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I. Introduction 

Most programs written today are "object- 
level" programs. That is, programs des- 
cribe how to combine various "objects" (i.e., 
numbers, symbols, arrays, etc.) to form 
other objects until the final "result ob- 
jects" have been formed. New objects are 
constructed from existing ones by the ap- 
plication of various object-to-object func- 
tions such as + or matrix inversion. 

Conventional, yon Neumann programs are 
object level; "expressions" on the right 
side of assignment statements are exclusive- 
ly concerned with building an object that is 
then to be stored. Lambda calculus based 
languages, such as LISP and ISWIM [Landin 
66], are also, in practice, object level 
languages, although they have the means to 
be more. 

To see that "lambda style" programs are 
primarily object level, consider the defi- 
nition of a new object-to-object function 
(the usual kind of definition), f = lx.E; 
here x must be an object variable (since 
the argument of f is an object) and E must 
denote an object (since f's result is an 
object). Typically E is an expression in' 
volving the application of object-forming 
functions to object variables and constants. 
A few object-forming functions are used that 
have both function and object arguments. 

If we include object variables in the 
term "objects", then the object level view 
of programming is one of building objects 
by the application of existing programs 
(object-forming operations) to objects. 
Lambda style programs then build a new pro- 
gram from the result-object by abstracting 
the object variables. 
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There is a different approach to build- 
ing programs, a "function level" one. In 
the function level style a program is built 
directly from the programs that are given 
at the outset, by combining them with pro- 
gram-forming operations (PFOs). Thus instead 
of applying the given programs to objects 
to form a succession of objects culminating 
in the result object, the function level ap- 
proach applies program-forming operations 
to the given programs to form a succession 
of programs culminating in the desired pro- 
gram. 

Thus the object level approach invites 
the study of the space of objects under the 
object-forming operations, and of the alge- 
braic properties of those operations. On 
the other hand, the function level approach 
invites study of the space of programs under 
the program-forming operations and of the 
algebraic properties of these PFOs. 

The study of the space of objects under 
the object-forming operations is now called 
the study of data types. It has advanced 
from focussing on the objects themselves 
and their structure to a primary concern 
with the object-forming operations and their 
structure as given by certain axioms or al- 
gebraic laws. This movement toward the 
algebraic study of data types is exemplified 
by [Burstall & Goguen 80], [Guttag &Horning 
78], [Thatcher, Wagner & Wright 78], and 
[Zilles 79]. 

One goal of the function level approach 
is to now move our attention in a similar 
fashion from programs themselves and their 
'~structure" to the program-forming opera- 
tions and their structure as given by var- 
ious algebraic laws. Just as the study of 
data types has brought out that "objects '~ 
comprise a "mathematical" space by emphasiz- 
ing the algebraic properties of the opera- 
tions on that space, so the function level 
approach offers the possibility of making 
the set of programs a mathematical space by 
emphasizing the algebraic properties of the 
program-forming operations over the space of 
programs. 

One purpose of this paper is to contrast 



the object level and the function level ap- 
proaches to programming. The latter ap- 
proach is not well understood by many users 
of lambda style languages, who mistakenly 
regard it as merely a restrictive variant 
of the lambda style, which is an object lev- 
el style. 

Section 2 is a very brief summary of the 
FP style of programming [Backus 78] which 
we shall use as an example of the function 
level style. Section 3 discusses what we 
mean by a set of "mathematical objects", 
the advantages of a concept of "programs" 
in which programs comprise a set of mathe- 
matical objects, and why the object level 
view blocks, whereas the function level 
view advances this objective. 

Section 4 compares object level function 
definitions and function level ones. It 
gives a mapping, "lift", that transforms any 
object level definition into a corresponding 
function level one, where object variables 
in the first kind are replaced by function 
variables in the second. This introduction 
of function variables makes "extended" FP 
definitions as readable as object level ones, 
thereby removing one of the principal diffi- 
culties people have experienced with the FP 
variable-free style. Extended definitions 
also turn out to be useful algebraic laws 
about the functions they define. 

Section 5 shows why variables are essen- 
tial in object level definitions but not in 
function level ones. It shows how function 
variables in the latter can be removed, giv- 
ing a "proper", variable-free definition of 
the same function. 

Section 6 discusses two further advan- 
tages of the function level view. One is 
the ability to use only strict functions 
and thereby have bottom-up semantics (the 
simplest kind) that are "safe" for comput- 
ing least fixed points. The other is the 
existence of function level definitions 
that are not the "lifted" image of any ob- 
ject level one. These "terse" function 
level definitions represent a more powerful 
style of programming not available at the 
object level; they are often easier to un- 
derstand and to reason about. 

Section 7 compares lambda style and FP 
style programs. It shows that the former 
tend to be unstructured whereas the latter 
are highly structured. The lambda style 
tends to obscure function level identities 
that are clear in function level expres- 
sions; it obscures and complicates function 
level reasoning about programs. 

