + x; 2x .

f' :x = even(3x) + 7x; 10x .

In trying to prove f:x = f':x at the object
level, one may be lead into considering var-
ious cases and making various calculations.
If, on the other hand, f is expressed at the
function level (using m i for "multiply by i"),
then we get

or

f = +o[m4, g°m 3]

where g = even ÷ id; m 2

f = +o [m 4, (even + id; m2) om3]

Now anyone familiar with FP theorems would
either (a) recognize the first expression
for f as a form linear in g [Backus 81] and
use the properties of such forms to obtain
the desired result or (b) he would recognize
the combined expression for f as an instance
of the simple theorem

ho [i, (p+q;r)oj] =

poj ÷ h o [i,qoj] ; ho [i,roj]

that gives, in this case,

f = evenom 3 ÷ +o [m4,idom3] ; +o[m4,m2om3]

or, after simplification,

f = evenom 3 ÷ m7; m10 •

This is an extremely simple example;
consequently the object level reasoning
needed to show that f:x = f' :x for every
x is simple. However, if instead of the
subprograms m. we had used others requiring

x
complex calculations, the object level
reasoning might have become much more dif-
ficult unless the reasoner happened to rec-
ognize the usefulness of the function level
identities that the FP approach makes clear.
Much object level reasoning can be compared
to proving (a+b)c = ac+bc for given numbers
a, b, and c by doing arithmetic instead of
by using algebra. If a, b, c are small
numbers, either method is viable, but if
they are very large, then algebra is defi-
nitely better!

One further difference between the lambda
and FP styles is worth noting. Languages
in the former style tend to use functions
of more than one argument, whereas all FP
functions are unary. Thus in the lambda
style, if h(x,y) is a function of two ar-
guments and the values of g(x) are pairs
<y,z>, then the following locutions are
needed to express the function f, where

f:x = h(y,z) where g:x = <y,z>

or, using selector functions and lambda
abstraction,

f = lx.h(1: (g:x), 2: (g:x))

In the FP style h would be a function on
pairs, h:<y,z>, therefore the definition
of f would be

f = hog .

Thus the use of n-ary functions in the lamb-
da style is another important factor that
obscures program, function level structure
and leads to object level reasoning. (The
PFO "construction" is important in a style
using only unary functions; it is the PFO
used to build a subprogram to create an
argument for a function on tuples; e.g.,
if h is defined on pairs, then f = ho[r,s]
corresponds to f:x = h(r:x, s:x) .)

To summarize: use of lambda abstraction
as the primary program-forming operation
obscures function level structure of pro-
grams built with it. By requiring a de-
scent to object-forming operations, it often
leads to unnecessarily complicated object
level reasoning, reasoning that may fail
to take advantage of function level theorems
that can be seen to apply when the function
level structure of a program is made clear.

At this point we must note that we are
not proposing the FP style as a panacea.
When object levelreasoning is necessary,
as it often is (e.g., when a proof depends
on the detailed properties of a primitive
function), then lambda expressions can be

helpful (but of course we would propose
using the lifted function level analogue).

The lambda abstraction PFO is more power-
ful than any or all of the PFOs of the FP
style. Using lambda abstraction one can de-
fine all of the FP PFOs and an infinity of
others. But this reminds one of the rela-
tionship between Fortran and the convention-
al "structured languages". Using IFs and
GOTOs in the former, one can model the
"structured" PFOs allowed in the latter and
one can model an infinity of other PFOs.

Thus, just as one can write
"structured" programs in Fortran, so one can
write "structured" functional programs in
LISP or ISWIM. But just as it is easier to
see the structure of a program written in
Pascal rather than in Fortran, so it is
easier to see the structure of a functional
program written in FP rather than in LISP
or ISWIM, since FP and Pascal are designed
to emphasize program structure whereas LISP
and Fortran tend to obscure it.

It is perhaps going too far to say that
lambda style languages are the "Fortrans"
of functional progran~ing languages, since
they are more powerful than Fortran. How-
ever, LISP has been around almost as long as
Fortran and it and other lambda style lan-
guages tend to produce unstructured programs,
as indicated above. Therefore perhaps it is
time to begin designing a new generation of
functional languages, languages that em-
phasize function level structure and func-
tion level reasoning, languages whose pro-
grams and program-forming operations comprise
a space of mathematical objects.

Acknowledgments

I am grateful to Gordon Plotkin for his
helpful discussion of category theory and
relationships between certain aspects of it
and some laws concerning PFOs of FP. I am
also grateful to John H. Williams for many
discussions of some of the questions dis-
cussed in the paper.

Backus, J. (1981a) Is computer science
based on the wrong fundamental concept
of "program"? An extended concept.
Proc. International Symposium on Algo-
rithmic Languages, IFIP TC2, Amsterdam,
(October) (to appear).

Burstall, R. and Goguen, J. A. (1980) The
semantics of CLEAR, a specification
language. Lecture Notes in Computer
Science, No. 86, Springer-Verlag,
Heidelberg.

Cadiou, J. M. (1972) Recursive definitions
of partial functions and their computa-
tions. Report CS-266 Computer Science
Dept., Stanford Univ., Stanford.

Church, A. (1941) The calculi of lambda
conversion. Princeton Univ. Press,
Princeton.

Guttag, J. V. and Horning, J. J. (1978)
The algebraic specification of abstract
data types. Acta Informatica 10.

Landin, P. J. (1966) The next 700 program-
ming languages. CACM 9, 3.

Mac Lane, S. (1971) Categories for the
working mathematician. Springer-Verlag,
New York.

Manna, Z., Ness, S., and Vuillemin, J.
(1973) Inductive methods for proving
properties of programs. CACM 16, 8.

Thatcher, J. W., Wagner, E. G., and Wright,
J. B. (1978) Data type specification:
parameterization and the power of speci-
fication techniques. Proc. Tenth Annual
ACM Symposium on Theory of Computing,
New York (May).

Williams, J. H. (1980) On the development
of the algebra of functional programs.
Report RJ2983, IBM Research Laboratory,
San Jose.

Williams, J. H. (1981) Notes on the FP
style of functional programming. Lec-
ture notes for the course "Functional
Programming and its Applications", Univ.
of Newcastle upon Tyne (July).

Zilles, S. N. (1979) An introduction to
data algebras. Lecture Notes in Computer
Science, No. 86, Springer-Verlag,
Heidelberg.

References

Backus, J. (1978) Can programming be lib-
erated from the von Neumann style? A
functional style and its algebra of
programs. CACM 21, 8.

Backus, J. (1981) The algebra of function-
al programs: function level reasoning,
linear equations, and extended defini-
tions. Proc. International ColloQuium
on the Formalization of Programming
Concepts, Peniscola, Spain (April),
Lecture Notes in Computer Science,
NO. 107, Springer-Verlag, Heidelberg.

i0