2. Brief summary of the FP function level 
style of progra~,~ing 

Here we give the shortest description 
we can of the essential elements of FP pro- 
gramming. For a complete description see 
[Backus 78]. 

The "objects" that FP programs map into 
one another comprise a set whose primary 
property is closure under "sequence forma- 
tion": if Xl,...,x n are objects, then the 

sequence <Xl,...,Xn > is an object. Thus 

the objects can be built from any set of 
atoms (which should contain numbers, truth 
values, symbols, etc.). 

FP programs are functions f that each 
map a single object x into another. We 
write f:x for the object that results from 
applying the function f to the object x. 
Functions are either primitive (given) or 
are built from the primitives by program- 
forming operations, or PFOs (also called 
combining forms or functional forms). One 
such PFO, constant, transforms an object x 
into the constant-valued function x, where 

~:y=x 

for all objects y (except the "undefined" 
object, which all functions map into itself). 
Next there are the three principal PFOs of 
FP, which map, respectively, two, nal, or 
three functions into a single function as 
follows: 

composition fog 

fog:x = f: (g:x) 

construction [fl,...,fn] 

If,g] :x = <f:x, g:x> 

[fl ..... fn ] :x = <fl :x ..... fn :x> 

condition (p+f;g) 

f:x if p:x = T 

(p+f;g) :x = g:x if p:x = F 

undefined otherwise 

Other PFOs are apply-to-all, ~f, where 
, = <f:x I ,f:Xn>; right in- ef:<x I ...,Xn> ,... 

sert, /f, where /f:<x> = x and 

/f:<xl,x 2 ..... Xn> = f:<xl,/f:<x 2 .... Xn>>; 

and left insert \f, which works like right 
insert except that the computation associates 
to the left. Right or left insert of f ap- 
plied to the empty sequence gives the right 
or left unit of f if f has such a unit. 

In addition to being constructed from 
primitives by PFOs, a function may be defined 
recursively by an equation, the simplest 
kind (without variables, more on equations 
with variables later) has the form: 

f = Ef 

where Ef is an expression built from primi- 
tives, defined functions, and the function 
symbol f by PFOs. 

Of the many possible primitive functions 
here we note only the basic "selector" func- 
tions, denoted by 1,2,... , where, e.g., 



1:<x I, .... Xn> = Xl, 2:<Xl,X 2 .... ,Xn> = x2, 

etc. 

3. Programs as mathematical objects. 

When we say that a set S is a set of 
"mathematical objects", we are speaking of 
S and a set of operations on S (that map S n 
into S) such that these operations are in- 
terrelated by algebraic laws. The "strong- 
est '~ laws are "symmetric" ones like the 
distributive law that relate two operations 
A and B, in which operation A, combining 
objects formed by operation B, is expressed 
as operation B combining elements formed by 
operation A. Other "weaker '~, non-symmetric 
laws may relate several operations. The 
more and the stronger laws that relate the 
operations on S, the "stronger" is their 
algebraic structure and the stronger is the 
"mathematical structure" of the set S. 

If the operations of a set of mathemat- 
ical objects obey a strong set of interrelat- 
ing laws, then there will exist a large body 
of general theorems about the set. Thus 
there are many such theorems concerning the 
set of numbers under addition and multiplica- 
tion, or about rings in general, or about 
categories, etc. On the other hand, if the 
operations on a set obey only a few weak laws, 
there will be few general theorems. Thus 
the set of numbers under addition and square 
root hardly deserves to be called a set of 
"mathematical objects" since there are few 
general laws and theorems about it (unless 
other operations, e.g., multiplication, are 
added and obey laws relating to the other 
two). 

If programming is to become a truly 
mathematical discipline, it is important to 
find a way to make the space of programs a 
mathematical one with respect to the oper- 
ations (PFOs) over that space (as distin- 
guished from the space of objects and the 
operations (programs) over it). We would 
then be able to produce a l~ge body of 
carefully proven general theorems (whose 
universally quantified variables would de- 
note programs). These theorems would ex- 
press many reliable, useful facts about 
large classes of programs and about the 
solutions of equations whose "unknowns" are 
programs, just as ordinary algebra giyes us 
theorems about numerical expressions and, 
for example, the general solution for all 
quadratic equations. This saves us the 
labor of repeatedly and separately solving 
many individual problems. 

If programs were themselves mathematical 
objects, we might derive many theorems that 
would guide us -- at the outset, not after 
the fact -- in how to structure a proposed 
program, and later help us prove its correct- 
ness or optimize it. Our reasoning could be 
direct: theorems would concern the actual 
PFOs we use to construct our programs and the 
structure of the programs themselves. 

Von Neumann programs do not form a set of 
mathematical objects for reasons relating to 
their object level nature; for further dis- 
cussion of this question see [Backus 81a] . 

Traditional "functional" programs, those 
written in the lambda style of LISP or IS- 
WIM, also tend not to form a set of mathe- 
matical objects. These programs use lambda 
abstraction as their principal program-form- 
ing operation. This PFO obeys no strong 
algebraic laws of the kind that are helpful 
in transforming and reasoning about programs. 
Its use in building an object-transforming 
program requires that it be applied to an 
object expression, one built by object-form- 
ing operations from object variables, where- 
upon lambda abstraction "elevates" it to a 
function expression. 

Thus the use of lambda abstraction as the 
PFO of the lambda style means that most pro- 
grams are largely object level; existing 
programs are combined, not by PFOs directly, 
but by application to "objects" to form an 
expression for a "result object" that is 
then elevated to a program by abstraction 
of object variables. 

Since von Neumann programs and traditional 
functional programs are not mathematical 
objects, we reason about them by mapping 
them into a logical or mathematical domain, 
reason about their images in that domain 
and then translate the results of that 
reasoning back to the realm of programs. 
Even in these other, richer domains we do 
not have a satisfactory set of laws and gen- 
erally useful theorems relating to programs. 

Our inability to change our notion of 
"program" into a more orderly concept has 
resulted from our tendency to keep to the 
object level view of programs in their 
active role as entities that combine objects. 
This view has caused us to neglect the 
study of program-forming operations them- 
selves in their active role as entities that 
combine programs. 

The main purpose of this paper is to point 
out the importance and usefulness of this 
second, function level view of "programs" 
as entities operated upon by PFOs. Only by 
taking this view can we hope to change "pro- 
grams" into mathematical objects. 

FP programs serve as one example of "pro- 
grams" that are mathematical objects; we 
need to develop other examples. Thus the 
three principal PFOs of FP obey the kind 
of symmetric interrelating laws required 
of the operations on a set of objects with 
a strong mathematical structure; they obey 
the following interrelating laws (in addi- 
tion to laws concerning a single operation, 
such as associativity of composition and 
various laws concerning properties of con- 
dition): 



Composition and construction 

[f,3] oh :[foh, 3oh] 

This is a symmetric law since it expresses 
composition involving construction as con- 
struction involving composition, just as the 
distributive law of ordinary algebra expres- 
ses multiplication involving addition as 
addition involving multiplication: 

(a+b)c : ac + bc . 

Composition and condition 

([,-~f;~])oh : poh +foh; ~joh 
h°({'÷f;w) = ~, -~ hof; hog 

Again both laws are symmetric ones, composi- 
tion involving a condition is expressed as 
a condition involving composition. 

Construction and condition 

[f, (k÷:1; h)] = P -~ [f,u] ; [f,l~] 

(The same symmetry principle applies to 
this law, which is only an example of many 
similar ones.) 

In addition to these "strong" basic 
laws there are many others, usually "weak" 
ones, some involving the other PFOs, others 
involving particular constants (that is, 
particular functions), corresponding to 
laws about units and other entities. Thus, 
e.g., the identity function is the "unit" 
of composition: foid = idoj' = ~'. The law 

h : [1"h,2oh] where h : [f,j] 

corresponds to the important "natural" one- 
one correspondence 

h ~ " [I .h,2..h] 

in category theory [Mac Lane 71, p2] . 

From the laws governing the PFOs and 
primitive functions of FP one can derive 
many general theorems and the solutions for 
several large classes of functional equa- 
tions. For early examples of such results 
see [Williams 80], [Backus 81], and 
[Backus 78]. 

The approach of viewing programs as 
mathematical objects is a fairly recent one 
and the development of theorems in a domain 
rich in algebraic laws has only begun. When 
the mathematical community begins to take 
up this enterprise we can perhaps hope for 
some really interesting new insights into 
the mathematical structure of the domain of 
programs with their PFOs. As some second- 
order PFOs -- operations for combining first- 
order PFOs -- are adjoined to such systems 
we shall have need of insight to help us 
identify the cleanest, most useful properties 
for these operations (and for new first-order 
PFOs). 

4. Object level and function level defini- 
tions; lifting object expressions to 
function expressions: an example. 

A typical object level definition looks 
like this (we use FP syntax to clarify later 
comparisons): 

f:<x,y> = if neg:x then 0 

else +:<sqrt:x,y> 

This defines a function f that sends a pair 
of numbers <x,y> into 0 when x is negative 

and otherwise into fk + y. Notice that the 
corresponding definition using lambda ab- 
straction concerns itself with exactly the 
same objects and constructions: 

f : l(x,y). (if neg:x then 0 

else +:<sqrt:x,y>) . 

Therefore, for the present, we shall dis- 
pense with lambda abstraction (we shall 
have more to say about the "lambda style" 
of programming later) and use traditional 
object level definitions as above. 

Notice that object expressions, like that 
on the right above, are built up from atomic 
objects (e.g., 0 ) and object variables 
(x and W) by the application of ordinary 
object-forming functions (neg, +, sqrt) 
and by two object-forming operations that 
are treated specially, if-then-else and 
sequence-formation or tupling (that maps 
n objects x I .... ,Xn into the single object 

<Xl,...,Xn>) • 

Thus objects and object variables are 
object expressions and if e, el, .... en are 

object expressions and if f is an object- 
forming function, then 

(a) (f:e) 

(b) if e I then e 2 else e 3 

(c) <el,...,en > 

are object expressions. 

It is clear that an object expression 
containing no variables denotes an object 
that is the value of the expression, thus 
the expression +:<2,3> denotes the value 
5. 

Now consider the following mapping that 
"lifts" object expressions e onto function 

expressions 6 : lift(e) 

The mapping "lift" : {e] ÷ {e} 

We give the values of lift(e) for the 
five possible cases: 

a) e is an object: 

lift(e) = 



b) e is an object variable: 

lift(e) = e 

where, e.g., lift of the object variable 
x is the function variable x. 

c) e is an application (f:d) where f is 
an object-forming function and d is an 
object expression: 

lift((f:d)) : fod 

d) e is formed by if-then-else: 

lift(if e I then e 2 else e 3) 

= el + e2; e3 
e) e is a sequence: 

lift(<el ..... en>) = [e l  . . . . .  en  ] 

(Note that if-then-else maps three objects 
into one, whereas condition, on the right 
in (d) , maps three functions into one.) 
Here is an example: 

lift(+:<g:x,h:3>) : +o [gox,ho3] , 

where x is an object variable on the left 
and a function variable on the right. 

Notice that an object expression e with- 
out variables is lifted onto a function ex- 
pression ~ whose function-value is the 

constant-valued function v, where v is the 
object-value of e. This relationship is 
indicated by the following commuting dia- 
gram: 

lift 

object value ~ $ function value 

v lift 

Thus, for example: 

value(+:<2,3>) : 5 

lift(+:<2,3>) = +o [2,3] 

function-value(+o [2,3])= 5 : lift(5) 

But keep in mind that most function expres- 
sions are not lift-images of object expres- 
sions. 

Using the lift mapping we can write the 
function level version of our earlier ex- 
ample: 

(I) object level: 

f:<x,y> = if neg:x then 0 else +:<sqrt:x,y> 

(2) function level: 

f0 [x,y] : negox ÷ 0; +o [sqrtox,y] 

Just as the object level versrion (I) is to 
hold for all object values of the variables 
x and y, so the function level version (2) 
is to hold for all function values of the 
variables x and y. 

If, for the moment, we think of the var- 
iables x and y as having fixed object or 
function values respectively in the two 
equations, denoted x and y in both cases, 
then in (I) <x,y> is the value of f's argu- 
ment, whereas in (2) [x,y] is the function 
that constructs f's argument. Thus when 
fo[x,y] :w is computed for any object w, f 
"sees" the argument <x:w,y:w>. When the 
right side of (2) is applied to the same 
object w, then every occurrence of x will 
produce x:w, just as it does on the left 
side; similarly every occurrence of y will 
produce the same object on both sides of 
the equation. So the functional equation 
(2) asserts that, to compute fo [x,y] :w = 
f:<x:w, y:w> one computes 

(negox ÷ 0; +o [sqrtox, y]) :w , 

which is 0:w = 0 if neg: (x:w) = T , or 

+:<sqrt: (x:w) , y:w> 

if neg: (x:w) = F. 

This computation for the "extended" FP 
definition (2) corresponds exactly with what 
we understand from (I), except that the 
(variable) object x in (I) is represented 
in (2) by x:w, where both the function x and 
the object w are variable elements (but in 
(2) the variable object w is only implicit 
by virtue of the fact that f=g means 
f:w = g:w for all objects w). 

Another way to see that (I) and (2) define 
the same function f is to compare the object 
level computation of (I) for a particular 
argument, say <4,3>, with the corresponding 
function level calculation for (2). 

(I') f:<4,3> = 4:<sqrt:4, 3> 

since neg:4 = F 

= 5 

Lifting 4 and 3 yields the constant-valued 

functions ~ and 3. Thus the lift of <4,3> 

is the function [4,3], and (2) becomes 

(2') fo[4,3] = nego~ + 0; +o[sqrto4, 3] 

It is easy to see that nego~ = F, (F÷g;h) 

= h, sqrto4 = 2, and +0[2,3] = 5 are triv- 
ial function level identities (if you wish 
you can view them as lifted from their object 
level counterparts). Fromthese we obtain 
at the function level 

fo [~,3] = 

And in general, if (I) yields f:<x,y> = z, 
then (2) will give 

fo [x,y] = 

Thus (I) expresses the fact that the ob- 
ject f:<x,y> is the same as the object-value 
of the expression on the right, no matter 
what objects one chooses as x and y. As 
expected, (2) expresses the "same"- thing 



except in its "lifted" version: the function 
fo [x,y] is the same as the function-value of 
the expression on the right, no matter what 
functions one chooses as x and y. 

5. Why the function level is preferable to 
the object level; deriving variable-free 
function level definitions from those 
with function variables: example contin- 
ued. 

What, if any, are the advantages of using 
the lifted version of a definition? (We 
continue to refer to definitions (I) and (2) 
of the last section.) Now (I) allows us to 
replace the object f:<x,y>, for any objects 
x and y, by the object-expression on the 
right. This forces us, in reasoning about 
the program f or some program that uses f, 
to descend from the domain of programs to 
the domain of objects. Clearly it is simpler 
and more direct if we can reason about the 
program f in the program domain without 
referring to objects at all; the function 
level definition (2) allows us to do just 
that. Thus (2) allows us to replace the 
program fo [x,y], for any programs x and y, 
by the program-expression on the right. 
Therefore (2) is a general, useful law about 
f that can be used to reason about f and 
programs using f without leaving the domain 
of programs. 

Many programs that use f will construct 
an argument for f with a function of the 
form [g,h], and so fo [g,h] will occur in 
the program using f. Thus (2), regarded as 
a law about f, allows us to replace fo[g,h] 
with the function expression 

negog ÷ 0; +o[sqrtog, hi ; 

this elimination of f may help us to reason 
about or transform the using program. 

In addition to serving as a useful alge- 
braic law about f, (2) has another advantage 
over (I). In (I) the variables x and y are 
absolutely essential in defining the function 
f: the object level approach, by definition, 
is dedicated to describing functions by des- 
cribing their values for all arguments, in 
this case denoted by x and y. But in (2), 
as we shall see, the function variables x 
and y are not essential in defining f; their 
purpose is (a) to make the definition more 
readable and (b) to provide the variables of 
an algebraic law about f. 

Let us try to derive a "proper", variable- 
free definition of f from the definition (2). 
Since (2) is to hold for all functions x 
and y, we might ask if there are particular 
functions s I and s 2 such that [Sl,S 2] is the 

identity on pairs, the domain on which f is 
to be defined. If s I and s 2 exist, then, in 

the domain of pairs, fo[sl,s 2] = f, and so, 

if we substitute s I and s 2 for x and y in 

(2), we get 

(3) f = negos I ~ 0; +o[sqrtos I, s 2] 

For [Sl,S 2] to be the identity on pairs, it 

is necessary and sufficient that the func- 

tions s I and s 2 satisfy 

SlO [x,y] : x and s2o [x,y] = y 

when both x and y are defined. Now of 
course the selector functions I and 2 have 
this property and are the functions that 
we want for s I and s2, since [1,2] is the 

identity function on pairs: 

[I,2] :<x,y> = <1:<x,y>, 2:<x,y>> = <x,y>. 

Substituting these values in (3) gives 

(4) f = negol ÷ 0; +o[sqrtol, 2] , 

which defines the sam~ function as (I) and 
(2) on the domain of pairs. But the right 
side of (4) is defined for sequences of any 
length whose first two elements are numbers. 
If we want f to be undefined for all non- 
pairs, we must insert a predicate that 
ensures this: 

(5) f = eqo[[1,2I,id] ÷ E; 

where eq is the equality function, id is 
the identity function, E is the right side 

of (4), and [ is the everywhere-undefined 
function. Now (5) defines exactly the 
function we intend by (I) and (2): it is 
undefined for arguments that are not pairs 
of numbers. 

In the two preceding sections we have 
tried to give an informal idea of how "ex- 
tended" FP definitions using function vari- 
ables can be used to make easily readable 
definitions that correspond exactly to ob- 
ject level definitions. We have indicated 
how these extended definitions serve as 
useful laws for reasoning about the defined 
function and others that use it. And we 
have indicated how extended definitions can 
be converted to proper, variable-free ones. 

The technical definitions and theorems 
needed to make the noti6n of extended def- 
initions precise and to prove the equival- 
ence of the functions defined by an extend- 
ed definition and by the corresponding pro- 
per definition are to be found in [Backus 

81]. 

6. Safe computation rules; "terse" func- 
tion level programs. 

Another advantage of the function level 
approach concerns the elimination of the 
object level function if-then-else, a 
function that must be non-strict to be 
meaningful (i.e., it must be defined for 
some undefined arguments). Object level 
functional languages require at least this 
one non-strict function. As Manna et al. 
[73] and Cadiou [72] observe, bottom-up 



computation rules are not "safe" for comput- 
ing least fixed points in systems with non- 
strict functions, thus bottom-up rules (giv- 
ing the simplest operational semantics) are 
not safe in object level languages using if- 
then-else, hence the simplest operational 
semantics are incompatible with fixed point 
semantics in such languages. 

On the other hand, function level lan- 
guages can use condition, the lifted version 
of if-then-else, a non-strict functional; all 
functions can then be strict and bottom-up 
rules become safe for computing least fixed 
points. It is interesting to note that the 
object level view has so dominated our think- 
ing that Manna and Cadiou, despite the thor- 
oughness of their studies of fixed points, 
never considered the possible existence of 
systems with all strict functions and hence 
of safe bottom-up computation. (For a fuller 
discussion of this point see [Williams 80].) 

Perhaps the most important advantage of 
the function level approach is that it makes 
possible a more powerful and terse style of 
programming than is possible at the object 
level, a style that often has no object lev- 
el counterpart of comparable simplicity. 
Furthermore, this terse style is often much 
easier to reason about. Let me illustrate 
this point with an example similar to one 
in [Williams 81]. 

Williams defines the function "length" 
at the function level as follows: 

(6) length = /+ o ~# 

This means (a) apply (with apply-to-all of 1) 
the everywhere-1 function to every member 
of an argument sequence, giving a sequence 
of all 1's, then (b) sum this (with /+) , 
thereby giving the length of the original. 

This definition uses the PFOs insert (/) , 
composition (o) and apply-to-all (~) to 
build length from the functions + and 1. 
It is not clear what object level definition 
might approximate (6) without these PFOs. 
Thus, unlike our earlier example, (6) is 
not the lift of any object level definition. 
The usual object level definition of length 
is recursive: 

(7) length:x = if null:x then 0 

else +:<I, length: (tl:x)> 

The lifted version of (7), with the variable 
removed, is 

(8) length = null ÷ 0; +o [1, lengthotl] 

One indication of the usefulness of the gen- 
eral theorems of the FP style is that one 
can use the general solution for all "lin- 
ear" equations [Backus 81] to prove that 
(8) and (6) define the same function. 

But the proof of a theorem about length 
is often much easier when it starts with the 

closed form (6) than when it starts with the 
recursive definitions (7) or (8). For ex- 
ample, the following theorem has a relative- 
ly simple proof when length is defined by 
(6), whereas its proof is harder and involves 
induction when length is defined by (7). 

THEOREM lengthoapndro [f,g] = +o [lengthof,~] 

for all functions f and g when g is defined, 
where apndr is append on the right: 

apndr:<<Xl,...,Xn>,y> = <Xl,...,Xn,Y> • 

This theorem is a lifted version of one 
that says: the length of a sequence s = f:x 
with an element (g:x) added on the right, is 
one greater than the length of s. 

The proof uses the following identities: 

(a) ~hoapndro [f,g] = apndro [~hof, hog] 

(b) if h is associative then \h = /h 

(c) \hoapndro If,g] = ho[\hof, g] 

(d) ~og = 

proof We transform the left side of the 
equation into the right by the use of-the 
above identities. 

lengthoapndro[f,g] 

: /+oe~oapndro[f,g] 

= /+oapndro[elof, log] 

= \+oapndro[~lof, 1] 

= +o [\+oe~of, 1] 

= +o [/+o~lof, 1] 

= +o[lengthof, 1] 

by def of length 

by (a) 

by (b) (+ assoc) 
and (d) 

by (c) 

by (b) 

by def of length 

D 

The point of this example is that, after 
becoming familiar with the function level 
style, one can construct functions that are 
more tersely expressed, easier to understand 
and to reason about. 

7. Comparison of FP and lambda style prop 
gramming; object vs. function level, 
structure and reasoning. 

So far we have discussed a number of 
reasons for preferring a function level 
style over an object level one. Now I would 
like to extend that discussion with a more 
specific comparison of the FP style with the 
"lambda style", that used in lambda calculus 
based languages like LISP and ISWIM [Landin 
66], from the viewpoint of program structure. 

In this section we shall point out some 
of the basic differences between the FP and 



the lambda styles of functional programming. 
We shall suggest that (a) the FP style leads 
to "structured" functional programs, where- 
as the lambda style leads to unstructured 
ones, and that (b) the FP style encourages 
reasoning at the "function level" whereas 
the lambda style leads to reasoning at the 
"object level" In general, we suggest that 
the FP style offers a framework in which one 
can perceive and reason about program struc- 
ture, truths, and transformations at a high- 
er level of generality than that presently 
available for reasoning about lambda style 
programs. 

What do we mean by the "structure" of a 
program? In a conventional, yon Neumann 
language, a program is "structured" if it 
has single entry and exit points and is built 
up from subprograms of this same kind by a 
small set of program-forming operations 
(PFOs) . For example, the program 

p = if a then (while b do c) else d 

is built from an expression a and two pro- 
grams, (while b do c) and d by the PFO 
if-then-else. Its first subprogram is built 
by the PFO while-do. Thus the "structure" 
of p is the operation if-then-else composed 
with while-do in its first program-argument 
position. 

In similar terms FP programs are complete- 
ly structured. For example, the program 

(I) f : p ÷ q; ho[r,s] 

employs the PFO, condition, to build f from 
three programs, p, q, and ho[r,s], where the 
third of these is built by the PFO composi- 
tion from the program h and the program form- 
ed by the PFO construction from programs r 
and s. 

In contrast to the FP emphasis on the use 
of program-forming operations to build struc- 
tured programs at the function level, the 
lambda style emphasizes object-forming oper- 
ations and is more often concerned with 
combining objects than with combining func- 
tions. For example, the lambda style ana- 
logue of (I) is 

(2) f = ix. (p:x ÷ q:x; h(r:x,s:x)) 

In (I) we simply combine the functions 
p, q, h, r, and s to form the function f. 
In (2) we are given the same functions to 
start with and want to define the same result. 
But we proceed quite differently. We begin 
by introducing an "object" x, and from it 
we form the objects p:x, q:x, r:x, and s:x, 
combine r:x and s:x to form the object 
h(r:x,s:x), and finally we combine p:x, q:x 
and h(r:x,s:x) with the object-forming opera- 
tion conditional to form the "result", an 
object. Only at this point do we use the 
primary program-forming operation of the 
lambda style, lambda abstraction [Church 41]. 
By writing "ix." in front of the object we 
have so far produced, v'e transform it into 

the desired function. 

As the above example shows, the typical 
method of building a function f in the lamb- 
da style is to immediately descend from the 
level of functions (those supplied to build 
f) to the level of objects, and there combine 
objects to form the desired "result-object". 
One then ascends to the function level by 
abstraction of the original "objects", i.e., 
the object variables. This down-then-up- 
again approach and its concern with object- 
forming operations avoids the use of PFOs 
that could achieve the same result more 
directly; therefore it obscures the "struc- 
ture" of the program. 

It is clear that it is the use of lambda 
abstraction as the principal PFO that leads 
to the object-oriented, structure-obscuring 
nature of the lambda style. If a function 
f maps objects into objects and is built 
by lambda abstraction, f = Ix.E, then x 
must be an objeqt variable (since the argu- 
ment of f is an object) and E must denote 
an object (since the result of f is an ob- 
ject) . 

The relative structurelessness of lambda 
style programs makes it difficult to recog- 
nize even simple relationships between pro- 
grams. For example, it is harder to recog- 
nize an instance of the following simple 
identity in the lambda style, 

(3) ly. ((Ix.<f:x,g:x>) : (h:y) = 

ly.<Ix. (f: (h:x)) :y, Ix. (g: (h:x)) :y> 

than it is to recognize the more structured 
FP law 

(4) [f,g]oh = [foh,goh] , 

which is the same identity expressed at the 
function level, without the superfluous 
application of functions to "abstract" ob- 
jects that is required by lambda abstract- 
ion and that demotes this statement about 
functions to substatements about objects. 
(The identity (3) is unlikely to be recog- 
nized as a useful function level identity 
for a second reason: if it is simplified 
to eliminate x, both sides reduce to 

ly.<f: (h:y), g:(h:y)> 

and the functional relationship has vanish- 
ed.) 

The simpler structure of FP-style programs 
is important if programming is to become a 
mathematical discipline that is useful to 
the ordinary practitioner. Such a disci- 
pline can be helpful by providing a body 
of carefully proven general laws and theo- 
rems about programs. The simpler the struc- 
ture of programs, the more easily can a 
programmer recognize that the major struc- 
ture of his program provides an instance of 
one or more theorems that will help him 
prove its correctness or make it more effi- 



cient. 

If it is difficult to recognize an in- 
stance of a simple law like (4) when express- 
ed in the lambda style, then the chances of 
recognizing instances of important theorems 
are very small. For example, Williams [80] 
proves the following theorem for all n>1 
and for all functions f, a, b, and c: 

(5) [f, 2oa] no [b,c] = 

[\fo[b,c,aoc ..... an-loc], anoc], 

where fn+1 = fof n. It is unlikely anyone 
is going to recognize an instance of such a 
theorem when his program and the theorem are 
expressed in the lambda style, simply because 
of the sheer complexity of its statement. 

We have seen how the lambda style tends 
to obscure the function level structure of 
a program. The need to move from the func- 
tion level down to the object level leads to 
an over-reliance on object level reasoning. 
In either the FP or lambda style it is some- 
times necessary to reason at the object lev- 
el: to show that f=f' one may have to show 
that for every object x, f:x is the same 
object as f' :x. (Such reasoning can be done 
in a lifted form at the function level.) 
But often such reasoning is unnecessary and 
tends to lose touch with important function 
level identities. For example, consider the 
following object level definitions of f 
and f'. 

f:x : 4x + g(3x) 

where g:x = even(x) + x; 2x . 

f' :x = even(3x) + 7x; 10x . 

In trying to prove f:x = f':x at the object 
level, one may be lead into considering var- 
ious cases and making various calculations. 
If, on the other hand, f is expressed at the 
function level (using m i for "multiply by i"), 
then we get 

or 

f = +o[m4, g°m 3] 

where g = even ÷ id; m 2 

f = +o [m 4, (even + id; m2) om3] 

Now anyone familiar with FP theorems would 
either (a) recognize the first expression 
for f as a form linear in g [Backus 81] and 
use the properties of such forms to obtain 
the desired result or (b) he would recognize 
the combined expression for f as an instance 
of the simple theorem 

ho [i, (p+q;r)oj] = 

poj ÷ h o [i,qoj] ; ho [i,roj] 

that gives, in this case, 

f = evenom 3 ÷ +o [m4,idom3] ; +o[m4,m2om3 ] 

or, after simplification, 

f = evenom 3 ÷ m7; m10 • 

This is an extremely simple example; 
consequently the object level reasoning 
needed to show that f:x = f' :x for every 
x is simple. However, if instead of the 
subprograms m. we had used others requiring 

x 
complex calculations, the object level 
reasoning might have become much more dif- 
ficult unless the reasoner happened to rec- 
ognize the usefulness of the function level 
identities that the FP approach makes clear. 
Much object level reasoning can be compared 
to proving (a+b)c = ac+bc for given numbers 
a, b, and c by doing arithmetic instead of 
by using algebra. If a, b, c are small 
numbers, either method is viable, but if 
they are very large, then algebra is defi- 
nitely better! 

One further difference between the lambda 
and FP styles is worth noting. Languages 
in the former style tend to use functions 
of more than one argument, whereas all FP 
functions are unary. Thus in the lambda 
style, if h(x,y) is a function of two ar- 
guments and the values of g(x) are pairs 
<y,z>, then the following locutions are 
needed to express the function f, where 

f:x = h(y,z) where g:x = <y,z> 

or, using selector functions and lambda 
abstraction, 

f = lx.h(1: (g:x), 2: (g:x)) 

In the FP style h would be a function on 
pairs, h:<y,z>, therefore the definition 
of f would be 

f = hog . 

Thus the use of n-ary functions in the lamb- 
da style is another important factor that 
obscures program, function level structure 
and leads to object level reasoning. (The 
PFO "construction" is important in a style 
using only unary functions; it is the PFO 
used to build a subprogram to create an 
argument for a function on tuples; e.g., 
if h is defined on pairs, then f = ho[r,s] 
corresponds to f:x = h(r:x, s:x) .) 

To summarize: use of lambda abstraction 
as the primary program-forming operation 
obscures function level structure of pro- 
grams built with it. By requiring a de- 
scent to object-forming operations, it often 
leads to unnecessarily complicated object 
level reasoning, reasoning that may fail 
to take advantage of function level theorems 
that can be seen to apply when the function 
level structure of a program is made clear. 

At this point we must note that we are 
not proposing the FP style as a panacea. 
When object levelreasoning is necessary, 
as it often is (e.g., when a proof depends 
on the detailed properties of a primitive 
function), then lambda expressions can be 



helpful (but of course we would propose 
using the lifted function level analogue). 

The lambda abstraction PFO is more power- 
ful than any or all of the PFOs of the FP 
style. Using lambda abstraction one can de- 
fine all of the FP PFOs and an infinity of 
others. But this reminds one of the rela- 
tionship between Fortran and the convention- 
al "structured languages". Using IFs and 
GOTOs in the former, one can model the 
"structured" PFOs allowed in the latter and 
one can model an infinity of other PFOs. 

Thus, just as one can write 
"structured" programs in Fortran, so one can 
write "structured" functional programs in 
LISP or ISWIM. But just as it is easier to 
see the structure of a program written in 
Pascal rather than in Fortran, so it is 
easier to see the structure of a functional 
program written in FP rather than in LISP 
or ISWIM, since FP and Pascal are designed 
to emphasize program structure whereas LISP 
and Fortran tend to obscure it. 

It is perhaps going too far to say that 
lambda style languages are the "Fortrans" 
of functional progran~ing languages, since 
they are more powerful than Fortran. How- 
ever, LISP has been around almost as long as 
Fortran and it and other lambda style lan- 
guages tend to produce unstructured programs, 
as indicated above. Therefore perhaps it is 
time to begin designing a new generation of 
functional languages, languages that em- 
phasize function level structure and func- 
tion level reasoning, languages whose pro- 
grams and program-forming operations comprise 
a space of mathematical objects. 
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